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Typical features of dyskeratosis congenita (DC) resulting from excessive telomere 
shortening include bone marrow failure (BMF), mucosal fragility, and pulmonary or liver 
fibrosis. In more severe cases, immune deficiency and recurring infections can add to 
disease severity. RTEL1 deficiency has recently been described as a major genetic 
etiology, but the molecular basis and clinical consequences of RTEL1-associated DC 
are incompletely characterized. We report our observations in a cohort of six patients: 
five with novel biallelic RTEL1 mutations p.Trp456Cys, p.Ile425Thr, p.Cys1244ProfsX17, 
p.Pro884_Gln885ins53X13, and one with novel heterozygous mutation p.Val796AlafsX4. 
The most unifying features were hypocellular BMF in 6/6 and B-/NK-cell lymphopenia 
in 5/6 patients. In addition, three patients with homozygous mutations p.Trp456Cys or 
p.Ile425Thr also suffered from immunodeficiency, cerebellar hypoplasia, and enteropathy, 
consistent with Hoyeraal-Hreidarsson syndrome. Chromosomal breakage resembling a 
homologous recombination defect was detected in patient-derived fibroblasts but not in 
hematopoietic compartment. Notably, in both cellular compartments, differential expres-
sion of 1243aa and 1219/1300aa RTEL1 isoforms was observed. In fibroblasts, response 
to ionizing irradiation and non-homologous end joining were not impaired. Telomeric 
circles did not accumulate in patient-derived primary cells and lymphoblastoid cell lines, 
implying alternative pathomechanisms for telomeric loss. Overall, RTEL1-deficient cells 
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exhibited a phenotype of replicative exhaustion, spontaneous apoptosis and senescence. 
Specifically, CD34+ cells failed to expand in vitro, B-cell development was compromised, 
and T-cells did not proliferate in long-term culture. Finally, we report on the natural history 
and outcome of our patients. While two patients died from infections, hematopoietic 
stem cell transplantation (HSCT) resulted in sustained engraftment in two patients. 
Whether chemotherapy negatively impacts on the course and onset of other DC-related 
symptoms remains open at present. Early-onset lung disease occurred in one of our 
patients after HSCT. In conclusion, RTEL deficiency can show a heterogeneous clinical 
picture ranging from mild hypocellular BMF with B/NK cell lymphopenia to early-onset, 
very severe, and rapidly progressing cellular deficiency.

Keywords: rTel1, dyskeratosis congenita, bone marrow failure, immunodeficiency, lymphopenia

inTrODUcTiOn

Dyskeratosis congenita (DC) comprises a group of Mendelian 
disorders marked by intrinsic telomere shortening, caused by 
defects in genes involved in telomere homeostasis. The varied 
clinical phenotype and delayed onset of non-hematological 
symptoms can render the diagnosis of DC difficult. The classi-
cal form of DC is characterized by bone marrow failure (BMF), 
mucocutaneous features, and pulmonary and/or hepatic fibrosis 
(1–4). In patients with severe and early-onset disease, also 
referred to as Hoyeraal-Hreidarsson syndrome (HHS), in addi-
tion to BMF, the disease is distinguished by intrauterine growth 
retardation, microcephaly/cerebellar hypoplasia, and increased 
susceptibility to infections due to cellular and humoral immuno-
deficiency (5–7). The most consistent immunological phenotype 
is a combined decrease in B- and NK-cells with usually normal 
numbers and in vitro function of T-cells (8).

Until recently, HHS has been associated with mutations in 
TINF2 (heterozygous), DKC1 (X-linked), or TERT (homozy-
gous) but its cause remains elusive in approximately half of 
the patients (1). Ballew et  al. and Walne et  al. first reported 
the identification of biallelic RTEL1 mutations in patients with 
HHS (9, 10). To date, 30 distinct mutations have been reported 
in 24 unrelated pedigrees, in patients suffering from similar 
clinical features including BMF, B-/NK-cell lymphopenia, and 
developmental delay (9–20). In addition, heterozygous missense 
variants in RTEL1 have been identified in association with idi-
opathic pulmonary fibrosis, reported in 10 pedigrees (21–23). 
RTEL1 is a helicase essential in DNA metabolism (24–27) and 
has been classified as a helicase with a conserved iron–sulfur 
(FeS) cluster. Other disorders resulting from mutations in FeS-
helicase genes include Xeroderma pigmentosum (XPD), Warsaw 
breakage syndrome (DDX11/ChIR1), and Fanconi anemia group 
J (FANCJ). Despite similar pathophysiological basis, the clinical 
and biological phenotypes are different in these entities (25, 28).  
Inappropriate resolution of the telomeric-loops (T-loops) into 
free telomeric circles (T-circles) has been postulated as the 
mechanism underlying catastrophic telomere shortening and 
cellular defect in RTEL1 deficiency (10). However, due to the 
limited experimental studies in patients, the molecular basis of 
the clinical phenotype has remained incompletely characterized.

