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Acinetobacter baumannii is the etiologic agent of a wide range of nosocomial infec-
tions, including pneumonia, bacteremia, and skin infections. Over the last 45 years, an 
alarming increase in the antibiotic resistance of this opportunistic microorganism has 
been reported, a situation that hinders effective treatments. In order to develop effective 
therapies against A. baumannii it is crucial to understand the basis of host–bacterium 
interactions, especially those concerning the immune response of the host. Different 
innate immune cells such as monocytes, macrophages, dendritic cells, and natural killer 
cells have been identified as important effectors in the defense against A. baumannii; 
among them, neutrophils represent a key immune cell indispensable for the control of the 
infection. Several immune strategies to combat A. baumannii have been identified such 
as recognition of the bacteria by immune cells through pattern recognition receptors, 
specifically toll-like receptors, which trigger bactericidal mechanisms including oxidative 
burst and cytokine and chemokine production to amplify the immune response against 
the pathogen. However, a complete picture of the protective immune strategies activated 
by this bacteria and its potential therapeutic use remains to be determined and explored.
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inTRODUCTiOn

Acinetobacter baumannii [from the Greek akinetos bactrum: non-motile rod; baumannii: after Paul 
Baumann (1, 2)] is a Gram-negative, non-fermenting, strictly aerobic, oxidase negative, catalase 
positive coccobacillus belonging to the Moraxellaceae family (2, 3). The importance of this bacterium 
relies in its ability to cause nosocomial infections (4) and its increasing antibiotic resistance (5–7).  
A. baumannii is the etiologic agent of a wide range of clinical manifestations, most frequently 
pneumonia, bacteremia, meningitis, urinary tract, skin and soft tissue infections; which occur 
preferentially among intensive care unit patients (8).

The World Health Organization has considered antibiotic resistance as one of the most seri-
ous health problems; resistance increases the length of illnesses, their morbidity and mortality, as 
well as their costs within health-care facilities (9). A. baumannii belongs to a group of bacteria 
termed ESKAPE, an acronym indicating Enterococcus faecium, Staphylococcus aureus, Klebsiella 
pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. Pathogens 
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of this group escape from the effect of many antibacterial drugs 
and are currently the major antibiotic resistant microorganisms 
responsible for nosocomial infections (10, 11). Moreover, these 
organisms all preferentially affect immunocompromised and 
critically ill patients in intensive care units (12).

The presence of antibiotic resistance in A. baumannii com-
plicates the implementation of effective treatments, making the 
development of new strategies to control the infections caused by 
this opportunistic microorganism mandatory. Given that bacte-
rial clearance as well as the resolution of the infection depends 
not only on the effect of antibiotic drugs but also on the host’s 
immune response (13), it is necessary to understand how the 
immune system faces this pathogen. In this regard, characteriza-
tion of the molecular and cellular basis of the immune response 
may provide the tools for the development of alternative treat-
ments or immunotherapies against A. baumannii. In this review, 
we will summarize the current limited knowledge concerning the 
immune response during this infection and will discuss possible 
therapeutic targets to implement in future strategies to combat  
A. baumannii infections.

neUTROPHiLS, eSSenTiAL PLAYeRS 
DURinG A. baumannii inFeCTiOn

Neutrophils are essential for the control of different types of  
A. baumannii infection (14–19). An initial indication about the 
protective role of neutrophils was the observation of high preva-
lence of infections caused by Acinetobacter in neutropenic patients 
(20). In agreement, early studies characterizing the therapeutic 
effect of imipenem against different strains of A. baumannii in a 
mouse model had to be performed in cyclophosphamide-treated 
neutropenic mice, due to the low susceptibility to A. baumannii 
shown by immunocompetent mice (21). Ten years later, van 
Faassen and colleagues directly evaluated the neutrophil role in 
pneumonia caused by A. baumannii. They reported rapid recruit-
ment of neutrophils at the site of infection, as early as 4 h, which 
peaked at 24 h postinfection. Increased lethality and severity of 
infection was observed in neutrophil depleted hosts, together 
with delayed production of cytokines and chemokines involved 
in neutrophil recruitment, including interleukin-1, tumor necro-
sis factor (TNF-α), keratinocyte chemoattractant protein (KC/
CXCL1), macrophage inflammatory protein (MIP)-1, MIP-2/
CXCL2, and monocyte chemoattractant protein 1 (14). These 
results were later confirmed by Tsuchiya and colleagues (15). In 
addition, the importance of early production of chemokines and 
proinflamatory cytokines acting on neutrophils to limit the infec-
tion was further supported by Qiu and colleagues, demonstrating 
that a delayed production of these molecules results in increased 
bacterial burdens and dissemination (16). Evidence of neutro-
phils limiting different types of A. baumannii infection including 
bacteremia (17), septicemia (18), and skin infection (19) has also 
been reported.

