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As human immunodeficiency virus (HIV) begins to replicate within hosts, immune
responses are elicited against it. Escape mutations in viral epitopes—immunogenic
peptide parts presented on the surface of infected cells—allow HIV to partially evade
these responses, and thus rapidly go to fixation. The faster they go to fixation, i.e.,
the higher their escape rate, the larger the selective pressure exerted by the immune
system is assumed to be. This relation underpins the rationale for using escapes
to assess the strength of immune responses. However, escape rate estimates are
often obtained by employing an aggregation procedure, where several mutations that
affect the same epitope are aggregated into a single, composite epitope mutation. The
aggregation procedure thus rests upon the assumption that all within-epitope mutations
have indistinguishable effects on immune recognition. In this study, we investigate how
violation of this assumption affects escape rate estimates. To this end, we extend a
previously developed simulation model of HIV that accounts for mutation, selection,
and recombination to include different distributions of fitness effects (DFEs) and inter-
mutational genomic distances. We use this discrete time Wright–Fisher based model
to simulate early within-host evolution of HIV for DFEs and apply standard estimation
methods to infer the escape rates. We then compare true with estimated escape rate
values. We also compare escape rate values obtained by applying the aggregation
procedure with values estimated without use of that procedure. We find that across the
DFEs analyzed, the aggregation procedure alters the detectability of escape mutations:
large-effect mutations are overrepresented while small-effect mutations are concealed.
The effect of the aggregation procedure is similar to extracting the largest-effect mutation
appearing within an epitope. Furthermore, the more pronounced the over-exponential
decay of the DFEs, the more severely true escape rates are underestimated. We conclude
that the aggregation procedure has two main consequences. On the one hand, it leads to
a misrepresentation of the DFE of fixed mutations. On the other hand, it conceals within-
epitope interactions that may generate irregularities in mutation frequency trajectories that
are thus left unexplained.

Keywords: cytotoxic T lymphocytes (CTL), human immunodeficiency virus (HIV), escape, genetic interference,
population genetics
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1. INTRODUCTION

Escape mutations appear in regions of a viral genome that code
for epitopes, viral peptides that can elicit immune responses.
These responses will frequently consist of cytotoxic T lympho-
cytes (CTLs) that specifically recognize such epitopes. Escape
mutations can emerge during early infection of human immun-
odeficiency virus (HIV) and commonly go rapidly to fixation
(1–6). The emergence and subsequent rise of escape mutations
is explained by their net selective advantage (1, 2). A mutation
in an epitope-coding region can alter the shape of the epitope,
effectively concealing the virus residingwithin the cell from recog-
nition of the CTL response specific to that epitope. Hence, if no
overly deleterious concomitant replicative deficiency is incurred
from it, such a mutation allows a strain to replicate at faster rates,
which makes it fitter than an unmutated virus strain that is killed
at higher rates by CTL.

In recent years, a series of HIV genome analyses from subjects
with acute infection have revealed that the majority of escap-
ing epitopes can give rise to multiple escape mutations simul-
taneously—each determining a unique escape variant or epitope
(4, 5, 7–9). This phenomenon is termed epitope shattering (10).
These intra-epitope mutations can display very complex behavior,
owed in great part to the differential impact they have on T cell
recognition.

The complexity of these dynamical intra-epitope escape pat-
terns induced by T cell pressures is exemplified by the KK10
epitope of the p24 protein in Gag, initially studied by Kelleher
et al. (11). Investigations by Schneidewind et al. show that CTL
responses specific to theKK10 epitope recognize different variants
with different efficacy (12). These differential recognition effi-
ciencies are also reported in other studies (13, 14). For KK10, the
main selected escape variant carries the mutation R264K. Alterna-
tive epitope variants withmutationsR264T,R264Q, andR264Gmore
effectively abrogate HLA binding, suggesting that they should
be preferentially selected. However, the substantial replicative
deficiency incurred by these mutations is more difficult to correct
by compensatory mutations than for R264K, which is aided by
the out-of-epitope mutation S173A. This compensatory mutation
restores the fitness of theR264K variant but cannot equallymitigate
the replicative fitness costs of the other escape variants. R264K
is also associated with the within-epitope precursor mutation
L268M, which has only a small replicative fitness cost. Thus, taken
together, these findings show that epitope variants may differ in
how efficiently they abrogate HLA binding. Furthermore, they
strongly suggest that combining different within-epitope muta-
tions into one variant is possible (R264K and L268M) and that
strong epistasis may operate in the context of compensatory
mutations.

Despite these complications, assessing escape rates in HIV has
become a commonmethod tomeasure CTL killing efficacies (15).
Since the growth rate surplus of an escape variantmust stempartly
from reduced CTL killing, the CTL killing rate is assumed to
be at least as large as the escape rate of the mutation, the rate
at which escape mutations outgrow the unmutated population
(2). Thus, time series of escape mutation frequencies obtained
from genetic sequencing of blood samples of HIV patients during
early infection (2, 4) carry information about CTL killing rates:

the faster their rise to fixation, the higher the CTL killing rate.
Customarily, in the analysis of these data, the complications aris-
ing from epitope shattering phenomena are avoided by aggregating
the frequencies (i.e., the relative proportions) of all HIV strains
that have a mutation in one particular epitope; that is, their fre-
quencies are summed up to give the total frequency of strains that
carry a mutation in that epitope (1, 2, 4, 5, 16–18). In the present
study, this method will be termed the aggregation procedure.

The usefulness of the aggregation procedure rests upon some
crucial assumptions. One key assumption posits that mutations
that appear within the same epitope are indistinguishable in their
effect and may thus be treated as identical. HIV within-host
evolution modeling has traditionally adopted this assumption.
Following early modeling efforts on escape dynamics (2), a series
of deterministic and population-based mathematical models of
escape dynamics were published where entire epitopes could
either be mutated or not (16, 17, 19–23). Another, later series
of stochastic and frequency-based modeling papers also adopted
this assumption (18, 20, 24, 25). The rationale behind this notion
is that any mutation within any coding part of the epitope will
lead to a peptide alteration that fully abrogates HLA binding,
and thus completely avoids recognition by the immune system.
The evidence on different HLA-binding abrogation effects of
escape mutations strongly suggests that this is not always war-
ranted. Nevertheless, how robust standard escape rate estimation
techniques are to violation of this assumption remains poorly
understood.