Here, we examined the natural history and treatment out-
come of six patients with five novel RTEL1 mutations. To better 
understand the functional consequences of identified mutations, 
we employed molecular and cellular assays in patient-derived 
primary cells, long-term culture, and manipulated cell lines. 
We ascribe a premature truncation effect on mRNA level to 
the splice site mutation c.2652  +  5G>A. We also demonstrate 
normal V(D)J recombination and unaffected T-loop disassembly 
with normal numbers of T-circles in RTEL1-deficient patients, 
extending previous findings in RTEL1 deficiency. Our clinical 
and experimental observations support the notion of early pro-
liferative exhaustion along with spontaneous apoptosis, increased 
senescence, and rapid telomere shortening in RTEL1-mutated 
cells. Moreover, we report on the clinical course of hematopoietic 
stem cell transplantation (HSCT) in two of our patients.

MaTerials anD MeThODs

Telomere length assessment and  
genetic studies
For initial explorative analysis, the relative telomere length (RTL) 
was measured from DNA of granulocytes using quantitative 
multiplex real-time polymerase chain reaction (PCR) according 
to Cawthon (29). In-house reference values from peripheral 
blood (PB) and bone marrow (BM) granulocytes of 90 healthy 
BM donors (age 2–18 years) were used for percentile calculation. 
RTL [telomere to single copy gene (T/S) ratio] was calculated as 
median from at least two independent triplicate runs. The intra-
assay coefficient of variation (CV) ranged from 0 to 6% (mean 
3.75%), and inter-assay CV was 2–11% (mean 7%). Telomere 
length was validated using metaphase telomere/centromere-
fluorescence in situ hybridization (T/C-FISH) in a second labora-
tory, as previously described (30).

cell culture and immunological studies
Primary fibroblasts were grown in DMEM medium containing 
20% FCS and 1% P/S and tested mycoplasma free. For hemat-
opoietic cell cultures, mononuclear cells (MNCs) were isolated 
from BM of patients and healthy control using Ficoll-based 
density gradient centrifugation, and magnetically isolated CD34+ 
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cells (MACS Miltenyi) were cultured for 7 days with IL6, SCF, and 
FLT3-L. T-cell proliferation, flow cytometric analysis of lympho-
cyte subsets, T-cell receptor Vβ-repertoire, and T-cell cytokine 
production were assessed as previously reported (31, 32). For 
analysis of ex vivo survival, MNCs were cultured for 6 days. At 
days 0, 1, 2, 3, and 6, 2 × 105 cells were stained with Annexin V 
(AV) and PI (BD Biosciences) and analyzed by flow cytometry. 
Degranulation of T- and NK-cells was assessed as previously 
reported (33).

senescence-associated β-galactosidase 
staining
Primary fibroblasts from healthy control, P1, and a patient with 
known DC and TERC mutation were fixed for 5 min in 2% vol/
vol paraformaldehyde in PBS, washed in PBS, and stained in 
β-galactosidase fixative solution (X-gal) in 5 mmol/l potassium 
ferricyanide, 5  mmol/l potassium ferrocyanide, and 2  mmol/l 
MgCl2 in PBS for 16 h at 37°C. Controls and patient cells were 
analyzed at the same passage number, 200 cells were counted per 
well, and staining performed in triplicates.