Neutrophils possess multiple bactericidal mechanisms, 
among them, the oxidative burst is the main killing defense 
against A. baumannii. At the molecular level, studies focused on 
the mechanisms used by neutrophils to eliminate this bacterium 

demonstrated a dispensable role for the nitric oxide synthase 2 
and a critical requirement for the nicotinamide adenine dinucleo-
tide phosphate phagocyte oxidase (NADPH) to kill A. baumannii, 
prevent replication and dissemination of the bacterium as well 
protection of the infected mice from death (22). Other novel 
defense mechanisms like neutrophil extracellular traps (NETs) 
are not induced in response to this bacterium (23), despite the 
fact that the formation of NETs can be stimulated through reac-
tive oxygen species (24, 25).

The chemoattractant signals recruiting neutrophils and 
other cell types during A. baumannii infections are not limited 
to chemokines and some bacterial metabolites (26) as well as 
antimicrobial peptides produced by the host have been reported 
(27). Regarding the cytokines expected to be important for an 
efficient A. baumannii elimination, IL-17 has emerged as an inter-
esting candidate given its relevance in promoting granulopoiesis 
and inducing cytokine, chemokine, and antimicrobial peptide 
expression including GM-CSF, IL-8 (a neutrophil chemoattract-
ant and homolog human chemokine to KC and MIP-2), and 
LL-37, respectively (28, 29). However, despite a clear induction 
of IL-17A expression promoted by a peritoneal inoculation of 
A. baumannii, the neutralization of this cytokine by antibodies 
during septicemia, or infection in a IL-17A-deficient background, 
neither affected bacterial burden nor survival rate, when com-
pared with antibody control-treated mice or wild-type (WT) 
mice (18). Unfortunately, during this study, the role of IL-17F  
[a cytokine with physiological effects shared by IL-17-A (30)] was 
not explored, and its involvement or even its requirement during 
the response to A. baumannii can not be excluded.

During an active A. baumannii infection, a small percentage of 
bacteria can avoid being killed by neutrophils by means of their 
capability to adhere to these cells independently of phagocytic 
processes. In this case, instead of resulting in protection, neutro-
phil activation can contribute to the dissemination of the bacteria, 
a pathogen strategy that hinders clearance and takes advantage 
of the migratory capacity of neutrophils. Unfortunately, the 
mechanisms underlying bacterial adherence to neutrophils are 
still unknown (31).

ADDiTiOnAL innATe iMMUne 
eFFeCTORS in THe iMMUne ReSPOnSe 
AGAinST A. baumannii inFeCTiOn

During an A. baumannii infection, one of the first soluble fac-
tors produced by the host is antimicrobial peptides. Cathelicidin 
LL-37, whose precursor hCAP-18 (human cationic antibacterial 
peptide, 18 kDa) can be produced by epithelial cells and neutro-
phils (32), as well as some peptides naturally derived from it, pre-
sent a bactericidal effect against A. baumannii (27). Importantly, 
the extent of bacterial susceptibility to LL-37 depends on the 
presence of lipopolysaccharide (LPS), as it has been determined 
that LPS-deficient mutant strains are more susceptible to the 
bactericidal effect of this peptide (33).

Acinetobacter baumannii interacts with epithelial cells through 
the binding of a 34-kDa protein referred as outer membrane pro-
tein A (OmpA), as well as a TonB-dependent copper receptor (an 
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energy transducer) to fibronectin (34). One of the consequences 
of this interaction is the production of antimicrobial peptides. 
In vitro studies using skin and oral epithelial cells exposed to 
A.  baumannii reported bacterial-induced expression of the 
human β-defensins (hBDs) hBD-2 and hBD-3 with antibacterial 
activity against A. baumannii (35). Interestingly, hBD-2 is also 
produced by airway epithelial cells during A. baumannii pneu-
monia, suggesting a conserved protective mechanism independ-
ent of the epithelial origin during an extracellular infection (36). 
The importance of the expression of hBDs for host protection 
is also observed during intracellular infections, where signaling 
dependent on the cytosolic pattern recognition receptors (PRRs), 
nucleotide-binding oligomerization domain (NOD) NOD1 and 
NOD2, results in hBD-2 production (37). Therefore, the use of 
antimicrobial peptides produced during the early stages of the 
infection with efficient bactericidal activity may be a therapeutic 
option.