To address this issue, we investigated whether the aggregation
procedure biases escape rate estimates in a statistically significant
manner when within-epitope mutations confer different advan-
tages, and potentially interfere (26–28). We studied this question
with in silico experiments of HIV within-host evolution, using
theWright–Fisher-inspired simulation program developed in Ref.
(25). We simulated HIV within-host evolution under different
conditions and compared the true input values of selection coeffi-
cients of mutations with estimated values, which were calculated
by standard estimation procedures, including the aggregation
procedure. With this, we extend the investigations of two recent
papers that account for within-epitope mutation’s fitness differ-
ences to quantify their influence on current escape rate estimates
(29, 30).

We extended and further developed the simulation program to
incorporate detailed characteristics of HIV. We considered two
classes of mutations: one class of mutations in close genomic
proximity (within an epitope) and another class at larger genomic
distances (between epitopes). We randomly assigned mutations’
positions into different epitopes. We extended the recombination
procedure to account explicitly for distances between mutations,
affecting how likely they are joined by recombination. Finally,
because of their importance to the mode of evolution of a system,
we utilized three classes of distributions of fitness effects (DFEs)
to run simulations: a fat tailed, an exponential and a short tailed
distribution of positive fitness effects (31).

We found that the aggregation procedure tends to con-
ceal mutations of small fitness effect, and thus—relative to an
individual-mutation-based estimation approach—overrepresents
large-effect mutations. The effect of the aggregation procedure
is well approximated by considering only the mutation with
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the maximum fitness effect within-epitope, neglecting all other
mutations. We could not identify any systematic over or under-
estimation of escape rates by the aggregation procedure relative to
individual-mutation-based estimates.

On balance, these results suggest that the widely employed
aggregation procedure should be replaced by methods that
account for the within-epitope variation of escape mutations.

2. MATERIALS AND METHODS

2.1. Simulation Model
We extended a Wright–Fisher model with selection, previously
developed to capture features of human immunodeficiency virus
(HIV) infections (25), to include two notable features. Here, we
briefly describe the core components of the model, which sim-
ulates the evolution of different HIV strains present in infected
cells only, at discrete time intervals corresponding to one HIV
generation. The model also tracks the expansion of virus-infected
cells within the host as well as the change of the DNA of the virus
residing within them.

HIV strains are assumed to correspond to a sequence of binary
loci—a locus corresponds to a codon—which are either in their
original state (a zero) or mutated (a one). The wild-type strain,
assumed to have ignited the infections, is a strain with only zeros.
Zeros mutate into ones at a rate µb = 5× 10−5 per locus per
replication (see below). No back mutations are considered.

The implementation of replication under selection, as well as
recombination, has been described in detail in Ref. (25). Briefly,
when selection is acting, each mutation confers a selective advan-
tage. The fitness wi of a strain i is defined as esi , where i= (i1, . . .,
iL), ∀j: ij ∈ {0, 1} and L is the number of loci (32, 33). A mutation
at locus j will confer an additional log-fitness sj to its carrier. Thus,
in the absence of epistasis, wi = Πjesj = exp(

∑
j sj).

The simulation proceeds in two phases. In the first phase,
the neutral phase, the population undergoes clonal expansion,
without selection. On average, one infected cell infects a Poisson-
distributed number of new cells, eight on average (34, 35). When
the population reaches the upper bound N (the population
size), the simulation proceeds by resampling from the previous
generation using a multinomial distribution. The sampling
probability pi of each strain i corresponds to the frequency of
that strain in the prior generation: pi =Ni/N, where Ni is the
number of cells infected with strain i. After a time delay of
τ n = 14 generations or 28 days, the second phase, the selection
phase, begins. The population is then resampled from the last
generation according to a multinomially distributed random
number generator, but with modified sampling probabilities due
to selection. The modified probabilities are given by pi,s = esi

⟨es⟩pi,
where ⟨es⟩ =

∑
i pie

si (32).
Recombination occurs in only a fraction, ci = 3%, of infected

cells: this is the coinfection rate (36, 37). The template
switching rate between strains during reverse transcriptase
is ρ= 3× 10−4 bp−1 (38).

Apart from these core features of the model, we have extended
the model to include more biological detail in two ways. First,
the model can simulate strains with distinct genomic dis-
tances between loci. Second, the selective advantages associated

with each locus are drawn from a well-studied exponential-
like distribution, which is related to a Gamma distribution.
These advantages are determined before the simulation starts and
remain fixed over the course of the simulation. These two novel
features are described in more detail in the following.

2.1.1. Inter- and Intra-Epitope Mutations
The simulation model can represent mutations that are located
at different parts of the genome. To model the inter- and intra-
epitope mutations, we chose to include seven mutations in each
simulation. Two adjacent mutations may be separated on the
genome in two ways. Either, a mutation is 10 bp apart from the
next one, locating it within the same epitope, or it is 1,000 bp apart,
which places it in a different epitope.

For each simulation run, we determined each inter-mutation
distance by a random draw, where the probability for a 10 bp
distance is 2/7. On average, around two (≈1.7) 10 pb distances will
be drawn from six inter-mutation distances. The corresponding
mutations will thus be localized in two distinct epitopes, using up
around four mutations. The remaining (about three) mutations
will constitute their own, single-mutation epitopes, leaving the
total number of modeled epitopes at around five (1, 3, 4, 39).

2.1.2. Sampling from Distributions of Fitness Effects
We sampled the selection coefficients for each mutation from a
well-studied exponential-like distribution of fitness effects (DFE)
(31, 40, 41). The probability density for a mutation to have a
selection coefficient s> 0, is

ρ(s) =
1
σ

e−( s
σ )β

Γ (1 + β−1)
, (1)

where σ is analogous to the inverse of a rate parameter in an expo-
nential distribution and β is a steepness parameter, indicating
over or under-exponential decline. If β is one, then ρ(s) is exactly
exponentially distributed.

To sample from the probability density ρ(s), we show how this
distribution is related to a Gamma distribution. The indefinite
integral of equation (1) is given by

∫
ρ(s)ds =

−Γ
(
1/β, (s/σ)β

)
βΓ(1 + 1/β)

.= F(s), (2)

where Γ(a, x) .=
∫ t
x ta−1e−tdt is the upper incomplete Gamma

function and Γ(a) .= Γ(a, 0) is the Gamma function. The differ-
ence γ(a, x) .= Γ(a) − Γ(a, x) is termed the lower incomplete
Gamma function.

