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A Century of Radiation Therapy  
and Adaptive immunity
Dörthe Schaue*

Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, 
CA, USA

The coming of age for immunotherapy (IT) as a genuine treatment option for cancer 
patients through the development of new and effective agents, in particular immune 
checkpoint inhibitors, has led to a huge renaissance of an old idea, namely to harness the 
power of the immune system to that of radiation therapy (RT). It is not an overstatement 
to say that the combination of RT with IT has provided a new conceptual platform that 
has re-energized the field of radiation oncology as a whole. One only has to look at the 
immense rise in sessions at professional conferences and in grant applications dealing 
with this topic to see its emergence as a force, while the number of published reviews on 
the topic is staggering. At the time of writing, over 97 clinical trials have been registered 
using checkpoint inhibitors with RT to treat almost 7,000 patients, driven in part by 
strong competition between pharmaceutical products eager to find their market niche. 
Yet, for the most part, this enthusiasm is based on relatively limited recent data, and on 
the clinical success of immune checkpoint inhibitors as single agents. A few preclinical 
studies on RT–IT combinations have added real value to our understanding of these 
complex interactions, but many assumptions remain. It seems therefore appropriate to 
go back in time and pull together what actually has been a long history of investigations 
into radiation and the immune system (Figure 1) in an effort to provide context for this 
interesting combination of cancer therapies.
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FiGURe 1 | Milestones in immunology (top) and radiation science (bottom).

2

Schaue Radiation and Immunity

Frontiers in Immunology | www.frontiersin.org April 2017 | Volume 8 | Article 431

Those who cannot remember the past are condemned 
to repeat it.

George Santayana

DeDiCATiON

A scientific journey dedicated to William H. McBride for his 
contributions to the field.

RADiATiON iS HANDeD OUT, iMMUNe 
CeLLS COMe iN

On December 29th in 1917 in a speech to the American 
Association for the Advancement of Science, Dr. James Ewing 
described in detail the effects of radium therapy in cancer (1). 
Using cervical cancer as an example, he noted an exudation of 
polymorphonuclear leukocytes and lymphocytes within 3–5 days 
of treatment, only to be followed later by plasma cell development 
and the formation of granulation tissue. Importantly, he suggested 
that it might be exactly this immune involvement that is essential 
for both tumor eradication and tissue healing (1).

One of the first scientists to firmly recognize that radiation 
modulates immunity was James Bumgardner Murphy (1884–1950). 

His large body of work performed at the Rockefeller Institute about 
100  years ago focused on the role of lymphocytes in graft and 
tumor rejection and led to some truly innovative concepts and dis-
coveries that have not received worthy recognition (2) (Forsduke).1 
Murphy’s observations in mouse models led him to suggest that, 
“in the lymphoid elements we have an important link in the 
process of so-called cancer immunity.” He proposed that radiation 
can achieve immune stimulation and tumor protection in mice, 
depending on the radiation dose (extent of erythema), volume and 
site, and the time between exposure and tumor challenge (3–5). 
Russ et al. (6) looked into the effect of small doses of X-rays on 
blood white cell counts and on the resistance of rats to transplanted 
tumors. Their data and Murphy’s data concluded that X-rays, apart 
from their direct action on tissue cells have two indirect actions: 
“(a) large doses of X-rays, by destroying the immune conditions, 
will favour the growth of tumours, and (b) small doses, by pro-
ducing immune conditions, will help to overcome the tumour.” A 
critical conclusion at that time was that “the therapeutic action of 
X-ray in cancer depended on the cellular reaction induced in the 
normal tissues surrounding the growth,” in particular the fact that 
radiation had the ability to switch a predominantly polymorphic 

1 http://post.queensu.ca/~forsdyke/murphy01.htm.
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infiltrate to a lymphoid one within a matter of days and that this 
was necessary for tumor rejection (7). Murphy further commented 
that “the lymphocyte is greatly affected by X-rays, since it is pos-
sible either to stimulate by small doses the production of these cells 
or by larger ones practically to destroy all the lymphoid tissues of 
the body” and by extension prevent tumor immune rejection. The 
cut-off was estimated to be around a mild erythema dose, which 
was the way dosimetry was performed in those days, i.e., around 
the time when orthovoltage machines were being introduced and 
dose delivery was limited to superficial depth. This is about 6–8 Gy, 
remarkably close to what is now widely (perhaps not incidentally) 
being considered as the preferred dose for hypofractionated 
radiotherapy either when used alone or in combination with 
immune intervention strategies (8–10). To put this in a broader 
context, this was also the time of the discovery of induced muta-
tions and radiation carcinogenesis, generally ascribed to Muller 
in 1927 (11), which provided the impetus for the development of 
inbred mouse strains and a hugely important point of divergence 
of models for cancer immunology from those of graft rejection 
and the discovery of major histocompatibility complex (MHC) 
antigens. In fact, the Jackson Laboratories (Bar Harbor, ME,  

USA)2 was founded as an institution for “research in cancer and the 
effects of radiation” in 1929 by a geneticist named Clarence Cook 
Little (1888–1971) who aimed to develop genetically inbred mice 
that also paved the way for the radiation genetics “mega-mouse 
project” at Oak Ridge National Laboratories in Tennessee by 
Russell (12). Murphy’s studies took place largely before that and 
the models that he used, i.e., the white mice, were not completely 
syngeneic and as such not ideal for tumor transplantation because 
of graft rejection issues (13). He did however look into spontane-
ous as well as transplanted tumors and the thought processes still 
have great relevance for the field of Radiation Oncology today.

eARLY ATTeMPTS AT COMBiNiNG 
RADiATiON THeRAPY (RT) wiTH 
iMMUNOTHeRAPY (iT)

The first attempts at combining IT and RT in mice and rats were 
probably from Cohen and Cohen in 1956/1960, followed by Sir 