The contribution of other soluble factors, like the complement 
system, to the control of infection has also been explored. The 
complement system generally contributes to limit bacterial rep-
lication (17); however, A. baumannii has some virulence factors 
that allow successful evasion of this defense mechanism (38–41). 
While some results point to the involvement of factor H in the 
evasion of the complement system by A. baumannii (38), oth-
ers indicate otherwise (39). Factor H is one of the soluble host 
regulators of the alternative complement pathway, this molecule 
promotes the decay of the C3 convertase, C3bBb, preventing 
the deposition of the opsonin C3b on the host cell membranes, 
and acts as a cofactor for factor I, which in turn inactivates C3b 
(42, 43). Kim and colleagues (38) found that the OmpA, present 
on the surface of most A. baumannii strains (44), binds factor 
H avoiding deposition of C3b on the surface of bacteria and 
thus allowing evasion of the alternative complement pathway 
(38). However, subsequent studies by King and colleagues failed 
to identify the deposition of factor H on the bacterial surface. 
They also reported reduced C3 deposition on resistant strains 
compared to sensitive strains and proposed that the biofilm 
formation could be a mechanism through which A. baumannii 
evade the complement system. This discrepancy suggests that 
different strains of A. baumannii could use different strategies to 
circumvent complement-mediated killing.

Additional virulence factors produced by A. baumannii, such 
as CipA and PKF, are also implicated in the evasion of the comple-
ment system (40, 41). CipA, an outer membrane protein, binds to 
the active form of plasminogen, plasmin, to degrade fibrinogen 
and promote bacterial dissemination. This CipA–plasmin com-
plex also degrades C3b; however, there is no correlation between 
the levels of CipA–plasmin and complement resistance so far. 
Hence, the mechanism through which CipA confers complement 
resistance still needs to be elucidated (40). PKF, a secreted serine 
protease, could also have a role in the cleavage of some comple-
ment components; nevertheless, the complement components 
susceptible for the action of this protein remain to be identified. 
In conclusion, several mechanisms have been proposed to explain 
complement evasion by A. baumannii, all centered in avoiding 
C3b deposition at the bacterial surface, which then decreases 
opsonization and subsequent phagocytosis, declines the C5 

convertase and C3bBbC3b formation (45), to finally prevent the 
membrane attack complex formation (46) and promote bacterial 
survival.

Besides the essential role of neutrophils in resolving  
A. baumannii infections, other immune cell types have been 
shown to be activated in response to this opportunistic pathogen. 
Monocytes and macrophages are among the first responding cells 
to be recruited and/or activated by A. baumannii. Tissue-resident 
macrophages, such as alveolar macrophages, would be present at 
the site of infection before the recruitment of neutrophils. This 
situation confers an advantage for the early response against 
A. baumannii, so that macrophages can phagocyte and limit 
bacteria while neutrophils are recruited. In vivo, phagocytosis of 
A. baumannii by macrophages can be observed as early as 4 h 
postinfection, by then, few neutrophils have been recruited, and 
the former cells have phagocytosed only a small amount of bacte-
ria. Phagocytosis by macrophages in vitro can be detected as soon 
as 10 min after macrophage interaction with A. baumannii (47).