We find that requiring the values generated by this density to be
positive, the definite integral yielding the cumulative probability
distribution of equation (1) is∫ s

0
ρ(z)dz = F(s) − F(0)

=
−Γ

(
1/β, (s/σ)β

)
βΓ(1 + 1/β)

+
Γ(1/β)

βΓ(1 + 1/β)

=
γ

(
1/β, (s/σ)β

)
Γ(1/β)

. (3)
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The cumulative probability distribution [equation (3)] is there-
fore a regularized lower incomplete Gamma distribution. This
corresponds to the cumulative probability distribution function
of a Gamma distribution,

γ(k, x
θ )

Γ(k) , (4)

where k is a shape parameter and θ is a scale parameter.
Thus, to sample from the exponential-like distribution, we

first defined a Gamma distribution with parameters k= 1/β and
θ=σβ , and then transformed the sample draws x from that
distribution—by taking the (1/β)th power—to obtain the cor-
rectly scaled values for the selection coefficient s. In the literature,
this connection between the exponential-like and the Gamma
distribution is typically not mentioned (31, 40, 41).

To model distinct DFE shapes, we ran three sets of simulations
with distinct β, but equal σ= 0.1. The fat-tailed distribution
(under-exponential decline) is characterized by a β= 0.8, the
exponential by β= 1.0 and the bulky (over-exponential decline)
by β= 1.4.

2.1.3. Beneficial Mutation Rate
Here, the beneficial mutation rate corresponds to the probabil-
ity for a within-epitope codon to be altered in a single gen-
eration. We assume that the point mutation rate for HIV is
µ= 2.15× 10−5 bp−1 generation−1 (42). Within a codon (the
length in base pairs is lc = 3), the chance that a point mutation
in the last base pair is not altering the amino-acid coded for, is
about pw = 78%. Thus, the probability not to alter the amino acid
per generation is pc = (1 − µ)lc + µ(1 − µ)lc−1pw (probability
of no mutation plus probability of altering the last base pair with
no consequence). It follows that the probability for a mutation to
be altered into an escape codon, that is, for a beneficial mutation
to arise is µb = (1− pc). With these parameter values, we have
µb ≈ 5× 10−5 bp−1 per replication. This value lies betweenµ and
the beneficial mutation rate typically assumed for epitopes [10−4

per epitope per generation (18, 22)].

2.2. Conversion of Escape Rates into
Selection Coefficients
Here, we derive a relation between the selection coefficient s of a
mutation, employed in population genetics theory, and the escape
rate ϵ of amutation, employed in virus dynamics studies, following
the approach of da Silva (2, 24).

The escape rate of a mutation is the growth rate surplus of a
viral strain carrying a beneficial escape mutation relative to some
background strain, typically the wild-type strain (2, 17, 20). The
proportion of the mutant strain in the entire population follows
the time course (2, 17):

f(t) =
f0

f0 + (1 − f0)e−ϵt , (5)

where ϵ is the escape rate and f 0 is the initial frequency of the
mutant population. Together, ϵ and f 0 completely determine f (t).

To connect ϵ, usually measured in units of day−1, to the selec-
tion coefficient s, typically defined in units of generation−1, we

first define some auxiliary quantities from population genetics.
A subpopulation carrying an advantageous mutation is assumed
to increase by a growth factor w per generation, which Desai
and Fisher term fitness (28). Here, we use the notation wg =w,
where subscript g indicates that w is measured with respect to
generations. The selection coefficient sg is defined as log-fitness,
that is, sg = ln(wg) (sometimes also confusingly termed fitness).
The quantity wd denotes the same growth factor in units of “per
day.” Thus, wτg

d = wg, where τ g is the generation time in days of
the organism in question. In the following, when no subscript is
present, we refer to the “per generation” scale.

Following da Silva (24), we now calculatewg of a strain carrying
a single escape mutation. The idea is that the growth factor of
the mutant strain must correspond to the ratio of surplus growth
rate relative to the wild type (due to reduced killing by CTLs) to
the deficit growth rate suffered (due to the fitness cost incurred
from the acquisition of an escape mutation). The wild type is
killed by CTLs at a fixed rate k per day. The mutant strain is often
assumed to incur a growth rate reduction of ψ per day associated
with the acquisition of the escape mutation. Then, the fitness of
the mutant strain is wd = (1−ψ)/(1− k). Thus, wg = wτg

d =
((1 − ψ)/(1 − k))τg . The escape rate of a mutation is defined
by ϵ≡ k−ψ. Here, we ignore fitness costs of escape mutations:
ψ≈ 0 day−1. Thus, we obtain ϵ≈ k and therefore,

s ≡ sg ≈ τg ln
(

1
1 − ϵ

)
. (6)

Note that equation (6) with τ g = 1 day corresponds to an
analogous formula given in Ref. (25).

2.3. The Aggregation Procedure
In the aggregation procedure, the frequency time course of
a multi-mutation epitope is analyzed by regarding all within-
epitope mutations as indistinguishable. The frequency of such a
multi-mutation epitope will be the sum of the frequencies of all
haplotypes that have a mutation within that epitope. Specifically,
the frequency pe of the epitope e, will be given by

pe =
∑

ik:k∈{1,...,L}\E
ij=1:j∈E

pi1,...,ik,...,ij,...,iL , (7)

where E is the set of indices of the loci that constitute the epitope
e. This means that the sum is formed over the frequencies of all
haplotypeswith a one at a position j∈E. For example, if the second
epitope (e= 2) has mutations at loci E= {2, 3}, and L= 3, then,

pe=2 =
∑

i1∈{0,1}
ij=1:j∈{2,3}

pi1i2i3

=
∑

i1∈{0,1}

pi110 + pi101 + pi111

= p010 + p001 + p011 + p110 + p101 + p111. (8)

The frequency time course of the aggregatedmutation frequen-
cies, or aggregates, was analyzed by fitting the logistic-type func-
tion [equation (5)] to 1,000 samples of pe(t) taken at different time
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TABLE 1 | Parameter values.

Parameter Description Value (if missing: units)

N Population size (18, 25, 43) 105 cells
L Number of loci (3–5) 7
Le Number of epitopes (9) ≈5
µ Point mutation rate (42) 2.15×10−5 bp−1 generation−1

µb Beneficial mutation rate 5×10−5 codon−1 generation−1

τg Generation time of HIV
(44–47)

2 days

τ n Duration of initial
selection-free phase

28days or 14 generations

τ c Simulation cutoff time 1,000 days or 500 generations
d Genomic distance between

loci
10, 1,000bp

Nr Number of runs per
simulation set

2,000

ρ Template switching rate
during reverse transcriptase
(38)

3×10−4 bp−1

ci Coinfection rate (36, 37) 3%
ϵ Escape rate of an escape

epitope or mutation
day−1

k Killing efficacy of cytotoxic T
lymphocytes (CTLs)

day−1

ψ Growth detriment imposed by
escape mutation (2)

≈0day−1

β Steepness parameter of
exponential-like DFE
[equation (1)] (28, 31, 41)

0.8, 1, 1.4

σ Inverse rate parameter of
exponential-like DFE
[equation (1)]

0.1

fs Sampling frequency 1 day−1

s, sg Log-fitness or selective
advantage per mutation

generation−1

sd Log-fitness or selective
advantage per mutation

day−1

points. These samples are taken at equal inter-sampling periods,
corresponding to sampling every day during the infection. The
application of this standard estimation method leads to a single
estimate ϵ̂e,aggr for the aggregate corresponding to epitope e. This
was subsequently transformed into an estimate of the selection
coefficient s by means of equation (6): ŝe,aggr.