2 Oral History Collection, American Philosophical Society.
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Alexander Haddow and Sir Peter Alexander in 1964 (14–16) 
(Figure 1). Haddow contributed massively to the field of chemi-
cal carcinogenesis, while Alexander was the first immunologist 
to head a radiobiology lab and has published a popular book 
on “Atomic Radiation and Life” (17). Essentially, the Cohens, 
Haddow, and Alexander were able to show that the success of 
RT delivered to a murine mammary carcinoma (probably virus-
induced) or a chemically induced (benzpyrene) fibrosarcoma 
could be substantially enhanced if it was preceded by a personal-
ized vaccine. This involved taking tumor biopsies, irradiating 
them ex vivo, and injecting them back into the same animal prior 
to delivering in vivo radiation to the primary tumor. This basi-
cally acknowledged that tumor antigens were largely unique to 
each tumor. Vaccination before RT seemed more effective than 
the alternative sequence and better than vaccination alone as 
had been attempted in humans 40  years previously by Kellock 
et  al. (18). Post-surgery, they had placed 2 rads-irradiated, 
minced autografts into 2 abdominal wall pockets of 30 late-stage 
cancer patients, mostly women with breast cancer, in an attempt 
to immunize them. Considering that they were dealing with 
late-stage disease, that the immunogenicity of the tumors was 
unknown and the absence of additional treatment (apart from 
one case who got RT), it is not surprising that the results were not 
as inspiring as the animal data mentioned above. More encourag-
ing in this regard was a study on 101 patients also with advanced 
cancers, unfavorable prognosis and mostly of gynecologic origin 
where vaccination with autologous tumor cells in Freund’s adju-
vant seemed able to improve responses to subsequent RT, at least 
in some patients (19).

The end of the 1960 and into the 1970s saw a resurgence 
of interest in IT led by the French and Scots. The approach 
was based on using bacteria in the hope to boost the immune 
system. Originally pioneered by Coley in 1891 (20), “Coley’s 
toxins” were utilized up until the early 1960s as a form of IT for 
cancer. Halpern and Woodruff chose Corynebacterium parvum 
(now P. acnes) or bacillus Calmette–Guérin (BCG) for the same 
purpose (21–23) and radiation biologists started to interrogate 
the potential of this form of IT as an adjuvant to RT (24–26). 
The conclusions were that C. parvum was especially beneficial 
to RT outcome (a) when given before rather than after local 
RT, (b) when radiation doses were small, and (c) when the 
tumor was intrinsically immunogenic. The tumor regression 
seen in the context C. parvum was largely based on the intense 
proliferation in lymphoreticuloendothelial tissues (spleen, liver, 
and lungs) and enhanced T  cell activation, although stimula-
tion of cytotoxic/cytostatic macrophages also contributed (27). 
Whether these C. parvum-primed T cells and macrophages were 
at play in a cooperative or rather a mutually exclusive fashion 
may have depended on the context (tumor or healthy) and the 
route of administration (28). BCG also appeared to boost the 
response of preclinical mammary tumors to RT (29), but the lack 
of cures seen following monotherapy with BCG or C. parvum 
in the clinic led to the demise of this form of IT. Nonetheless, 
to this day BCG remains the main intravesical IT for treating 
early-stage bladder cancer. Attempts to develop cancer vaccines 
continued throughout the rest of the twentieth century, with 
sporadic successes in individual patients, but without generating 

much overall enthusiasm for IT as a cancer therapy, and with few 
serious attempts to combine IT and RT.

LYMPHOCYTe ReSPONSeS iN THe 
iRRADiATeD HOST—DUALiSM AT iTS 
BeST

One can’t help but feeling that the field of natural immunity, 
as discovered by Ilya Mechnikov3 at the end of the nineteenth 
century, was somewhat overshadowed by the study of adaptive, 
antigen-specific immunity. For instance, the 1960s and 1970s 
was clearly the age of the lymphocyte. Along with the distinc-
tion between B and T lymphocyte lineages came the definition 
of MHC antigens and their role in directing T  cell and B  cell 
responses, and the role of the thymus in T cell development and 
tolerance (30, 31). This was further aided by improvements in 
lymphocyte culture and assays detecting their anti-cancer func-
tion both in vitro and in vivo. It is perhaps not surprising then 
that studies on radiation effects and immunity mirrored those in 
emphasis and more evidence as to the confusing duality of radia-
tion effects started to accumulate. For instance, in 1964, Taliaferro 
et al. produced a monograph summarizing findings on radiation-
induced modification of the antibody response (32). They noted 
that radiation can inhibit or enhance antibody formation and 
increase or decrease susceptibility to infections, depending on its 
nature. The authors pointed to evidence collected prior to 1950 
that an antibody response tends to be much more effectively 
suppressed if the antigen is given after whole body irradiation 
(WBI) rather than if given before. This timing issue is of relevance 
today and it seems that an activated or memory immune system is 
more radioresistant than a naïve one. Importantly, they noted that 
“enhanced antibody production can be elicited in a radiation-
damaged host provided the antigen is introduced at critical times” 
or if doses are small (about 100–200 rad WBI), echoing the early 
findings in cancer models mentioned earlier.

The early 1970s were marked by a focus on RT-induced lym-
phopenia in patients with breast, cervical, and bladder cancer 
(33–36). This was linked to various preclinical studies showing 
WBI or wide-field RT could enhance metastasis and the growth of 
immunogenic tumors outside the radiation field (37). Similarly, 
Kaplan and Murphy had reported in 1949 that suboptimal 
(400–1,000 rad) local tumor irradiation of a spontaneous mam-
mary carcinoma in C57Bl/6 mice enhanced metastasis fourfold 
(38). On the other hand, as Essen pointed out in his review 
“virtually every modality employed in the treatment of cancer 
has demonstrated an adverse effect upon metastasis under some 
conditions,” so radiation was not unique in this respect (39). In 
fact, in most cases there was little evidence for immune involve-
ment in causing this. Non-curative RT may be an exception, but 
in general distant metastases and radiocurability of the primary 
tumor do not seem linked (40).