In addition to phagocytosis, macrophages produce high 
amounts of MIP-2, IL-6, and TNF-α in response to A. baumannii 
infection. Early production of MIP-2 by macrophages might be 
relevant for neutrophil recruitment but has not been formally 
proven. At extended periods postinfection (approximately 
48  h), high levels of the previously mentioned cytokines and 
chemokines are maintained by macrophages, together with 
an increment in the production of other cytokines, including 
IL-10 and IL-1β. Even though macrophages take longer to kill 
equivalent amounts of bacteria than neutrophils do, the first 
ones are capable of killing more than 80% of the phagocytosed 
bacteria within the first 24 h. A confirmed mechanism used by 
macrophages to kill bacteria is the production of nitric oxide 
(47). Depletion of macrophages in an in  vivo model of pneu-
monia resulted in a higher bacterial burden in comparison with 
control mice; however, unlike depletion of neutrophils (14), the 
lack of macrophages does not increase infection lethality (15, 
47). Similar results, showing an increased bacterial burden, were 
observed in a bacteremia model where macrophages were also 
depleted (17). These findings suggest that macrophages may be 
dispensable for the resolution of A. baumannii infection, but 
they might help to control bacterial replication at early phases of 
the pathogen–host interaction.

Natural killer cells (NKs) represent another immune cell type 
acting during the early defense response against A. baumannii. 
Depletion of NKs in a pneumonia model interferes with bacterial 
clearance and hence resolution of the infection. The mechanism 
through which NKs contribute to control A. baumannii pneu-
monia is indirect and relies on the production of the chemoat-
tractant KC, which in turn recruits neutrophils to the site of 
infection (15).

Finally, dendritic cells (DCs), the bridge between innate 
and adaptive immune responses, have been shown to become 
activated in response to A. baumannii LPS. Moreover, OmpA 
activates DCs’ signaling via mitogen-activated protein kinases 
(MAPKs) and nuclear factor kappa B (NFκB), thus resulting in 
high expression of molecules involved in antigen presentation 
and production of the inflammatory cytokine IL-12. As a conse-
quence, DCs are prone to polarize T cells into TH1 effectors (48).
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TAbLe 1 | Research models used to study host responses against Acinetobacter baumannii.

A. baumannii strain Approach Model/experimental design Major findings Reference

ATCC 17961 In vivo Bronchopneumonia Neutropenia increases A. baumannii susceptibility 
as a result of delayed production of cytokines and 
chemokines

(14)

1 × 107 CFU intranasally inoculated in 8–12 weeks old female C57BL/6 and 
BALB/c mice

A112-II-a (nephritis clinical isolate) In vivo Bronchopneumonia Natural killer cells recruit neutrophils through KC 
production

(15)

1 × 107–1 × 108 CFU intranasally inoculated in 8–10 weeks old female C57BL/6 
mice

ATCC 17961 In vivo Bronchopneumonia Delayed and reduced production of chemokines and 
cytokines promote severe bronchopneumonia

(16)

Intranasally inoculated 8–12 weeks old A/J and C57BL/6 female mice with 
1 × 107–1 × 108 CFU

ATCC and clinical isolates: HUMC1, LAC-4, 
HUMAC4, HUMC5, HUMC6, C14, AB0061, 
AB0068, UH7807, 17978, R2, 31 (clone 
B), 125, 152 (clone A), AB0071, AB0072, 
AB0074, AB0093, METRO 9, UH2207, 
UH4907, UH5107, UH5207, UH6507, 
UH7007, UH7507, UH8107, UH8307, 
UH8407, UH9007, UH9707, AB7075

In vivo/in vitro In vivo: bacteremia. Intravenously infected C3H/FeJ mice with 
1.5 × 107–8 × 108 CFU

Complement system, macrophages, and neutrophils 
are involved in the defense mechanisms against A. 
baumannii

(17)

 In vitro: complement susceptibility in BALB/cJ mouse serum. Phagocytosis by 
the murine macrophage cell line RAW264.7

576, 4502, 5798, 6143, and 7215 clinical 
isolates

In vivo Septicemia. Intraperitoneally inoculated 6–8 weeks old C57BL/6J, C3HeB/FeJ, 
and IL-17a−/− knockout mice with 2.15 × 106–9.2 × 106 CFU

Dispensable role for IL-17A to control A. baumannii 
septicemia

(18)

0057, 1422, 1611, 2098, 2231, 3559, and 
7405 clinical isolates

In vivo Wound infection Neutropenia causes a more severe A. baumannii wound 
infection

(19)

Wound inoculated 6–8 weeks old BALB/c mice with 1 × 107 CFU

ATCC 17961 In vivo Bronchopneumonia. Intranasally inoculated 8–12 weeks old B6.129S-
Cybbtm1⋅Din/J (NADPH oxidase-deficient [gp91phox−/−]), B6.129P2-Nos2tm1⋅Lau/J 
(inducible nitric oxide synthase-deficient [NOS2−/−]), and C57BL/6 female mice 
with 1 × 107 CFU