radiosensitivity and Mitomycin c  
(MMc)-induced chromosomal Breakage
Primary fibroblasts were seeded at a density of 4,000 cells/cm2. 
Parallel cultures were grown in DMEM with GlutaMAX (Gibco) 
and supplemented with 15% FBS (PAN). For flow cytometry, 
48 h cultures were left untreated or exposed to 10 ng/ml MMC 
(Medac) or initially irradiated with 1.5 Gy from a linear accel-
erator. Cells were detached using 1× (0.05%) trypsin (diluted 
from trypsin 0.5%-EDTA 0.2% solution 10×, PAA), pelleted, 
and stained in medium containing 15 µg/ml Hoechst dye 33342 
(Molecular Probes) for 30 min in the dark. Gates were set on vital 
cells via propidium iodide (PI, 1 µg/ml) exclusion. Split samples 
were stained with 1 µg/ml 4′,6-diamidino-2-phenylindole (DAPI; 
Molecular Probes) in buffer containing 154 mM NaCl, 0.1 M Tris 
pH 7.4, 1 mM CaCl2, 0.5 mM MgCl2, 0.2% BSA, and 0.1% NP40 
in dH2O. Univariate flow histograms were recorded on a triple-
laser equipped LSRII flow cytometer (Becton Dickinson) using 
UV excitation of Hoechst 33342 or DAPI, and 488-nm excitation 
of PI. Resulting cell cycle distributions reflecting cellular DNA 
content were quantified using the MPLUS AV software package 
(Phoenix Flow Systems).

cytogenetic analyses for Visualization  
of chromosomal Breakage
Fibroblasts were exposed to MMC at final concentrations of 0, 10, 
50, or 100 ng/ml for the final 24 h of culture. For the last 3 h, 16 µl 
of Colcemid Solution (10 µg/ml; PAA) per milliliter of growth 
medium were added. Metaphase preparation followed standard 
procedures. Detachment of cells was evaluated by trypsin as 
above. Pellets were subjected to hypotonic treatment using 
10 ml of pre-warmed 0.075 M KCl for 10 min at 37°C. Nuclei 
and metaphases were fixed using freshly prepared, ice-cold 100% 
methanol, and glacial acetic acid 3:1. A minimum of 50 complete 
metaphases from Giemsa-stained slides of each MMC concentra-
tion were scored quantitatively for breakage rates and analyzed 
qualitatively for types of chromosome aberrations.

V(D)J recombination assay
V(D)J recombination assays were performed as described previ-
ously (34). In short, human primary RTEL1-proficient or RTEL1-
deficient dermal fibroblasts were transfected using the Cell Line  
V Nucleofector Kit (Lonza, Cologne, Germany). Transfections 
were performed with 1.2 µg pcWT-RAG1, 1.8 µg pcWT-RAG2, 
8.0  µg pMACS11-19VDJ, or pMACS11-19Flip, and 1.0  µg 
pcDNA6/myc-His Version A (Invitrogen, Life Technologies, 
Darmstadt, Germany). After 48  h, cells were harvested and 
analyzed by immunofluorescence flow cytometry. Transfected 
fibroblasts were detected with biotin–anti mouse H-2Kk anti-
body (BD Biosciences, San Jose, CA, USA) against the truncated 
murine major histocompatibility complex class I protein H-2Kk 
additionally encoded by the pMACS11-19VDJ and pMACS11-
19Flip plasmids. The biotin-labeled antibodies were detected 
by streptavidin–peridinin chlorophyll protein staining (BD 
Biosciences). Assays were performed three times independently 
for the two tested cell lines. The arithmetic means of the three 
values and the corresponding SDs were calculated.

T-circle analysis
The analysis of telomeric T-circles was performed as previously 
described (27) using patient fibroblasts (P1, P3), T-lymphoblasts 
(P1 and family members, P5), and cell lines [VA13 ALT, 
Rtel1−/− mouse embryonic fibroblasts (MEFs), Rtel1F/F MEFs, and 
BJhTERT] and as positive control fibroblasts with homozygous 
mutation p.Arg1264His known to exhibit T-circle loss.

genomic studies
Exome Sequencing (ES) Studies  
and Protein Modeling
For homozygosity mapping in P1 and P2, homozygous regions 
were mapped as described before (35). In brief, genomic DNA was 
treated according to the Affymetrix® Genome-Wide Human SNP 
Nsp/Sty 6.0 protocol. Results were assessed using the Affymetrix® 
Genotyping Console™ software, PLINK (36).

ES in P1 and P2
The sample was prepared using the Illumina TruSeq DNA Sample 
Preparation Guide, the Illumina TruSeq Exome Enrichment Guide 
version 3, and the TruSeq PE Cluster Kit v3 Reagent Preparation 
Guide. Data were analyzed by applying Burrows–Wheeler Aligner 
for the alignment of the reads and the Genome Analysis Toolkit 
(37, 38) for quality score recalibration as previously described 
(35). Annotation was done using the ANNOVAR (39).