The concept that prolonged RT-induced lymphocyte 
nadirs are generally associated with poor outcome is however 

3 https://www.nobelprize.org/nobel_prizes/medicine/laureates/1908/mechnikov-
lecture.html.
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valid—something that has recently gained renewed attention 
by Radiation Oncologists. In the 1970s, it was already apparent 
that the tissue, the size of the field, the delivery schedule, and 
the dose were important factors in determining the extent of 
lymphodepletion (41). Even today, in spite of superior computer-
aided delivery systems and smaller high dose fields, a significant 
drop in circulating lymphocytes remains a reality for most irra-
diated patients. Since lymphocytes are very radiosensitive, dose 
is of less importance than field volume and hypofractionation 
generally spares these cells by limiting time, i.e., volume blood 
passing through, compared to a conventional 6-week delivery. 
On the other hand, intensity-modulated radiotherapy (IMRT) 
may on occasion have the opposite effect because the whole body 
dose can be large. Our current picture is made somewhat more 
sophisticated by consideration of the balance in the remaining 
immune cell subsets that have a wide spectrum of radiation 
sensitivities depending on their (1) lineage, (2) maturity, and (3) 
activation status (42). In brief, B  cells and naive T helper (Th) 
cells are considered quite radiation sensitive whereas T memory 
cells, natural killer T cells, and Tregs are more on the resistant 
end of the spectrum (43–45). This relates in large part to a cell’s 
propensity to undergo apoptosis, which can drastically change 
as a result of activation (46, 47). Lineage recovery will also play 
its part in determining how the immune balance evolves in the 
aftermath of radiation treatment.

Remarkably, despite this layer of added sophistication, rela-
tively crude values like the ratio of lymphocytes to granulocytes 
and/or monocytes can correlate with outcome. This may simply be 
a reflection of the general immune fitness of the patient, but may 
be more than that. In extreme cases, soaring granulocyte levels 
can be taken as a sign of bad prognosis, associated with enhanced 
metastasis and immune suppression through the development 
of myeloid-associated suppressor cells (48), which can readily 
be induced following either WBI or local RT. Radiation-induced 
myeloid cell activation can occur in the absence of tumor, but 
tumors can also release large amounts of myeloid growth factors, 
with or without RT (49–54). Such an induction of myeloid cells, 
post-RT is therefore an alternative mechanism to lymphodepletion 
as a cause of enhanced tumor growth and metastasis and targeting 
this can improve response to RT in preclinical models, although 
there is little evidence that this can result in regression and cure. 
Infections are another possible reason for a switch in immune 
balance from a lymphoid to more of a myeloid composition.

An optimist might look at this picture and suggest that within 
a certain immune context antitumor immune responses are ongo-
ing, and that RT to the primary could enhance them, whereas 
a pessimist might point to the lack of clinical evidence for the 
immune system contributing to tumor cures in RT patients. It 
may turn out that both are correct, and that lymphocyte and 
myeloid cell involvement are simply two sides of the same coin.

DOeS SUCCeSSFUL RT DRAw FROM 
THe iMMUNe SYSTeM AND VICE VERSA?

In the 1970s, investigators at the MD Anderson Cancer Center 
performed a series of elegant experiments on an immunogenic 

3-methylcholanthrene-induced fibrosarcoma model in C3H mice 
and illustrated that the curative success of local RT could clearly 
benefit from a healthy host immune status (55–57). For instance, 
the (local) radiation dose required to control 50% of irradiated 
tumors (TCD50) was increased about twofold if mice had pre-
viously been rendered incapable of mounting a T  cell immune 
response through the classical depletion approach of adult 
thymectomy followed by lethal WBI and bone marrow rescue (58). 
This difference in dose is huge and the effect is made all the more 
dramatic by the finding that this normally non-metastatic tumor 
formed metastasis in 66% of the T cell-depleted mice, indicating 
the power of immunity in their elimination. Finally, in this study, 
only immune competent mice were able to develop immunologi-
cal memory after radiation-induced tumor cure, demonstrating 
a lasting ability to reject subsequent tumor inocula. The authors 
reported considerable extra heterogeneity suggesting variability 
in the immune involvement in RT-induced cures in the form of a 
flatter probit curve for cure in intact mice compared with T-cell-
depleted mice. It is worth noting that this model of T cell depletion 
by thymectomy has a natural tendency to develop autoimmunity 
due to preferential depletion of natural Treg. For example, in 1973, 
Penhale et al. reported that adult thymectomy of normal rats fol-
lowed by five rounds of biweekly sublethal WBI (5 rad × 200 rad) 
produced autoimmune thyroiditis and type 1 diabetes (59). The 
importance of the Treg axis will be discussed below.

Experiments of the nature described above raise questions as 
to why immunogenic tumors grow in the first place. In fact, over 
45 years ago, evidence was mounting that many human tumors 
contain tumor-specific antigens that can elicit host responses, but 
by and large clinically relevant immunity failed to surface (60). 
Many tumor escape mechanisms have been postulated, but one of 
the most powerful may simply be progressive tumor growth that 
overwhelms the response to even highly immunogenic tumors 
(56, 57). It may therefore be, in part, a numbers game and we 
know that RT is able to slow tumor growth and decrease the tumor 
burden, perhaps to immunologically manageable proportions, 
which raises the question as to what is manageable. According 
to Kaplan (61), immune eradication of 1% of a tumor may 
already translate into long-term survival benefits assuming that 
RT has taken care of the other 99%. The effectiveness of immune 
involvement in preclinical models can be estimated in terms of 
radiation dose. For example, for an immunogenic murine tumor, 
Suit and Kastelan (55) approximated that the immune system 
contributed a radiation dose to the equivalent of killing a few 
100 cells, though, that doesn’t seem like much. However, one has 
to remember, first that the potency of the immune system can 
vary hugely and, second that dramatic immune-mediated regres-
sions do occasionally occur. Immunity can also work against us 
when a multitude of suppressor mechanisms are engaged. In the 
immunogenic fibrosarcoma model used by Stone et al. (58), for 
instance, immunity is generated soon after tumor cell injection 
but is rapidly and strongly suppressed, initially by tumor-specific 
T  cells and later by non-specific myeloid suppressor cells that 
finally shut down the whole immune system (62). What is clear is 
that RT, in the complexity of the irradiated host-tumor relation-
ship, is more than a killer in a numbers game as suggested by 
classical target theory.