Indispensable role for the NADPH phagocyte oxidase to 
control replication and dissemination of A. baumannii

(22)

ATCC 19606 In vitro Human blood neutrophils in the presence of 5 × 107 CFU A. baumannii infection does not induce neutrophil 
extracellular traps formation

(23)

ATCC 17978, ATCC 17978::GFP, 
17978ΔgacS, 17978 pgacS, 17978ΔgacA, 
17978 pgacA, 17978ΔpaaA, 17978 ppaa, 
17978ΔcsuD, M2, M2ΔabaI, and M2 pabaI 
mutant

In vivo Septicemia The bacterial metabolite phenylacetate is chemotactic 
for neutrophils during A. baumannii infection

(26)

Intravenously infected zebra fish embryo with 1 × 103 CFU

Intraperitoneally infected 6–8 weeks old BALB/c female mice with 5 × 104 CFU

ATCC 19606™ and AB5075, AB5711, AB#4, 
and AB4795 clinical isolates

In vitro A. baumannii culture in the presence of LL-37 and its derived peptides Bactericidal activity of LL-37 against A. baumannii (27)

ATCC 19606 In vivo/in vitro Bronchopneumonia A. baumannii adheres to neutrophils to spread in the 
host and avoid bactericidal mechanisms of neutrophils

(31)

Intratracheally infected 6 weeks old C3H/HeN female mice with 5 × 107 CFU

In vitro: adherence, transmigration assays, and cytokine production in human 
blood neutrophils cultured in the presence of bacteria

(Continued)
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TAbLe 1 | Continued

A. baumannii strain Approach Model/experimental design Major findings Reference

ATCC 19606 and 19606R [lipopolysaccharide 
(LPS)-deficient mutant]

In vitro Murine macrophage cell line RAW264.7 and immortalized toll-like receptor 
(TLR)-2-deficient, TLR-4-deficient, and MyD88/Mal-deficient murine 
macrophages in the presence of bacteria

Increased susceptibility to LL-37 in LPS-deficient  
A. baumannii

(33)

Recognition of A. baumannii through TLR-2

AB0057 and ATCC 17978 isolates In vitro Primary cultures of oral or skin epithelial cells in the presence of A. baumannii 
(MOI 100)

Induction of hBDs, hBD-2 and hBD-3 in epithelial cells 
as a response to A. baumannii

(35)

1514, 670, 1064, and 1327 clinical isolates In vitro A. baumannii (MOI 100) incubated with human lung epithelial cell line A549 
(ATCC CCL185) or primary human airway epithelial cells

Involvement of TLR-2 and TLR-4 in A. baumannii 
recognition and IL-8 production via NFκB and mitogen-
activated protein kinases

(36)

Induction of hBD-2 in response to bacteria

ATCC 19606™ In vitro Human lung epithelial cell line A549 (ATCC CCL185), Nod1-, Nod2-, or 
Rip2-knocked down THP-1-derived macrophages or NFκB-luciferase/hBD-2-
luciferase expressing HEK293T cell line in the presence of A. baumannii (MOI 
100)

A. baumannii recognition through nucleotide-binding 
oligomerization domain (NOD)1 and NOD2 and hBD-2-
mediated bacterial clearance

(37)

DAB021, KA10, 04P412, and 05KA010 
clinical isolates

In vitro A. baumannii incubated with human serum Evasion of complement system through Omps-factor 
H binding

(38)

LK10, LK15, LK18, LK41, LK49, LK80, and 
LK88 clinical isolates

In vitro A. baumannii incubated with human serum Ability of A. baumannii to be recognized by alternative 
complement pathway

(39)

ATCC 19606, ATCC 17978, and 11CS, 15CS, 
17CS, 25CS, 27CS, V754948 clinical isolates, 
and ΔcipA mutant

In vitro A. baumannii incubated with human serum Complement system evasion through CipA degradation 
of C3b

(40)

Human umbilical vein endothelial cell line cocultured with bacteria (MOI 100)

LK10, LK41, and LK88 clinical isolates, and 
LK41.3 (PKF-deficient mutant)

In vitro A. baumannii incubated with human serum Role of PKF in complement system evasion (41)