2.4. Parameter Values and Their
Description
For our simulations we used parameter values as specified in
Table 1. If no values are given, they were sampled from density
distributions specified above.

3. RESULTS

3.1. Model Captures Essential Aspects
of Early HIV Dynamics
To explore how intra-epitope mutational interactions affect the
frequency of mutation trajectories between epitopes, we devel-
oped a simulation model for human immunodeficiency virus
(HIV) based on previous work (25). Themodel has been extended
to integrate a higher degree of biological realism. Selection acts

on several loci simultaneously. Loci can be situated at will in
the genome, and therefore the genomic distances between muta-
tions can be modified to produce similar conditions to those
observed in early HIV infection. The rates at which mutations
at two different loci recombine depend on the genomic dis-
tance between them. Mutations can confer different selective
advantages, drawn from a distribution of fitness effects (DFE).
The fraction of infected cells in which recombination occurs
is modeled explicitly, and not by use of an effective recom-
bination rate (25). The population size of the model can be
varied.

To analyze how the aggregation procedure is influenced by
intra-epitope haplotype dynamics, we adapted our simulation
model to mimick conditions observed in empirical studies. Stud-
ies of escape dynamics within the first few months of infection
usually analyze up to seven CTL-escape epitopes (2–4, 9, 39). A
non-negligible fraction of these escape epitopes are aggregations
of mutations localized within that epitope, in some instances the
majority of epitopes (4).

To capture this feature, we rely on the data presented in Pandit
and de Boer (9) to calibrate the fraction of epitopes with multiple
mutations simulated: we set up simulations such that up to seven
loci can mutate. They can be located within or between epitopes.
In the patient analyzed by Pandit and de Boer (5, 9), at the
59th day, four epitopes show escape mutations, out of which two
are aggregates of mutations localized within the same epitope.
We replicate these conditions by randomly assigning loci into
epitopes, as described inMaterials and Methods.

In the simulations, we used an average selection coefficient per
mutation of s≈ 0.1, which corresponds to an average escape rate
permutation of ϵ≈ 0.05, commonly observed in empirical studies
(4, 17) (and Supplementary Material therein).

Our model appropriately captures the observed timing and
fixation patterns of escapes. Figure 1 shows a simulation run of
the model. A large variety of haplotypes coexist throughout the
simulation, most of them at low frequencies (Figure 1A). Most of
the highly advantageous mutations go to fixation before 200 days
(Figure 1B). Many of the frequency trajectories of mutations,
especially those going to fixation early, appear to follow contin-
uous and regular logistic time courses. As observed in empirical
data (4), some trajectories move more erratically: early frequency
increases are followed by sudden decreases, which give way to
eventual fixation. The fixation trajectories of different mutant
frequencies are arranged in such a way that they appear to go
to fixation sequentially (2, 17, 22, 39). Our extended model also
replicates the phenomenon of escape rate decrease (17, 21, 25,
30) (Figure 1B), where subsequent escapes go to fixation after
ever longer time spans. We also observe the accrual of beneficial
mutations in the population over time (Figure 1C). This accrual
is exemplified by the subsequent dominance of k-mutants, i.e.,
haplotypes with k mutations. Subsequent waves of ever more
mutation-rich haplotypes signify the progression of the popula-
tion toward higher fitness.

We conclude that the model is able to appropriately describe
central features of early within-host evolution and is thus appro-
priate for investigating the effects of the aggregation procedure on
standard estimation techniques.
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A B C

FIGURE 1 | Example run of simulation model. (A) Haplotype dynamics of a simulation run with parameter values µb = 5×10−5, N= 105, β= 1, σ= 0.1
(specifically, the true selection coefficients sampled were s1 =0.0003, s2 = 0.0742, s3 = 0.1148, s4 =0.0582, s5 = 0.1139, s6 = 0.219, and s7 = 0.0518), d= 10,
1,000 bp, and parameters as in Table 1. Each haplotype is attributed a randomly sampled color. (B) Frequency trajectories of escape mutations (without aggregating
within-epitope mutations). (C) Sequential rise and fall of frequencies of haplotypes with k mutations, for k= 0, . . ., 7.

3.2. Simulation Experiments to Assess
Aggregation Procedure-Caused Bias
Having established our model’s suitability to capture early HIV
within-host evolution, we proceeded to investigate whether the
aggregation procedure affects estimates of selection coefficients
obtained by standard escape rate estimation techniques.

To this end, we devised two sets of simulation experiments. In
our first approach, we took advantage of the fact that each simula-
tion would, by chance, produce a number of epitopes that contain
only a single mutation. These single-mutation epitopes can be used
as a control for the behavior of epitope frequencies that con-
tain multiple mutations—termedmulti-mutation epitopes—under
the aggregation procedure. Within each simulation, each multi-
or single-mutation epitope frequency can be analyzed by fitting
equation (5) to frequency time-course data, obtaining an estimate
ϵ̂ of the escape rate for each [as done in practice (4, 5, 17)]. The
estimate ϵ̂ is converted into a selection coefficient equivalent ŝ
by means of the relation (6). Taken together, the estimates from
multi-mutation epitopes form a distribution of selection coeffi-
cients ρf,m>1(̂s), where the subscript f denotes that only fixed
mutations (>95% frequency) are analyzed and m denotes the
number of mutations of the epitope. The single-mutation epitopes
give rise to an analogous distribution ρf,m=1(̂s), which serves as
benchmark.

In a second approach, we compared the distributions of esti-
mated selection coefficients ρf(̂s) obtained by either analyzing
all mutations individually within a simulation (without apply-
ing the aggregation procedure on any epitope), with distribu-
tions obtained employing the aggregation procedure on epitopes
ρf,aggr(̂s).