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
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Another question raised by these experiments is whether RT 
induces a special form of “immunogenic cell death,” and if so, 
does this bestow RT with properties that sets it apart from other 
treatment options when it comes to complementing IT. Not sur-
prisingly, for immunogenic tumors, removal of the primary tumor 
burden, by any means, is likely to lead to resurgence of a demon-
strable tumor immune state and in that sense surgical removal of 
tumor can have a similar effect as “curative” RT. Photodynamic 
therapy seems to be especially powerful in this regard. There are 
not many examples where direct comparisons have been made 
between modalities, but Crile and Deodhar reported that RT of 
a Lewis fibrosarcoma in the footpad resulted in better control 
of metastasis than amputation (63). In any case, removal of the 
primary may do more than decrease the tumor burden. It may 
liberate the immune system. This is, in part, because innate or 
“natural” immune mechanisms differ from adaptive ones in pos-
sessing little by way of immunological memory, and natural Treg 
cells actually seem to fall into this category (64). Therefore, the 
removal of a tumor is likely to get rid off most if not all suppressor 
mechanisms while tumor-specific memory will remain, i.e., tilt-
ing the immune balance toward immunity. The timing of tumor 
removal relative to the state of the immune system will influence 
the outcome of such interventions, irrespective of the modality. 
There are other factors that may come into play, such as the rate of 
loss and/or prolonged release of tumor antigens, changes in tumor 
immunogenicity possibly associated with oxidative stress and the 
involvement of draining nodes, all of which are likely modality-
specific and possibly give RT an edge over other therapies.

Like RT, surgery has been shown to both enhance and inhibit 
the number and the growth rate of secondary lesions. In their 
exceptional review on the subject, Demicheli et al. (65) noted that 
effects of primary tumors on those at distant sites were observed 
by Ehrlich and Apolant over a century ago. Apparently, a second 
inoculum of a rat sarcoma grew more slowly than the primary, 
a phenomenon for which Bashford and colleagues, in 1907, 
coined the term “concomitant immunity,” assuming involvement 
of the immune system (66). This idea, though, fell out of favor 
in the 1980s when Gorelik et  al. showed that it could happen 
in immune-deprived animals and concluded that the mecha-
nisms were different for immunogenic and non-immunogenic 
tumors (67). Prehn (68) postulated that a tumor behaved like 
an integrated organ liberating systemic growth-inhibiting and 
growth-facilitating factors, some of which were later identified 
by Folkman as angiogenesis inhibitors (69).

In the field of radiobiology, Mole (70) had introduced the term 
abscopal to describe effects “at a distance from the irradiated 
volume but within the same organism.” Mole in fact was discuss-
ing the interdependency of normal tissue systems responding to 
WBI, with no reference to cancer or immunity, but its use has 
since been extended to include RT of cancer and is often assumed 
to have an immune mechanism. Given that there are several 
excellent recent reviews dealing with abscopal effects in RT (71, 
72), we will not go into the topic here, only to note that there 
seems to be more than one mechanism at play—depending on 
the system. Adaptive immunity may be involved, or not. To that 
end, Demaria et al. elegantly showed a tumor-specific immune 
abscopal effect of RT, whereas Camphausen’s team demonstrated 

abscopal effects that were not tumor-antigen specific (73, 74). Of 
interest in this context is a study by Hoch-Ligeti (75) where skin 
irradiation with soft X-rays decreased the incidence of chemically 
induced liver tumors. Whether it is normal tissue or tumors that 
are being exposed, there is no question as to RTs ability to drive 
many systemic forces, including cytokines, chemokines, acute 
phase reactants, and innate immune cells. These will influence 
events locally as well as at a distance and potentially engage anti-
tumor immunity, angiogenic networks, hormones, or any other 
factors that can affect the growth of metastases. Clearly, tumor 
growth can wax and wane over time, as can the mechanisms that 
are involved, and our understanding of these processes are of 
tremendous value for the progress of combined RT and IT.

DiFFiCULTieS iN MODeLiNG HUMAN 
TUMOR iMMUNiTY

As described, most of the experimentation done in the 1970s used 
immunogenic transplantable tumors. It rapidly became obvious 
that often a relatively high number of tumor cells (103–105) had 
to be injected to get growth in 50% of mice (TD50). Nowadays, 
this is commonly explained by the low frequency of cancer stem 
cells, but at that time possible involvement of the immune system 
was considered and is still possible. In 1966, Klein had observed 
a tumor immune escape mechanism that was the opposite of that 
due to large tumor inocula (76). “Sneaking through” was defined 
as preferential take of small tumor inocula that exceeded what was 
seen in medium sized inocula, and more similar to large inocula. 
This was regarded as a possibly important mechanism by which 
tumors might subvert host defenses early in the development of 
the cancer. “Sneaking through” appeared to be a T-cell dependent 
phenomenon (77), analogous to the process of low-zone tolerance 
induction (78, 79) mediated by suppressor T cells (Ts) (80). In fact, 
both low and high inocula were found to induce immunological 
tolerance mediated by Ts cells, with the high inocula additionally 
inducing non-specific myeloid suppressor cells (81). Ironically, 
most investigators to this day utilize intermediate sizes of inocula 
that generate the best level of immunity to begin with. This, of 
course, will have implications for the responses that emerge after 
tumor RT because they relate to the state of immunity that exists 
at that point in time, transitioning rapidly to suppression as the 
tumor grows. We know of no studies that have looked at how 
existing tolerance affects the tumor response to RT.