ATCC 17961 In vivo/in vitro Bronchopneumonia. Intranasally inoculated 8–12 weeks old BALB/c mice with 
1 × 108 CFU

Role of macrophages in early stages of A. baumannii 
bronchopneumonia

(47)

In vitro: phagocytosis, bactericidal assay, and cytokine/chemokine production 
using the monocyte–macrophage J774A.1 cell line (ATCC TIB-67, J774) in the 
presence of A. baumannii (MOI 100)

ATCC 19606™ In vitro Outer membrane protein A (OmpA)-stimulated bone marrow derived-dendritic 
cells (DCs)

OmpA from A. baumannii induces DC activation and 
confers them the ability to polarize T CD4+ cells toward 
a TH1 phenotype

(48)

RUH 2037 (pneumonia clinical isolate) In vivo Bronchopneumonia Description of TLR-4 and CD14 in the control of  
A. baumannii pneumonia

(51)

1 × 106–1 × 108 CFU intranasally inoculated in 7–9 weeks old C57/BL6, 
CD14−/−, TLR-4−/−, and TLR-2−/− mice

KCCM 35453 (ATCC 15150) In vitro Wild-type, TLR-2−/−, and TLR-4−/− bone marrow-derived macrophages and 
DCs cocultured with different MOI of bacteria

TLR-4-mediated cytokine and nitric oxide production in 
response to A. baumannii

(52)

KCCM 35453 (ATCC 15150) In vivo Bronchopneumonia. Intranasally inoculated C57/BL6 and TLR-2−/− mice with 
3 × 107 CFU

TLR-2 limits A. baumannii replication at early stages of 
pneumonia

(53)

(Continued)
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CeLL ReCePTORS invOLveD in THe 
ReCOGniTiOn OF A. baumannii

The activation of immune cells largely depends on its ability 
to recognize pattern-associated molecular patterns (PAMPs) 
through PRRs. Similar to other infections (49), two groups of 
PRRs, toll-like receptors (TLRs) and NOD receptors, have been 
implicated in the recognition of A. baumannii. While the role of 
TLR-2 and TLR-4 (two main TLRs recognizing PAMPs during 
bacterial infections) (50) has been widely explored in the context 
of A. baumannii infection (51–53), little is known about the 
recognition of A. baumannii through NOD receptors. A pos-
sible explanation is that A. baumannii is mainly considered an 
extracellular pathogen; however, as previously discussed, there 
are reports describing epithelial NOD1 and NOD2 activation by 
A. baumannii (37). Among the cell types recognizing PAMPs pre-
sent in A. baumannii through TLRs, monocytes, macrophages, 
epithelial cells, and DCs have been identified (33, 36, 48, 54). In 
addition, neutrophils are able to recognize A. baumannii through 
TLR-2 and TLR-4 (55), and potentially other TLRs expressed in 
these cells could be important; however, solid evidence demon-
strating this is still missing.

Lipopolysaccharide, one of the main immunogenic molecules 
present in most bacteria, is a well-established ligand for TLR-4 
(56) and probably the most-studied virulence factor from  
A. baumannii. During A. baumannii infection, TLR-4 along with 
CD14 [a glycosylphosphatidylinositol-linked membrane protein 
that allows LPS recognition through TLR-4 (57)] contribute to 
the recognition and later resolution of infection, as demonstrated 
by Knapp and colleagues. Experiments performed in TLR-4- and 
CD14-deficient mice demonstrated the importance of these 
molecules in the recognition and clearance of A baumannii as 
higher bacterial burdens, and a higher degree of bacterial dis-
semination was observed in comparison to WT mice during a 
model of pulmonary infection. Furthermore, the TLR-4-deficient 
mice showed a decrease in the polymorphonuclear cell recruit-
ment to the lungs, thus resulting in diminished inflammation. 
The inability of these mice to control bacterial replication and 
dissemination is directly correlated with low TNF-α, IL-6, MIP-2, 
and KC production (51).