Variant Validation
The variants of the final hit list were validated with capillary 
sequencing on genomic DNA from the patients, using Big Dye 
Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, 
Germany) on a 3130xl Genetic Analyzer (Applied Biosystems).

Protein Modeling and Phylogenetic Conservation
The protein model (AA 1–754) was created using I-TASSER (39) 
based on the crystal structure of the protein database molecule 
2vsfA (40) (sequence homology 20%). Secondary structures 
were assigned with the program ICM-Browser, Molsoft LLC. 
Phylogenetic conversation was assessed using Polyphen-2.
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Targeted Sequencing Using Sanger Sequencing
DNA was extracted using Gentra Puregene DNA kit (Qiagen) 
from PB. PCR and cycle sequencing products were puri-
fied using standard enzymatic or sephadex-based cleanup. 

PCR and Sanger sequencing were performed as previously  
described (41).

Primers used for amplification and sequencing of  
genomic DNA:

exon Forward reverse Mgcl2 (mM)

2 CAGTGCACATGCTCGCATC ATGACAGACGCTGCCTCTG 2.2
3 GCCTCTGCATCTGCAAAGAG CTTGAGTTCTGCTTGAGAGAC 2.2
4 TGTCAGATTCTTGGCTGTCTG AGCGCTCTGCACACTTCG 2.2
5–6 TCCTCCCTCTGTCCAGTAC CAAGCACAACCAGGCTGTG 1.5
7 CCTCAGTGGGTGCTTTGTG ACTCTATCTTCCTCAGAGCTG 2.2
8 CAGGATGAGGGCTCCTTC CCCAGTGACAGAGGTGAG 1.5
9 CTCATCTGCGCTTGTGATGT CACCTAGGGCTTCAGGAG 2.2
10 GAACTTGGCTGTCAGCCTC CCCAAGAAGCCTCTGAGAG 2.2
11 GAATCCTGGTTCTCAAGGG GTCTCCAGGCAGCTCAAC 1.5
12 AGACATTGCAAAGCTGAAGAG GATGTGACAGCCCAGGAC 1.5
13 ACTTCCACAGTTGTTGCCTTC GCTGGCAAGTGGCACTAAC 1.5
14 GAGATGGAGCTTGGCAGTC CTGGAAAGGAGCCGAGAG 2.2
15–16 AGAAAGGGTCAGGCAGGTG TGAGGAGAATGCTCTGGATTG 2.2
17–18 AAGCTGGCAGGCTCACAC CACTCACCCAGAGCCTTC 1.5
19–21 TGGAGAACCCACACATCATC AGGAGCCCTGAAGAGGCA 1.5
22 CTTCATCTTGGAGCATGAGAC GCCACCTCCAACTCTTGTG 1.5
23–24 CCACAGATGGAGCTTCCTC GCTTCAAGGGTTCAGTTCAC 2.2
25–26 CTCTCCTTCCCCACATGAG GCACAAAGCCAGGTGAGTC 2.2
27 AACGCCCCAGGCAAGGAT AGGACCCACAGACAGCCA 2.2
28 AAGTTGTGGCACTGTCACC GGCTGTGTCCCTCACATG 2.2
29–30 CCAGTTTCTCAGGCAGCAG CTCCCATAGGGGAACAGAG 2.2
31 AGGCTGGTGTCTCCTCTGA AGCAGTCCCCACCATGAGA 1.5
32 GGCTTCACGAGGCTAACTC CTTTGCTGCTCACTCCCAG 1.5
33–34 CAACTCTTGGCAGCGCTGA TGAAGGTGCCGTTGCCAG 2.2
34–35 CTCCTGTGCTTACCCACAG CTATTCTGTTGGGTGGGTTC 2.2
36 AGGTGGCATGTCGGTCAG TTGTGGGTGGCGTGGCAA 2.2

RT-PCR
RNA was prepared according to standard methods (TRIZOL, 
Invitrogen Lifetech, USA). cDNA was generated from 1 µg of 
RNA using the QuantiTect Reverse Transcription Kit (Qiagen, 
Germany). Reverse transcriptase was not added in RT minus 
(RT−) reactions, used for exclusion of genomic DNA contami-
nation and thus unspecific amplification of genomic DNA in 
the RT-PCR. The PCR master mix was set up as follows: 6 µl 
of 5× PCR buffer, 3 µl of 2mM deoxynucleoside triphosphates, 
1 µl of 10µM each forward and reverse primers, 0.2 µl of Taq 