In the mid-1970s, the relevance of chemically and virus-
induced murine cancer models to the human condition was 
heavily criticized on the basis of their high immunogenicity. 
Perhaps one of the most vocal opponents was H. B. Hewitt from 
the Graylab (UK), who performed “isotransplants of 27 different 
tumours (leukaemias, sarcomata, carcinomata), all of strictly 
spontaneous origin in low cancer mouse strains… (showing that 
they) … revealed no evidence of tumour immunogenicity,” and 
concluded that “practically all animal data … entail artefactual 
immunity associated with viral or chemical induction” (82). This 
was a damning indictment of the field and, sadly, basically stalled 
further research. As far as RT is concerned, if the lack of immu-
nogenicity was true, the immune system might end up not adding 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


7

Schaue Radiation and Immunity

Frontiers in Immunology | www.frontiersin.org April 2017 | Volume 8 | Article 431

much efficacy (83). However, it should be noted in Hewitt’s study, 
that “for 7 randomly selected tumours, prior ‘immunization’ of 
recipients with homologous, lethally irradiated cells increased” 
tumor take. Since the generation of tumor immunity is highly 
dependent on the number of tumor cells injected (81), and 
because immunity can be a two-edged sword capable of both 
enhancing and suppressing tumor growth, it seems possible that 
tumor-specific responses did exist but could not be demonstrated 
in Hewitt’s model and under those conditions.

HUMAN TUMOR iMMUNOGeNiCiTY

The concept that human tumors had poor immunogenicity and 
little effect on the response to RT lingered until very recently even 
though it had become possible long ago to isolate leukocytes from 
cancer patients and clearly show they responded specifically to 
their own tumor in vitro (84–86).

Remarkably, DNA deep sequencing of human tumors has now 
revealed mutational signatures that can be linked to smoking and 
other harmful chemical exposures, UV radiation, viruses, and age. 
In many cases, these mutations may even be predicted to result in 
MHC-restricted neoantigens (87, 88). Formerly, “immunogenic” 
tumors used to be defined by a low but detectable tendency for 
spontaneous regression, as in melanoma. Then they were defined 
by activity when used as an irradiated vaccine, then by responding 
to high dose interleukin-2 (IL-2), as in kidney cancer. Now, the 
response to checkpoint inhibition has extended the list of human 
immunogenic tumors to include Merkel cell, esophageal, Hodgkin’s, 
and lung cancer. In fact, chemical cancer induction following 
harmful exposures goes back to observations of skin cancer of the 
scrotum among British chimney sweeps in 1775, viral induction by 
Rous in 1911, UV radiation induction by Findlay in 1928, and ion-
izing radiation by Muller in 1927 (11, 89–91). In a sense, we have 
come full circle, back to known causes of cancer and the spectrum 
of genetic mutations that are involved. These may drive the disease 
but may also hold the key for an immunological cure. In many cases, 
for chemically induced tumors the neoantigens may be unique. 
However, the fact that virus-induced cancers have actually a low 
mutational load but still respond to checkpoint inhibitor therapy 
similar to chemically induced forms (88) suggests that the number 
of mutations is not the be all and end all. Certainly, it is tempting to 
think that the reason why human papilloma virus+ head and neck 
tumors respond well to RT lies in their immunogenicity.

ARe TUMOR-iNFiLTRATiNG T CeLLS 
eXHAUSTeD?

In toto, the literature indicates that in most immunogenic tumor 
models, CD8+ T  cells are an absolute requirement for regres-
sion, with varying “help” from CD4+ T cells, macrophages, and 
other immune compartments. Although not all tumor models 
behave the same way, this general finding is in keeping with the 
observations that in many human tumors the presence of CD8+ 
lymphocytes is associated with better prognosis. Many studies 
have attempted to correlate immune infiltrates with outcome with 
variable degrees of success.

The idea that intratumoral T cells might be exhausted became 
a school of thought in the 1980s when it was shown that potency 
could be restored by a few days of in  vitro culture (85, 86). In 
fact, “exhausted” T cells probably mark many chronic conditions, 
including chronic infection. In cancer, they express high levels of 
inhibitory receptors, including programmed cell death 1 (PD-1), 
cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), T-cell 
immunoglobulin mucin-3, and lymphocyte-activation gene 3, as 
well as showing impaired production of effector cytokines, such 
as IL-2, tumor necrosis factor alpha (TNF-α), and interferon 
gamma (92). They are void of effector functions, but these can 
be restored. This is reminiscent of the temporary loss of effector 
T cells seen in the spleen and organs from fibrosarcoma-bearing 
mice that had been successfully treated with C. parvum (93). In 
fact, tumor-specific T cell memory was retained in these mice, 
which became apparent when these cells effectively caused tumor 
regression in an adoptive transfer model, even though they had 
previously lost effector activity—a phenomenon that was called 
immunologic amnesia. Effector cell activity could also be restored 
during in vitro culture in T cell growth factor (IL-2). It seems rea-
sonable to suggest that the immune system attempts to dampen 
chronic inflammatory states, including cancer, either through 
T  regulatory cells or through directly blocking effector T  cell 
function, and that the latter can be a result of the dialog between 
M2 macrophages and T cells as well as altered metabolism (94). 
The good news is that these roadblocks can be lifted, for example 
by targeting CTLA-4 or PD-1/programmed death-ligand 1 (PD-
L1), respectively, allowing T  cell memory to restore functional 
antitumor activity.

DANGeR AND THe CHANCe TO ADD 
iNSULT TO iNJURY

The logic for the use of radiation as an adjuvant to enhance anti-
tumor immune responses is rather clearer now than it was in the 
1900s, as fundamental immunological theories came together. 
The original self/non-self paradigm (95)4 and the concept of 
recognition of pathogen-associated molecular patterns (PAMPs) 
(96) explain how we detect a pathogenic threat, but fall short on 
explaining responses originating from within our own (damaged) 
tissues. The missing piece of the puzzle emerged in 1994 when 
Matzinger introduced the Danger theory that accommodated 
immune responses to damaged tissues through recognition of 
damage-associated molecular patterns, much as we can respond 
to PAMPs (97). Binding to common pattern recognition receptors 
culminates in inflammation with activation of signaling pathways 
such as nuclear factor kappa B, activator protein 1, and interferon 
regulatory factors, with type I interferon activation emerging as a 
possibly critical path toward radiation-induced tumor immunity 
(98–101). The possibility that radiation-damaged cells and tissues 
send out such danger signals to the immune system was outlined 
by McBride in the Failla Memorial Lecture at the International 

4 https://www.nobelprize.org/nobel_prizes/medicine/laureates/1960/burnet-
lecture.pdf.
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Congress of Radiation Research in 2003 (47). There is now 
considerable evidence supporting the idea that tissue irradia-
tion feeds into down-stream immune effector pathways, even if 
involvement of specific toll-like receptors remains uncertain 
(102). Ultimately, one would expect increased immune recogni-
tion—autoimmunity or tumor immunity. Our ability to detect a 
rise in tumor-specific T cells in cancer patients as they go through 
RT certainly adds validity to this concept (103).