Interestingly, it has been reported that LPS from different  
A. baumannii strains is mitogenic for splenic cells and induces the 
production of IL-8 in the monocytic-like cell line THP-1 as well 
as TNF-α in splenic and THP-1 cells (54, 58). The role of TLR-4 
in the recognition of A. baumannii was assessed through stimula-
tion with different clinical isolates in HEK-293 cells (an epithelial 
TLR-deficient cell line), transfected to induce the expression of 
TLR-4 and MD2 [a protein that associates with TLR-4 to allow 
for the recognition of LPS (59)]. This stimulation resulted in 
cell signaling by activation of NF-kB-induced transcription 
(54). A recent study, recognized TLR-4 as a key player during 
the immune response against A. baumannii demonstrating that 
the recognition of the bacteria through TLR-4 promotes a signal 
dependent on MAPKs and activation of NF-kB, both essential 
for the production of efficient levels of IL-6, IL-12, and TNF-α by 
macrophages and DCs. Signaling through TLR-4 is also necessary 
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recognized by TLR-2 in A. baumannii is OmpA, whose effects on 
DCs were described above (48). Supporting the defensive role of 
TLR-2 during A. baumannii infection, stimulation of HEK-293 
cells transfected with a TLR-2/CD14 construct, by whole inac-
tivated A. baumannii strains, induced signaling through TLR-2 
(54). Additional evidence about the contribution of TLR-2 in the 
resolution of infection was given by March and colleagues, show-
ing that the production of IL-8 by the epithelial cell line A549 
was promoted through the recognition of A. baumannii by both 
TLR-4 and TLR-2 (36). Similarly, Kim and colleagues reported 
that TLR-2 contributes to the pulmonary clearance of A. bauman-
nii (53). On the other hand, Knapp and colleagues found that 
TLR-2-deficient mice had lower bacterial burden at early stages 

FiGURe 1 | immune response to Acinetobacter baumannii infection. Antimicrobial peptides, produced by epithelial cells are one of the first bactericidal 
mechanisms against A. baumannii. At the same time, these antimicrobial peptides act as chemoattractants for neutrophils. A. baumannii possesses evasion 
mechanisms to avoid deposition of complement system components such as factor H and C3b. Epithelial cells recognize bacteria and secrete macrophage 
inflammatory protein 1 (MIP-1) to recruit monocytes. In turn, these monocytes, respond to A. baumannii secreting tumor necrosis factor (TNF-α), CXCL1, and 
CXCL2 to recruit neutrophils. A small percentage of bacteria evade neutrophil phagocytosis by adhering to the neutrophil surface and exploiting the migratory ability 
of these cells to disperse through the host. The chemokines CXCL1 and CXCL2, secreted in response to bacteria, as well as bacterial metabolites, serve as 
chemotactic factors for neutrophils. Once bacteria crossed through the epithelium, they can be recognized by natural killer (NK) cells, which respond by secreting 
CXCL1 and recruiting more neutrophils. Other innate immune cells, such as macrophages and dendritic cells (DCs), also recognize bacteria through toll-like receptor 
(TLR)-4 and TLR-2. Both DCs and macrophages produce proinflamatory cytokines in response to A. baumannii, and while macrophages secrete CXCL2 to recruit 
neutrophils, DCs process and present the bacteria to CD4+ T naïve cells polarizing toward a TH1 profile. The main mechanism through which A. baumannii infection 
can be controlled by macrophages is by the bactericidal effect of nitric oxide; while neutrophils kill A. baumannii by the production of reactive oxygen species. 
Because of its importance in responses that involve neutrophils, it has been considered, but not confirmed, the participation of IL-17 during A. baumannii infections. 
This cytokine could be produced by different cells including TH17, Tδγ, and type 3 innate lymphoid cells (ILC3), all induced in the presence of IL-23 secreted by 
macrophages, DCs, and epithelial cells.

for the production of bactericidal NO by macrophages, the main 
bactericidal strategy against A. baumannii identified so far (52).

The role of TLR-2, a receptor involved in the recognition of 
peptidoglycan and lipoproteins (60), during the response against 
A. baumannii, remains controversial. Initial studies suggested 
that TLR-2 could contribute to A. baumannii recognition. In 
these studies, stimulation of TLR-4-deficient macrophages with 
a LPS-deficient strain induced production of TNF-α, while 
stimulation of TLR-2-deficient macrophages with the same strain 
was unable to induce this cytokine, indicating that A. baumannii 
possess PAMPs different than LPS that could be recognized by 
TLR-2, and thus suggesting that this receptor could be involved 
in A. baumannii recognition (33). Currently, one of the PAMPs 
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of pulmonary infection as well as earlier polymorphonuclear 
cell recruitment to the lung when compared to WT mice (51). 
However, other results generated by Kim and colleagues failed to 
support previous findings on the role of TLR-2 in response to A. 
baumannii infection (52). These discrepancies could be due to the 
use of different A. baumannii strains, the infection model, dose 
and administration routes, or even due to the cellular type used 
in each study (see Table 1).