(5  U/μl; Go Taq DNA Polymerase, Promega), MgCl2 (final 
2.2 mM), and 2 µl of cDNA were mixed with sterile water to 
a final volume of 30  µl. Thermocycling was performed on a 
Peqstar Thermocycler (Peqlab, Germany). After an initial 
denaturation step at 94°C for 2 min and 17 touch-down cycles 
(denaturation at 94°C for 30 s; annealing at 63°C, −0.5°C per 
step, for 30 s; and extension at 72°C for 30 s), an additional 20 
PCR cycles were performed (30  s at 94°C, 30  s at 55°C, and 
30 s at 72°C).

RTEL1 cDNA primers:

Ex3–4 fw AGACCCCATAGCTTGCTACA Ex6–7 rev TCTGTAGATGGTTACTCTCTTG
Ex26–27 fw AGGTCCTCAGGGTCACCAG Ex30–31 rev GTTCTTCCAGTGGGGTCCAG
Ex27–28 fw CGAGGAGCAGGCCCACAG Ex29–30 rev TGGTAGAAGCCTTGGAGCAG
Ex34–35 fw GCACCTTCAGGCCTCTAG Ex36 rev GACGTTGCAGTAGCGGCA

resUlTs

clinical Phenotype and natural history  
of Patients with RTEL1 Mutations
The essential clinical and laboratory data of our patients are 
summarized in Tables 1 and 2, key clinical featured of the index 
patient are shown in Figure 1, and the pedigrees of the investi-
gated families are shown in Figure 2A.

Patient P1 (Family 1) was brought to our attention for recur-
ring bacterial and viral pneumonias manifesting from 9 months 
of age. Pancytopenia, B/NK-cell lymphopenia, and hypogam-
maglobulinemia were subsequently noted. In short span, the 
manifestation of leukoplakia and ataxia associated with cerebellar 
hypoplasia led to the clinical diagnosis of HHS (Figures 1A–C). 
Between 2 and 3  years of age, P1 developed refractory non-
infectious diarrhea and long-segment esophageal narrowing. An 
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TaBle 1 | clinical phenotype of patients 1–6.

clinical phenotype P1 P2 P3 P4 P5 P6

Ethnic origin Turkish Moroccan German German

Gender Female Male Male Female Male Male

Age/initial presentation at disease  
onset

9 months/infections 3 months/
failure to thrive

12 months/leukoplakia 4 years/
diarrhea

9 years/pancytopenia and 
infections

19 years/
thrombocytopenia

Age at last follow-up 7 years 4 months 19 months 7 years 8 months 7 years 
8 months

21 years 19 years

Treatment MFD HSCT None Matched unrelated 
donor HSCT

Careful 
watching

Oxymetholone None

Outcome Alive 
(HSCT + 4 years 

2 months)

Deceased 
(CMV)

Alive (HSCT 2 years 
6 months)

Alive Deceased (pneumonia) Alive

RTEL1 mutations c.1368G>T; p.Trp456Cys hom c.1274T>C; p.Ile425Thr hom c.2652 + 5G>C; 
p.Pro884_Gln885ins53X13 
het and c.3730delTG; 
p.Cys1244ProfsX17 het

c.2387delT; 
p.Val796AlafsX4 
het

Major dyskeratosis congenita (Dc) featuresa

Bone marrow failure + + + − + +
Oral leukoplakia + + + − + −
Abnormal skin pigmentation − − − − − −
Nail dystrophy − − − − + −
Telomere length <first percentile + + + + + +

Other Dc-related features
Ataxia/cerebellar hypoplasia on MRI +/+ +/+ +/+ −/n.i. −/n.i. −/n.i.
IUGR + − − − + −
Short stature + + + − − −
Microcephaly + + + − + −
Developmental delay + + + − − −
Esophageal stricture or GI ulcerations + − + − + −
Lung fibrosis/liver cirrhosis +/− −/− −/− −/− −/+ −/−
Chronic diarrhea + + + + + −
T+B−NK− immune phenotype + + + + + −

MMC-induced chromosomal breakage + fibroblasts n.i. + fibroblasts n.i. − blood n.i.
− blood − blood