RADiATiON, iNFLAMMATiON,  
AND AUTOiMMUNiTY

There is a large body of work on radiation and autoimmunity, 
starting in the late 1990’, and earlier. The details of these studies are 
discussed elsewhere (42, 104) but for the purpose of this historical 
journey and considering the relevance to tumor immunology it 
is worth outlining the main findings and concepts here: perhaps 
the most striking of which is that tissue irradiation is able to both 
cause autoimmunity as well as suppress it.

In their most basic form tissue responses to RT can be 
described as bona fide inflammatory reactions that are driven 
by the extent of cell death and tissue damage. The release of 
danger signals, chemokines, and cytokines are doing their part to 
translate the situation to the immune system and attract inflam-
matory infiltrates to come into the irradiated area (98, 105–110). 
RT drives all of these steps, including a rise in MHC expression 
and costimulatory molecules that would—at least in theory—aid 
immune recognition and reactivity (111–116).

Indeed, radiation-induced immune responses to self within 
the context of normal tissues, i.e., autoimmunity, have been 
extensively reported. Anti-thyroid autoantibodies and thyroiditis 
following thyroid exposure (117, 118), multi-organ immune 
disease following total lymphoid irradiation (TLI) in mice (119), 
neoantigen formation, and morphea in the skin of irradiated 
breast cancer patients (120) are all strong indications for radi-
ation-induced autoimmune disease, as are the T  cell infiltrates 
seen in normal tissues of cancer patients and transplant recipients 
following irradiation and the local inflammatory reactions that 
ensue such as sialadenitis, interstitial pneumonitis, and alveolitis 
(121–125).

Ironically, this equation changes completely when the patient 
already has ongoing inflammation and/or autoimmune disease, 
i.e., when the immune balance has shifted in time and space to 
reach a new equilibrium. In such cases, WBI or TLI followed 
by autologous stem cell transplantation can rebalance T  cell 
networks (126, 127) and alleviate for instance systemic lupus 
erythematosus and rheumatoid arthritis in humans or allergic 
encephalitis in mice (128–130). A similar case in point is the 
successful treatment of chronic, benign inflammatory conditions 
with local, low-dose radiation treatments (131–133).

RADiATiON, iNFLAMMATiON,  
AND TUMOR iMMUNiTY

Inflammation is a major component of human tumors and 
chronic inflammation tends to portend a bad prognosis. In fact, 

about 150  years ago, Virchow postulated that inflammation 
predisposes to cancer based on his observation that it often arose 
at sites of chronic inflammation and noted that inflammatory 
cells were often present in resected tumors. The involvement of 
infections and associated chronic inflammation as a common 
contributor to genetic instability, in addition to direct damage 
caused by chemicals, viruses, and radiation, is being resurrected 
as various forms of cancer are becoming closely associated with 
various microbes.

Apart from the pro-inflammatory effects mentioned above, 
RT has additional qualities that would feed into an inflamma-
tory-tumor immunity axis. RTs ability to enhance the expression 
of the death receptor Fas on tumor cells is one such example, 
potentially sensitizing them to antigen-specific cytotoxic T cells 
and, ultimately, tumor rejection (134, 135). On the other hand, 
Fas is likely to play a role in radiation-induced lymphocyte 
death, and hence tolerance within the radiation field (136). 
RT can mature dendritic cells (DCs) so they can cross-present 
tumor antigens (137) and for a time at least RT can generate 
an immunologically permissive environment, something that 
seems to be especially amplified by hypofractionated doses (8). 
It is reasonable to suggest that hierarchical antigenic presenta-
tion by the tumor and by the DCs, may be affected during RT 
(138) making the case for altered T  cell repertoires post-RT 
(115). The evidence that local RT dramatically alters the tumor-
associated antigens that are released remains relatively limited, 
as is any proof that irradiated human tumors induce strong 
immunity, but there is growing evidence that “epitope spread-
ing” is important for tumor rejection (139). What RT certainly 
can do, is improve the conditions for tumor immunity to occur, 
at least for immunogenic tumors.

While cancer RT is a pro-inflammatory stimulus, the term 
“inflammation” is totally inadequate to describe what is essen-
tially a very complex set of pathological states that shift in time 
while progressing from what is blithely called “acute” to “chronic” 
states. Conditions that might help antitumor immunity can easily 
morph into ones that promote carcinogenesis, suppress immunity, 
and promote healing. And it may require drastic interventions to 
rebalance T cell networks, as in the likes of RT of autoimmune 
diseases (see above). One “natural” immune rebalancing act 
involves shifting the T cell equilibrium toward suppressor cells, 
i.e., Tregs, and this can happen following RT (45, 140–148). This 
concept that RT can drive the Treg lineage is discussed elsewhere 
(149) but one important point has to be emphasized here as it 
relates to a paradoxical observation made decades ago, namely 
that sublethal WBI can destroy Ts and as a result allow better 
tumor regression, presumably through an immune-mediated 
mechanism (46, 150–154). The obvious conclusion at the time 
was that Ts must be very sensitive to radiation. Though not 
wrong, it doesn’t mean that all Tregs are radiosensitive all the 
time. In fact, the WBI was only effective when given within a 
short time frame after tumor inoculation. Today we know that 
at any given time there are different subtypes of Tregs operating, 
each with the ability to alter their proliferative and/or activation 
status in response to a challenge and it is not difficult to see how 
that leads to fluctuations in radiation sensitivities (155). Given 
the focus on manipulating this T cell subset, it seems that there 
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may be a use for RT in this context providing the correct timing 
can be found.