ADAPTive iMMUne ReSPOnSe AGAinST 
A. baumannii

Despite the lack of information concerning the contribution 
of cells from the adaptive immune system in the control and 
resolution of A. baumannii infections, humoral immunity has 
been extensive explored in an attempt to design an effective 
and safe vaccine. Many bacterial antigens have been proposed 
as candidates for a vaccine development (61, 62). Currently, 
OmpA emerges as one of the best, given its high immunogenicity 
in mice and in humans (63–65) as well as its broad distribution 
as a virulent factor among many different A. baumannii strains 
(44, 63). The induction of specific anti-A. baumannii antibodies 
during infection has been reported, illustrating OmpA is a major 
antigen able to promote a humoral antibody response. Using a 
diabetic mouse model, previously shown to be a susceptible host 
for A. baumannii infection (66), Luo and colleagues demon-
strated that active and passive immunization with OmpA confers 
protection against A. baumannii. Furthermore, it was confirmed 
that one of the mechanisms through which specific anti-OmpA 
antibodies exert protection is by bacterial opsonization, leading 
to an increment in macrophage-mediated phagocytosis. The 
same report also suggested that the conferred protection was 
independent of complement activation (63). Immunization with 
recombinant OmpA not only results in the production of specific 
IgG1 antibodies (induced during TH2-type responses) and acti-
vation of IFN-γ-, IL-4-, and IL-17-producing splenocytes in an 
antigen-specific manner but also depending on the antigen dose 
and immunization results in the production of different cytokine 
profiles. Thus employing low doses (3  µg) of this antigen, an 
IFN-γ/IL-4 profile is reached, while immunization with higher 
doses of recombinant OmpA (100  µg) induces an IL-4 profile, 
characteristic of TH2 responses (64).

COnCLUSiOn

Altogether, cumulative evidence of the host response against A. 
baumannii demonstrates the participation of several immune cell 
types including monocytes, macrophages, and DCs in the control 
and resolution of the infection, with an essential role for neu-
trophils; however, the use of immunotherapies has been largely 
ignored. Considering that neutrophils are the main immune cell 
population preventing A. baumannii infections, it is attractive to 
consider the development of immunotherapies based on the use 
of cytokines and chemokines acting on neutrophil recruitment 
and activation such as MIP-2 and KC.

Current information about the immune response against the 
infection caused by A. baumannii has been generated from differ-
ent studies that focused on the role of just a few cellular types at 
once, as well as on studies that explore the immunogenic effects 
of a single pathogen structure on a specific cell type. However, a 
deeper understanding that provides a more complete vision of 
the global immune response taking place during A. baumannii 
infection as well as additional studies focusing on the kinetics of 
this response is mandatory.

Most of the information about the host response against  
A. baumannii refers to the innate immune response. In fact, 
given the short period that it takes for the resolution of the 
infection (51), it has been proposed that innate immunity is 
enough to control A. baumannii (15) (Figure 1). Nevertheless, 
the involvement of the adaptive immune response in the control 
and protection against A. baumannii should not been ignored. 
Currently, there is no evidence for the requirement of the T cell 
adaptive immune response in the control of the infection; how-
ever, antibody induction has been considered as a prophylactic 
treatment (67). Characterization of the role of other immune cell 
populations in the defense against A. baumannii is still missing, 
particularly those that can interact with neutrophils (68), such as 
invariant natural killer T cells, γδ T cells, and innate lymphoid 
cells. In addition, most of the evidence so far focuses on the 
immune response against A. baumannii in pneumonia models 
or by in vitro stimulation, a situation that hampers the analysis 
between different cell types and possible interactions that may be 
essential for an efficient protective response. Given the increas-
ing concern of A. baumannii infection as a relevant pathogen 
in nosocomial infections, as well as its alarming capacity to 
develop antibiotic resistance, in the future it would be important 
to perform additional studies focusing on the immune response 
observed in different types of infection by this bacteria, in order 
to develop alternative strategies to ensure an efficient clearance 
and survival of the host.
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