We conducted these simulation experiments in three different
regimes, characterized by different shapes of the distribution of
fitness effects (DFE). The DFE of HIV is currently unknown,
and the aggregation procedure is expected to affect estimates
differently depending on the characteristics of the DFE in ques-
tion. We chose to use a family of DFEs investigated in other
studies (28, 31, 41) (see equation (3)). The advantage of this
exponential-likeDFE is that it can capture different types of decays
of density distributions as selection coefficients increase. The
characteristics of the decay are largely determined by the steepness
parameter β.

If β < 1, the DFE decays over-exponentially with higher log-
fitness s. This fat-tailed distribution is known to be associated
with clonal interference effects. Due to their abundance relative to
an exponential decay pattern, small-effect mutations appear fre-
quently, but are likely to be outcompeted by occasional large-effect
mutations emerging from the distribution’s fat tail (27).

If β= 1, the DFE is an exponential distribution, which has
been studied extensively in evolution (27, 41, 48). Under β= 1,
the simulations should retain signatures of both β < 1 and β > 1
DFEs.

Distributions with β > 1 are bulkier than exponential ones,
giving rise to a phenomenon termed multiple mutations interfer-
ence (31) or MMI regime. Under MMI, small-effect mutations
are very common, whereas large-effect mutations are extremely
rare: lineages that carry advantageous mutations are constantly
in competition with newly formed lineages that have acquired
different beneficial mutations.

3.2.1. Multi-Mutation Escapes Compared to
Single-Mutation Escapes
To explore whether the aggregation procedure causes a bias in
the estimation of selection coefficients, we compared the true
selection coefficients used to run simulations with the selection
coefficients inferred by fitting a logistic-like function to epitope
frequency time courses, for both multi- and single-mutation epi-
topes.

We denote the true maximum within-epitope selection coeffi-
cient by se,max = max

E
{sj1 , . . . , sjm}, where E= {j1, . . ., jm} is the

set of all indices of loci that are localized within the epitope e and
m is the number of loci within epitope e. The estimated selection
coefficient of a multi-mutation epitope is denoted by ŝe,aggr (see
Materials and Methods). Note that for a single-mutation epitope
ŝe,aggr = ŝe, sincem= 1.

Figure 2 shows that the estimates ŝe,aggr can deviate substan-
tially from the true simulation input for both multi- and single-
mutation epitopes acrossDFEs.However, we observe that our esti-
mation techniques crudely capture the characteristics of escapes
across large spans of s values (about three orders of magnitude).
This is corroborated by statistical testing: in both multi- and
single-mutation epitopes, the distribution of estimated selection
coefficient values ρf(̂se,aggr) does not differ significantly from
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FIGURE 2 | Log-error of estimates of selection coefficients across different DFEs for multi-mutation and single-mutation epitopes. (A–C) Maximum
true within-epitope selection coefficient se ,max versus the log-error of the estimated selection coefficient ŝe,aggr in multi-mutation epitopes when applying the

aggregation procedure for β= 0.8, 1, and 1.4, respectively. The log-error is defined as ln
(

ŝe,aggr
se,max

)
. (D–F) True selection coefficient values se versus the log-error of

their estimates in single-mutation epitopes. The inset “pos/neg error” is the ratio of the sum of positive log-errors to the sum of negative log-errors. The green lines
are a smoothing spline [smooth.spline function in the stats R-package (49)]. The parameters of the simulation are specified in Table 1.

the distribution of simulation input values ρf(se,max) (two-sample
Kolmogorov–Smirnov test; see Figure S1 in Supplementary Mate-
rial). Thus, the estimationmethods do not fundamentally alter the
characteristics of the distribution of input values. Furthermore,
Figure 2 suggests that the effect of the aggregation procedure
is well approximated across all DFEs by taking the maximum
selection coefficient among within-epitope mutations.

The estimation techniques deliver slightly biased results. To
assess bias, we use the sum of the log-error of all overestimates
divided by the respective sum of the log-error of all underesti-
mates as a bias statistic (“pos/neg error” in Figure 2). For β < 1,
this statistic is larger than one, indicating overestimation bias.
However, when β≥ 1, true selection coefficient values tend to
be underestimated. This effect is produced by the bulk of the
estimates, which are centered around the mean of the generating
distributions at s≈ 0.1, and is shown by the negative smoothing
spline values at that mean in Figure 2. We also observe that
toward the front and the rear of the distributions of se ,max values,
overestimates are more common. This is likely to originate from
the erroneous conversion of escape rate estimates ϵ̂e,aggr to ŝe,aggr
by means of equation (6), which breaks down for large ϵ.

To further investigate the effect of the aggregation procedure
with respect to standard estimates, we compared the density dis-
tribution of inferred selection coefficients from single-mutation
epitopes ρf,m=1(̂s)with the distribution frommulti-mutation epi-
topes ρf,m>1(̂s). Figure 3 shows both distributions for different
DFEs. For all β, we find that at small ŝ, ρf,m>1(̂s) < ρf,m=1(̂s).
However, this relation reverses as ŝ becomes larger, leading to

ρf,m>1(̂s) > ρf,m=1(̂s). The aggregation procedure significantly
modifies the density distribution of the inferred selection coeffi-
cients compared to unaggregated ones (see Kolmogorov–Smirnov
tests in Figure 3). Thus, the aggregation procedure reduces the
detectability of small-effect mutations, masking them, and over-
represents large-effect mutations. This also explains why the
aggregation procedure is well approximated by the maximum
function in the comparison in Figure 2. On average, large-effect
mutations within an epitope spread first, and conceal the pres-
ence of more frequent, small-effect mutations within the same
epitope.

3.2.2. Individual-Mutation Analysis Compared
to Aggregation Procedure
Since all epitopes to which the aggregation procedure was applied
also contained several closely localized mutations, it is unclear
whether the observed effects may stem primarily from the aggre-
gation, or alternatively from the clustering of mutations. Because
closely clustered mutations are more tightly linked to one another
than mutations residing on different epitopes, the effects of inter-
ference are likely to be more pronounced within-epitope. Thus, to
corroborate previous results, it is necessary to also carry out the
analysis on mutations individually. This should be done employ-
ing the same standard estimation methods, but in the absence
of the aggregation procedure; that is, regardless of the mutation’s
relative position in the genome. These individual-mutation-based
estimates need to be compared to estimates obtained by applying
the aggregation procedure.
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A B C

FIGURE 3 | Aggregation procedure modifies density distribution of inferred selection coefficients of epitopes across DFEs. (A–C) The density
distributions of inferred selection coefficients for epitopes containing a single mutation, ρf,m=1(ŝ) (orange line) and epitopes with multiple mutations, ρf,m>1(ŝ) (light
green line) for DFEs (as defined in equation (3)) with β= 0.8, 1, and 1.4. The parameters for the simulations are specified in Table 1. The inset text shows the
p-values of the two-sample Kolmogorov–Smirnov test.