In a broader context, the outcome of RT with IT will heav-
ily depend on the timing of exposures to these agents, i.e., the 
state of the immune system when radiation hits. This includes 
microenvironmental factors, especially the cytokine milieu that 
dictates trafficking, proliferation, activation, and differentiation 
of immune cells and tumor responses. Cytokine responses in the 
context of radiation damage have been extensively documented 
since the 1990s but to understand them in their full complexity 
can be daunting (156). Generally speaking, the cytokine picture 
that emerges after RT is one of dichotomy that reflects the two 
opposing forces of the immune system. In other words, RT affects 
not only the Tregs:Teffs immune balance but also shapes the 
ratios of Th1/Th2, M1/M2, and effector and suppressor cells of 
other lineages (157) making for an interesting future.

ADveRSe eveNTS

The normal tissue toxicities associated with conventional cancer 
radiotherapy are well-known, although the introduction of IMRT 
to deliver larger than normal dose per fraction has made treat-
ment volume of growing importance, which is a change in the 
way radiobiological constraints are generally considered. IT is 
generally thought to be well tolerated in comparison with con-
ventional cancer therapies (158), but the history of this also has 
changed. Cooley’s toxins, introduced at the end of the nineteenth 
century give expected “flu-like” symptoms similar to those of 
bacterial infections, as did C. parvum and BCG, that were used 
as immunological adjuvant cancer treatments since the 1960s.

By contrast, high dose IL-2 that was used for treatment of 
melanoma and kidney cancer is associated with significant mor-
bidity. Common to many treatments, the incidence and severity 
of toxicities have decreased with the gain in experience that comes 
with use. IL-2 toxicity can manifest as multiple organ syndrome, 
most significantly involving the heart, lungs, kidneys, and central 
nervous system in capillary leak syndrome (CLS). As with most IT 
protocols, pharmacological intervention effectively manages the 
majority of adverse events, but fatalities have occurred. Treatment 
typically consists of supportive care with intravenous fluid, non-
steroidal anti-inflammatory drugs, vasopressors (if needed), and 
other measures while awaiting spontaneous recovery. Since RT 
also causes CLS, the combination of these treatments would be 
expected to interact in at least a cumulative manner. Localization 
of the RT may minimize the consequences of the combination, 
but too few patients have been treated so far with this way for 
conclusions to be drawn and caution is advised. It should be noted 
that the dosage requirements for efficacy of IL-2 in the context of 
RT are also unknown and may have to be changed.

Toxicities associated with the combination of RT with adop-
tive T cell transfer are also currently unknown, but this topic is 
a likely one for future concern, especially when delivered with 
concurrent IL-2 administration. Currently, in the clinic, this IT 
approach most often employs in vitro expanded, tumor-specific 
T cells, or genetically modified populations that express tumor-
directed TCRs or chimeric antigen receptors (CARs). The latter 
have an extracellular antigen-binding domain from the heavy 

and light chains of a monoclonal antibody that recognizes cell 
surface antigens linked to an intracellular signaling domain 
derived from the TCR complex, and can include one or more 
costimulatory molecules to enhance antitumor activity. On- and 
off-target toxicities are uncommon, but CARs treatment was fatal 
for several patients in a trial that ascribed the excessive toxicity, 
in this case cerebral edema, to the addition of fludarabine to the 
preconditioning regime (NCT02535364) (159). The concerns 
seem universal in that they revolve around the cytokine release 
syndrome that is observed shortly after T cell administration and 
additional symptoms similar to sepsis, with fever, tachycardia, 
vascular leak, oliguria, hypotension, neurotoxicity, and multi-
organ failure (158). The mediators of the hemodynamic toxicities 
in these cytokine storms have yet to be fully identified but IL-6 
and TNF-α may be the prime culprits, both of which can be 
generated by RT.

The advent of checkpoint blockade IT has unveiled a 
slightly different spectrum of toxicities. These have been called 
“ immunerelated adverse events” (irAEs) and have focused atten-
tion on opportunistic autoimmune disorders (160). Depending 
on the target, the toxicities associated with checkpoint inhibition 
may vary, but there are elements in common. CTLA-4 counter-
acts CD28-mediated costimulation and induces an inhibitory 
program that stops T cell proliferation while driving Treg cells. As 
CTLA-4 plays a pivotal role in regulating tolerance to self-antigens, 
CTLA-4 blockade with ipilimumab or tremelimumab, can be 
understood as a lowering of the threshold for T cell activation and 
hence results in autoimmune damage of various organ systems. 
PD-1 is another member of the family of coinhibitory receptors 
(checkpoints) expressed on activated T cells. Interaction with its 
ligands PD-L1/B7-H1 and PD-L2/B7-DC on other cells delivers 
inhibitory signals to T cells. In general, over half of patients receiv-
ing approved checkpoint inhibitors experience a low grade irAE; 
serious adverse reactions are relatively rare, with <1% mortality 
(160), but the combination of checkpoint inhibitors is more toxic 
and RT would be expected to increase their incidence. Any organ 
system may be involved, but the most common are enterocolitis, 
hepatitis, dermatitis, thyroiditis, uveitis, neuropathy, pneumoni-
tis, and endocrinopathy. A bitter lesson as to the power of the 
immunological synapse was learned from the disastrously trial 
of TGN1412, an anti-CD28 superagonist antibody that caused 
catastrophic organ failures in all subjects (161).