Systemic infections Viral and bacterial Bacterial None Viral and bacterial none

aAs defined in Dokal (1).
hom, homozygous; het, heterozygous; +, present; −, absent; n.i., not investigated; MFD HSCT, matched family donor hematopoietic stem cell transplantation; IUGR, intrauterine 
growth retardation; MMC, mitomycin C.
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increased apoptotic rate within the colon and esophageal mucosa 
was detected by endoscopy (Figures 1E,F). Due to rapidly pro-
gressing BMF (Figure 1G) and immunodeficiency, P1 was trans-
planted from her HLA-identical grandmother (further details are 
described below). Similar clinical symptoms were observed in P2, 
a second-degree cousin of P1 (Figure 2A). Within first 3 months 
after birth, P2 had failure to thrive and microcephaly, with recur-
rent infections manifesting from age of 5 months. He died at the 
age of 19 months due to systemic CMV infection.

Two further patients (P3 and P4) belong to Family 2 
(Figure  2A). P3 initially developed leukoplakia at age of 
12 months; however, his leading medical concerns were develop-
mental delay and BMF diagnosed at age of 2 years and 9 months. 
He was successfully transplanted from a 9/10 matched unrelated 
donor (MUD) at 5.2 years of age. Identical homozygous RTEL1 
mutation was identified in his twin sister (P4) by family screen-
ing. P4 initially presented with mild chronic diarrhea, high MCV 

and NK-cell lymphopenia, and short telomeres at the age of 
approximately 4 years, but later also developed mild leukoplakia 
(Tables 1 and 2).

P5 from Family 3 (Figure 2A) suffered from recurrent infec-
tions beginning from 6 years of age and progressive BMF after 
EBV infection at 9 years of age. In contrast to P1–P4, he developed 
severe mucosal fragility, nail dystrophy, and liver cirrhosis with 
secondary hypersplenism (Table  1). He became transfusion 
dependent for RBC and platelets at 15 years of age. Oxymetholone 
therapy initiated at age of 20 years later resulted in transfusion 
independency for platelets. However, infectious complications 
intensified and he died of sepsis after pneumonia at 21  years  
of age.

P6 from Family 4 (Figure 2A) was born to non-consanguineous 
parents with an uneventful family history. Postnatal development 
was normal and he was asymptomatic at diagnosis when he was 
17 years old. Complete blood count performed prior to surgery 
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TaBle 2 | extended laboratory findings of patients with RTEL1 mutations.

laboratory tests P1 P2 P3 P4 P5 P6

Blood count, lowest observed values
Hemoglobin, g/dl (N: 13.5–17.5) 6.0 6.4 5.0 12.4 6.0 15.6
Platelets, 109/l (N: 150–450) 23 25 24 288 <10 63
WBC, 109/l (N: 4,500–11,000) 1,100 3,500 1,020 4,400 100 3,900
ANC, 106/l (N: 1,500–8,000) 70 1,300 620 2,080 50 1,290
Lymphocytes, 106/l (N: 1,000–4,800) 770 2,100 290 1,650 50 1,000
MCV >95th percentile Yes No Yes Yes Yes Yes

T-cells
CD3+/μl 724–937 (2,100–6,200) 970–1,538 (2,100–6,200) 2,016 (700–4,200) 1,480–1,949 (700–4,200) 140 (700–2,100) 1,254 (700–2,100)
CD4+/μl 457–561 (1,300–3,400) 790–1,172 (1,300–3,400) 1,258 (300–2,000) 740–1,011 (300–2,000) 60 (300–1,400) 818 (300–1,400)
CD8+/μl 251–350 (620–2,000) 176–357 (620–2,000) 724 (300–1,800) 670–835 (300–1,800) 70 (200–900) 357 (200–900)
% γ/δ TCR+ of CD3+ 2 (<10) 0.8 (<10) 1.1 (<10) 6.3 (<10) n.a. 6.4 (<10)
% CD45RA of CD4+ 71–79 (63–91) 84 (63–91) 66 (53–86) 62 (53–86) 25 (33–66) 51 (33–66)

B-cells CD19+/μl 1–26 (720–2,600) 2–47 (720–2,600) 26–74 (200–1,600) 230–252 (200–1,600) 2 (100–500) 162 (100–500)

NK cells: CD3−D16+CD56+/μl 30–63 (180–920) 4–23 (180–920) 4–10 (90–900) 20–50 (90–900) 20 (90–600) 105 (90–600)

Immunoglobulins (maximal values)
IgG/IgA/IgM, g/l <1/0.1/0.25 4.5/0.4/0.4 13.9/2.3/0.6 9.8/1.1/0.5 5.3/0.3/<0.2 n.a.
IgE, kU/l 2.1 <2 24.7 24 n.a. n.a.
Specific IgGa − (EBV, CMV, VZV, tetanus) + (rubella, hepatitis B) + (EBV, CMV, tetanus, 

measles, mumps, rubella)
+ (CMV, VZV, PB19, tetanus, 

measles, mumps, rubella)
− (EBV, CMV, VZV, 

PB19, measles, 
mumps, rubella)

n.a.