A B

FIGURE 4 | Time courses of individual mutation frequencies and
frequency time courses of epitopes when applying aggregation
procedure (both shown in lines of randomly chosen colors). (A)
Individual mutation based analysis: each frequency time course of a mutation,
irrespective of the mutation’s position in the genome, is analyzed and the
escape rate estimated. (B) The aggregation procedure is applied, and
mutations within the same epitope are collapsed into an aggregate epitope
frequency. There are thus fewer frequency time course lines than in (A). Here,
epitope frequency time courses are used for escape rate estimation. The blue
points are the sampled frequencies. The thin red lines are the fit of equation
(5) to the sampled frequencies. In some cases, the fit line appears on top of
both mutation and aggregate epitope frequency time courses. Simulation
parameters are specified in Table 1.

To this end, we devised a second set of simulation experiments,
where we compared (i) selection coefficient estimates from each
individual fixed mutation within each simulation with (ii) the
estimates of selection coefficients of fixed epitopes under the
aggregation procedure. More specifically, for each simulation we
performed two types of analysis: (i) one in which the escape rate
of each mutation that goes to fixation (irrespective of its position
in the genome) is inferred by fitting the logistic-type function
[equation (5)] (see Figure 4A) and (ii) one in which mutations
residing within the same epitope are aggregated, and the logistic-
type function is applied to both aggregated and non-aggregated
epitopes (see Figure 4B).

As in the first approach, estimates stemming from both
perspectives are transformed into selection coefficient equiva-
lents and may be compared in terms of their distributions. All
individual-mutation-based escapes under (i) across simulations
make up a list of selection coefficient estimates. Taken together,

these form a distribution ρ̂f(̂s). Analogously, (ii) leads to a list
of selection coefficient estimates from multi-mutation epitopes
as well as single-mutation epitopes. These form the distribution
ρ̂f,aggr(̂s).

Figure 5 shows how the frequency distributions of estimated
selection coefficients, ŝ, with and without the aggregation proce-
dure compare to one another and to the true selection coefficients,
s, and selection coefficients of fixed mutations across all DFEs.
We observe that the frequency distribution of all simulation-
generated true selection coefficients L ·Nr · ρ(s) (see Table 1 for
values of L and Nr) is largely equivalent to the frequency dis-
tribution of true selection coefficients of mutations that went to
fixation, Nf,s · ρf(s), where Nf,s is the total count of mutations that
went to fixation. They differ only at small selection coefficient
values. This is due to the simulation cutoff time τ c, which leads
to small-effect mutations not reaching the 95% threshold in time
to be considered fixed.

These two frequency distributions of true supplied and true
fixed selection coefficients show fundamental differences from
models analyzed in other studies, for example (31). In Ref. (31),
small-effect mutations are lost either by drift or being outcom-
peted by a constant supply of large-effect mutations. Because
large-effect mutations are interspersed across simulation time, on
average they may affect the trajectories of small-effect mutations
at any time point. In our simulation framework, however, the
supply of beneficial mutations is limited (L= 7). Thus, large-
effect mutations are likely to have established early in the dynam-
ics, and their supply is exhausted after all have gone to fixa-
tion. This leaves the remaining small-effect mutations free from
extinguishing competition, which allows them to go to fixation
unimpaired.

Figure 5 also confirms the insights from our previous analy-
sis. At large s, the frequency distribution of estimated selection
coefficients both with and without the aggregation procedure
(Nf,aggr · ρ̂f,aggr(̂s) and Nf · ρ̂f(̂s), respectively, where Nf,aggr and
Nf are the counts of mutations that went to fixation under each
respective procedure), surpass the true supply ofmutations. This is
in line with the observation of a systematic positive bias in the log-
errors of the estimates at large s. Furthermore, Nf,aggr · ρ̂f,aggr(̂s)
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FIGURE 5 | (A–C) show the frequency distributions of the true selection coefficients, L · Nr · ρ(s) (original DFE), the selection coefficients of mutations that went to
fixation, Nf,s · ρf(s) (DFE of fixed mutations), the estimates obtained under the aggregation procedure, Nf,aggr · ρ̂f,aggr(ŝ) (estimated DFE of fixed epitope escapes
(aggr. proc.)), and the individual-mutation based estimates, Nf · ρ̂f(ŝ) (estimated DFE of fixed mutations escapes), for all simulated DFEs (β = 0.8, 1 and 1.4,
respectively). At small s, Nf,s · ρf(s) and Nf · ρ̂f(ŝ) overlap. At large s, L · Nr · ρ(s), and Nf,s · ρf(s) overlap. Simulation parameters are specified in Table 1.

and Nf · ρ̂f(̂s) become very similar, suggesting that large-effect
mutations, as identified and estimated under the individual-
mutation-based analysis, are equally visible under the aggrega-
tion procedure. At ŝ values around the mean of the generating
DFEs, we observe that Nf,s · ρf(s) ≈ Nf · ρ̂f(̂s). This suggests
that the individual-mutation-based estimates are able to capture
most if not all of the supplied mutations with small selection
coefficient values. We further observe that with decreasing ŝ,
Nf,aggr · ρ̂f,aggr(̂s) < Nf · ρ̂f(̂s). Because the aggregation procedure
on a simulation run will collapse the mutant frequencies of all
within-epitope mutations into a single epitope frequency, there
must be fewer selection coefficient estimates under the aggrega-
tion than there are loci, since the number of epitopes Le is typically
smaller than the number of potential mutations L= 7.

These observations imply that the aggregation procedure leads
to an overestimate of large selection coefficients, as well as an
underestimate of small values of selection coefficients, consistent
with our earlier finding. The distributions thus also confirm that
the aggregation procedure will mask low-effect mutations, and
overrepresent large-effect mutations.