Cytotoxic T-lymphocyte-associated protein 4 blockade tends 
to compromise mucosal immunity in particular and overall drives 
a more severe toxicity profile than inhibitors of the PD-1/L1 axis. 
Data on PD-L1 targeting are less developed but 9% grades 3–4 toxic 
side effects have been reported (162). Though rare, cardiovascular 
toxicity has been reported and can lead to significant morbidity 
and mortality especially in cases of pre-existing pathologies (163, 
164). Among the immune-related cardiac syndromes reported 
after anti-CTLA-4 and anti-PD-1 therapies are autoimmune 
myocarditis, cardiomyopathy, heart failure, cardiac fibrosis, and 
cardiac arrest, even more so if the agents are combined. Certainly, 
pharmacologic or genetic targeting of PD-1 in animal myocarditis 
models tell a cautionary tale. It seems that PD-1 is very impor-
tant in protecting the heart against T cell-mediated toxicity that 
otherwise would translates into enhanced disease severity, rising 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


10

Schaue Radiation and Immunity

Frontiers in Immunology | www.frontiersin.org April 2017 | Volume 8 | Article 431

troponin levels as well as infiltrating lymphocytes, macrophages, 
and neutrophils (165). PD-L1 suppression may not always be as 
devastating but the take-home message is that the PD-1–PD-L1/
L2 axis is an important checkpoint for myocyte damage and 
cardiac pathologies (166–170). Increased atherosclerotic lesion 
development and inflammation are additional concerns (171). 
Interestingly, pneumonitis may not be as much of a problem dur-
ing PD-L1 targeting as it is during PD-1 blockade as protection 
via PD-L2 remains intact in the former therapy (160).

Radiation therapy is pro-inflammatory and this is especially 
true at high dose per fraction. It is likely to increase the incidence 

of autoimmune reactions and, when combined with checkpoint 
inhibitors, more severe toxicities are to be expected. While it 
is reasonable to suggest that the toxicities may be greatest in 
the organs that receive substantial doses of RT, this may not 
be always the case as systemic responses are triggered. Apart 
from a few of studies on RT and IT of melanoma brain metas-
tasis, with no obvious excess toxicity (172–174), the incidence 
of treatment toxicities to IT combinations remains largely 
unknown but with over 800 combined checkpoint inhibitor trials 
in the pipeline, and 100 in the context of RT (Table  1), it will  
be soon.

TABLe 1 | Radiotherapy–immunotherapy (iT) combination trials currently open.a

immune axis Drug Radiotherapy indication Number 
of 

patients

Cytotoxic T-lymphocyte-
associated protein 4 
(CTLA-4)

Ipilimumab, tremelimumab Hypofractionated stereotactic 
body radiation therapy (SBRT), 
stereotactic ablative body radiation 
therapy (SABR)

Metastatic melanoma, advanced malignancies (liver, lung, 
cervix)

400

Programmed cell death 
1 (PD-1)

Pembrolizumab, nivolumab Mostly hypofractionated SBRT, 
some SABR, chemoradiation, 
intensity-modulated radiotherapy 
(IMRT), stereotactic radiosurgery

Metastatic melanoma, liver, head and neck squamous cell 
carcinoma (SCCHN), metastatic breast cancer, small cell 
lung carcinoma (SCLC), non-small cell lung carcinoma 
(NSCLC), metastatic renal cell carcinoma (mRCC), 
glioblastoma multiforme, metastatic colorectal carcinoma 
(mCRC), pancreatic cancer, follicular non-Hodgkin’s 
lymphoma, bladder, endometrial cancer

4,253

Programmed death-
ligand 1 (PD-L1)

Durvalumab, atezolizumab, 
or avelumab

Hypofractionated SBRT, some 
SABR, chemoradiation, IMRT

Metastatic non-small cell lung carcinoma (mNSCLC), 
SCCHN, metastatic Merkel cell, glioma, metastatic 
pancreatic cancer, esophogeal cancer

1,273

PD-1/PD-L1 + CTLA-4 Nivolumab + ipilimumab or 
durvalumab + tremelimumab

Hypofractionated external beam 
radiotherapy (EBRT), some SBRT, 
chemoradiation, yttrium Y-90 
selective internal radiation therapy

Metastatic melanoma, SCLC, mNSCLC, mCRC, pancreatic 
cancer, liver mets, brain mets

1,017

Interleukin-2, toll-like 
receptor 7, recombinant 
human FMS-like 
tyrosine kinase 3 ligand, 
Poly-ICLC, OX-40, 
recombinant human 
granulocyte-macrophage 
colony-stimulating 
factor, transforming 
growth factor beta, IDO, 
fibronectin

Proleukin, imiquimod, CDX-
301, hiltonol, MEDI6469, 
sargramostim, galunisertib, 
indoximod

Hypofractionated SBRT, SABR, 
chemoradiation, low-dose radiation 
therapy (RT)

Metastatic melanoma, mRCC, metastatic breast cancer, 
advanced NSCLC, hepatocellular cancer, lymphoma, rectal 
cancer, pediatric brain tumors

462

Therapeutic cancer 
vaccines

Autologous dendritic cell 
vaccine, peptide vaccine, 
sipuleucel-T, nelipepimut-S

Chemoradiation, IMRT, SABR, i.v. 
radium-223, standard of care RT 
before IT

Glioma, locally advanced esophageal cancer, NSCLC, 
metastatic castrate-resistant prostate cancer, high-risk 
breast cancer, pediatric glioma

774

Adoptive T cell transfer Autologous T-cells EBRT or chemoradiation Esophageal cancer, nasopharyngeal cancer, glioma 223

Oncolytic virus and 
antibody tumor targeting

Adenovirus-mediated herpes 
simplex virus thymidine 
kinase + valacyclovir, 
herpes simplex virus type 
1 G207, bavituximab 
(phosphatidylserine), 
oregovomab (CA125)

Chemoradiation, EBRT, 
hypofractionated SBRT

Pancreatic adenocarcinoma, localized prostate cancer, 
pediatric brain tumor, hepatocellular carcinoma

857

a Source: https://clinicaltrials.gov/, date searched: January 31, 2017, search terms: radiation, PD-1, PD-L1, CTLA-4, radiotherapy, and immunotherapy.
Trials using immunotherapy that directly follows standard of care radiation treatment were included. Excluded were any trials that used radiation as a preconditioning regime prior 
to bone marrow transplantation or if radiotherapy was offered solely as a best supportive care option and not as a definite treatment option. Salvage radiotherapy after failed 
immunotherapy or vice versa was not included, neither was targeting CD20/CD19 nor EGFR in the context of radiation treatment.
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