3.3. Aggregation Procedure Can Conceal
Strong Within-Epitope Sweeps That Affect
Other Epitopes
To compare the simulations with data, we investigated an instance
of early HIV infection in a patient for which haplotype sequences
were reconstructed. Henn et al. (5) performedwhole genome deep
sequencing on samples from the patient using 454 pyrosequencing
techniques. These data were reconstructed to HIV strains by
Pandit and de Boer (9), allowing frequencies of within-epitope
escape variants—or strains—to be tracked over time. Pandit and
de Boer identified interference effects among mutations within
the same epitope (see Figures 6A,B), but also among mutations
between different epitopes (Figures 6B,C). Crucially, differences
in selective advantages of mutations in the same epitopes lead
to within-epitope selective sweeps, reductions of genetic diversity
by the fast establishment and subsequent fixation of a mutation
(Figure 6B). The haplotype or strain frequencies revealed that
these sweeps affected frequencies of mutations in other epitopes
(9). In fact, Figures 6B,C show how a within-epitope sweep in one

epitope (Vif B38-WI9) causes the frequencies of some variants of
another epitope (Gag A01-GY9) to vanish, and with it, the total
frequency of all variants of that epitope (Figure 6D). However,
the effects of the frequency decline of these epitope variants were
concealed by the aggregation procedure. This instance shows how
focusing only on the aggregate frequencies can mask the real
causes of observed frequency fluctuations in epitopes.

The aggregation procedure may thus lead to an altered per-
ception of escapes in two ways: on the one hand, it obscures the
within-epitope causes of the delayed fixation of a different epitope
(a between-epitope interaction). On the other hand, it misrep-
resents between-epitope interactions, leaving the irregularities in
mutation frequency trajectories unexplained.

4. DISCUSSION

In this study, we analyzed the effects of the aggregation proce-
dure on currently employed standard techniques for escape rate
estimation. To this end, we further extended an early-infection
model of within-host HIV evolution, based on a Wright–Fisher
framework employed in our previous work (25). The new features
of our model incorporate some biological details of HIV infection
that were previously neglected: (i) the relative location of the sites
of escape mutations, which can either be located very closely
together within epitopes or far apart in different epitopes in the
genome (4, 10), (ii) the rate at which mutations arise and recom-
bine given their relative genomic distances, and (iii), the fitness
attribution to mutations according to three distinct distributions
of fitness effects, implying that fitness effects of within-epitope
mutations differ because they induce different CTL-recognition
losses (12).

We adopted two independent approaches to assess how escape
rate estimates are affected by the aggregation procedure: (a) by
comparing the estimate distributions for within-epitope aggre-
gates of mutations with estimate distributions from single-
mutation epitopes and (b) by comparing estimated fitness effect
distributions obtained by applying the aggregation procedure to
all epitope-coding regions individually with estimated distribu-
tions obtained by analyzing all mutations individually.
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A B C D

FIGURE 6 | Masking of strong within-epitope mutation interactions through aggregation procedure in escapes from one patient Ref. (5) [epitope
variant reconstruction in Ref. (9)]. (A–C) Frequencies of distinct epitope variants within HIV epitopes Nef A24-RW8, Vif B38-WI9, and Gag A01-GY9, respectively.
Three different mutations were measured within each epitope. The epitope variants are denoted by P_i1 i2 i3, where ij = 1 denotes a mutation in the jth considered
locus within the epitope (P_000 is the wild type). All within-epitope variant dynamics show intense interference effects. (D) The fit of a logistic escape model (red line)
to the sample points of aggregated escape mutant frequencies within one patient. Multiple escape mutations appear within the epitopes of the genes Nef and Vif
and tGag, whose frequencies are summed into one aggregate escape mutant frequency per epitope [Figure 6C in Ref. (22)]. The sampling times are 0, 3, 59, 165,
476, and 1,543 days after infection was determined. Despite the strong within-epitope interference in Nef and Vif, the trajectories of the aggregates appear to be
regular. The trajectory of the Gag is irregular due to the influence of a within-epitope sweep in Vif, as revealed by the analysis of Pandit and de Boer (9).

We found that in both approaches and for all examined DFEs
the aggregation procedure tends to conceal escapes of muta-
tions with small fitnesses while overrepresenting large-fitness
mutations. The effect of the aggregation procedure is well approx-
imated by selecting the mutation with largest fitness occurring
within an epitope. This is due to the tendency of fittermutations to
go to fixation earlier than the less fit mutations. In such a scenario
of fitness-ordered escapes, the application of the aggregation pro-
cedure results in the detection of the first within-epitopemutation
that goes to fixation, which also tends to be the mutation with
highest fitness.

Irrespective of the application of the aggregation procedure,
the estimation techniques employed here appear to underestimate
true selection advantages at the DFE’s mean, where the bulk
of the selective advantages of the generated mutations reside:
around ϵ≈ 0.05 [day−1], or equivalently, s≈ 0.1 [generation−1].
Conversely, the estimation methods tend to systematically over-
estimate the true value for large s, due to the break down of
the relation that converts inferred escape rates ϵ to selection
coefficients s.

Despite the incorporation of further biological detail and its
ability to capture some important aspects of early HIV infection,
by necessity our model must rely on some simplifications of
the very complex immunological interactions in attempting to
mimic HIV within-host evolution. Mismatches between model
behavior and data may previously have been plausibly attributed
to some neglected facets of HIV’s biology, such as recombination
or variation in fitness effects. Thus, their incorporation allows
us to reassess whether these mismatches stem from more central
assumptions inherited from previous models.

Correspondingly, one of the caveats of this study lies in
the assumption of a finite supply of beneficial mutations. This
assumption is based on the observation that most early adaptation
in HIV occurs at a limited number of loci subject to strong
selection (50), usually located in the Env and Nef genes (3, 51,
52). The relative strength of the CTL responses, as well as their
breadth, is hypothesized to determine immune escape (53, 51).
Because up to eight epitope-specific CTL responses may emerge
during acute infection (3), modeling a similar number of sites

is assumed to sufficiently reflect early adaptive dynamics. This
assumption of a finite mutation supply, typically used when no
within-epitope variation is posited, can alter in important ways
the evolutionary dynamics relative to a supply-rich scenario,
where the vast majority of epitopes exhibit shattering. That is,
elimination of small-effect mutations by rare but recurrent large-
effect mutations is suppressed. Thus, all mutations, irrespective of
their fitness effect, eventually go to fixation if enough time elapses.
Accordingly, patterns observed in empirical studies, where some
beneficial mutations do not reemerge after having been out-
competed by fitter ones, are only temporary in our simulation
experiments.

In patient data, the simultaneous emergence of several within-
epitope mutations—each corresponding to a variant—is some-
times followed by the fixation of a single mutation [for example,
Figure 3B in Ref. (4), see also Ref. (8, 30)]. Patient data suggest that
mutations within epitopes may not necessarily be beneficial when
appearing in combination. In fact, it has been suggested that these
early epitope variants are often mutually exclusive (10). This may
be due to strong epistatic effects between either within-epitope
mutations themselves, or between compensatory mutations and
within-epitope mutations. Here, we have neglected the effect of
such epistasis. Alternatively, the transient nature of within-epitope
genetic variation may have been imperfectly replicated in our
simulations due to the aforementioned scarce beneficial mutation
supply.

In this study, the replicative deficit—termed fitness cost—and
the fitness gain due to reduced CTL recognition incurred from
an escape mutation are combined into a single effective selection
coefficient. With this, we implicitly assume that the advantage
from partial CTL-recognition loss induced by an escape mutation
may vary frommutation to mutation, as suggested by experimen-
tal evidence (12, 30).We neglect the effect of compensatory muta-
tions due to the assumptions that compensatory mutations arise
and go to fixation rapidly, that high-cost mutations are rare (54)
and that their fitness effects are small relative to CTL pressures
(2). By attributing a constant fitness value to each mutation, we
also neglect the effect of varying CTL numbers—a key problem in
HIV modeling (29).

Frontiers in Immunology | www.frontiersin.org May 2017 | Volume 8 | Article 42310

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


Garcia and Feldman Within-Epitope Interactions Affect CTL-Escape Estimation

How the internal environment of the human host shapes the
availability of beneficial mutations is largely unknown. It remains
unclear what determines the immunodominance hierarchy of
immune responses, although the host’s HLA profile must play an
important role (52). How the relative strength of these responses
translates into selective pressures—and thus DFEs—remains a
topic of investigation (24, 25). du Plessis et al. (55) have computed
the DFE of HIV by means of a model that predicts HIV strain’s
fitness based on previous work by Hinkley et al. (56). They found
that a substantial proportion of the randomly sampled genetic
neighborhood of a reference strain contained beneficial mutations
but did not statistically analyze the shape of the resulting DFE.
Given this lack of information, here, we explored a limited variety
of DFEs thought to assume biologically plausible shapes (31, 41).
We restricted ourselves to varying only one shape parameter of
that exponential-like DFE, β.

Another caveat lies in the assumption of a constant popu-
lation size N after an early period of population expansion.
The shortcomings associated with this assumption have already
been discussed in depth in Garcia et al. (25). Briefly, a constant
population size may misrepresent fluctuations that arise during
early HIV infection, such as a spike in viral load around 3weeks
after infection. However, we are more focused on the number
of cells within which HIV replicates, because this better reflects
the genetic composition of the viral population. Several studies of
HIV’s genetics have shown that models with a constant popula-
tion size can replicate several essential features of HIV’s genetic
diversification process (18, 20, 43).

Also, the prevalence of multi-mutation epitopes might have
been too low in simulations. Our calibration of this prevalencewas
based on the study of Pandit and de Boer (9), which discusses data
from a single patient previously analyzed in Ref. (5). However,
the three patients in Ref. (4) almost exclusively show epitopes
with multiple mutations. The choice to use the Pandit and de
Boer study as calibration reference was motivated by seeking a
more direct way to compare simulation outcomes that aggregate
within-epitope mutations with individual analysis, while keeping
computational times reasonably low.

The idea that the aggregation procedure might affect the reli-
ability of estimation methods for escape rates is connected to
the notion that trajectories of mutations affect one another. The
non-independent behavior of tightly linked mutations as they
go to fixation is commonly associated with genetic interference:
because advantageous mutations cannot combine into the same
genetic background, a competitive state arises between them, in
which a frequency gain of one mutation implies a reduction in
frequency of other mutations. Mutations that interfere with one
another in this way also delay each other’s fixation, creating a
mismatch between the theoretical escape rates when each evolves
independently and observed escape rates.

The importance of interference in HIV early infection remains
unclear (25): on the one hand, sequential accrual of escape muta-
tions appears consistent with some patient data (39) and the
low estimated effective population sizes combined with decreas-
ing immune pressures across CTL clones (24). This explana-
tion of the viral genetics during early within-host evolution

does not necessitate interference. On the other hand, haplotype
reconstruction techniques and single genome amplification data
from several patients reveal the coexistence of several viral strains
differing at multiple sites (5, 9, 23), which is consistent with clonal
interference.

Methods that correct for possible interference effects are
needed. The study of Kessinger et al. (18) presents a framework in
which these challenges might be addressed in the future. In their
analysis of escape mutations, however, some simplifying assump-
tions were made, such as the sequential acquisition of beneficial
mutations, which does not fully account for interference. Further-
more, the aggregation procedure was also applied to some epi-
topes. In another study, Leviyang has developed escape rate esti-
mationmethods for scenarios withmultiple within-epitopemuta-
tions, but thesemethods are limited by currentHIV sequence data
precision (29).

Very few studies have investigated how interference effects
manifest themselves when mutations within- and between-
epitopes influence one another. A recent paper by Batorsky et al.
(30) offers a mechanism for the transient appearance of within-
epitope variation as observed in patient data. First, they dis-
tinguish between three main dynamical within-epitope escape
patterns: a common sweep pattern where a single mutation goes
to fixation, a leap-frog pattern in which a transient epitope vari-
ant is eventually outcompeted by another variant and finally,
a nested pattern, where early escape variants are replaced by
variants that incorporate the former variant’s mutations while
carrying additional ones. To replicate these patterns, they develop
a mathematical model where all mutations are associated with
a fitness cost ∆f as well as with selective advantage ∆r due to
evasion from recognition by CTLs. Both ∆f and ∆r are assumed
to be uniformly distributed. Batorsky et al. were able to show
that mutations with large ∆r and low ∆f would naturally appear
first in HIV’s within-host evolution, followed by mutations with
smaller ∆r and larger ∆f. This replacement mechanism was con-
sistent with observed features of within-epitope genetic variation,
where different haplotypes may coexist for a substantial time
period.

Batorsky et al.’s results confirm that within-epitope HIV
dynamics, as expressed in epitope shattering (10, 29, 57) may
not be trivially disentangled from between-epitope dynamics
(30). The integration of within- and between-epitope perspec-
tives into a unifying picture requires further work. Account-
ing for restricted recombination between mutations that may
lie close together in the genome or, alternatively, be very dis-
tant from each other, adds considerable complexity. Neverthe-
less, the richness of the phenomena produced by their interplay
promises to open up novel means to study early within-host
evolution of HIV and how it is shaped by the human immune
system.
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FIGURE S1 | True versus inferred selection coefficients for multi-mutation
and single-mutation epitopes across all DFEs. (A–C) The maximum true
within-epitope selection coefficients versus the inferred selection coefficient of their
aggregate for β= 0.8, 1, and 1.4 in multi-mutation epitopes. (D–F) The true
selection coefficient values of single-mutation epitopes versus their inferred values.
The black diagonal line is where true and estimated values are equal. The gray line
is a Theil-Sen estimator regression.
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