T-cell proliferation: PHA/anti-CD3 norm/norm n.a./n.a. norm/n.a. n.a./n.a. norm/n.a. n.a/n.a.

aAll patients were exposed to the indicated antigens either by vaccination or infection and specific IgG were measured prior to i.v. application of immunoglobulins.
+, present; −, absent; n.a., not available; norm, normal; WBC, white blood count; ANC, absolute neutrophil count; MCV, mean corpuscular volume; PHA, phytohemagglutinine.
Normal age-related values are depicted in parentheses. Italic formatting indicates laboratory values below the age-related normal range.
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FigUre 1 | clinical features of index patient 1 (P1). (a–c) Leukoplakia (<), sinistral cerebral hypoplasia (arrow). (D) Granulation tissue of tongue and  
(e) esophageal ulcers. (F) Apoptotic bodies in colon (arrows). (g) Hypocellular bone marrow before hematopoietic stem cell transplantation with immature 
erythropoiesis (arrow) and sparse myeloid precursors (triangle). (D–F) Hematoxylin and eosin staining, (g) naphthol-AS-d-chloroacetate esterase (NACE) staining.
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for a shoulder dislocation revealed thrombocytopenia and 
elevated MCV (Tables 1 and 2). These findings prompted further 
investigations and a BM biopsy was compatible with the histo-
logical diagnosis of hypocellular refractory cytopenia. Telomere 
analysis and full DC-genetic workup eventually identified RTEL1 
deficiency. Family history revealed no malignancies in all patients 
or their first-degree relatives.

At the time when our index patients P1 and P2 were studied, 
disease-causing mutations in RTEL1 were not yet reported. We 
therefore used Sanger sequencing to exclude mutations in nine 
known DC-related genes, followed by homozygosity mapping 
and ES. Three variants (COL9A3Arg103Gln, PRIC285Glu615Lys, and 
RTEL1Trp456Cys) segregated with the disease (Table  3). RTEL1 
was the most plausible candidate gene, given its essential role 
in telomere maintenance and coinciding reports on RTEL1 
mutations (Figure 2B). The homozygous mutation p.Trp456Cys 
affects a protein region with a very high degree of homology in 
all 17 species and is located in a β-sheet (Figures 3A,C). Targeted 
re-sequencing identified four additional RTEL1 mutations in 
P3-P6 (Figures 2A and 3B). Parents of twins P3 and P4 are first-
degree cousins and transmit the heterozygous missense mutation 
p.Ile425Thr; both P3 and P4 are homozygous, while their healthy 

siblings are heterozygous carriers (Figure 2A) and have normal 
RTL (not shown). The RTEL1 amino acid Ile425 is located in the 
α-helix and found to be conserved in 16 out of 17 tested species 
(Figures 3B,D). Finally, a compound heterozygous state with one 
truncating splice site mutation c.2652 + 5G>A in intron 28 and 
a frameshift mutation c.3730delTG; p.Cys1244ProfsX17 in exon 
34b of RTEL1 was identified in P5 (Figure 2A). P6 was the only 
patient in this study who carried solely a heterozygous nonsense 
mutation p.Val796AlafsX4 resulting in premature stop codon 
prior to both C-terminal harmonin domains. This mutation 
could not be investigated on functional level in primary patient 
cells due to lack of available material.

rTel1 isoforms and consequences  
of Mutations
The longest four of the seven Ensembl-annotated, protein coding 
isoforms are shown in Figure  4A. Mutation nomenclature in 
this manuscript refers to the 1300aa isoform (NM_001283009), 
which along with the 1219aa isoform (NM_016434) is predomi-
nantly expressed in human cells, and also served as a reference 
for the majority of reported mutations (Figure 2B). Notably, the 
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TaBle 3 | characteristics of the segregating variants in P1 and P2.

gene Position ref. Obs. Protein Polyphen-2 siFT caDD exac allele counts exac 
Z-score

exac 
pli

COL9A3 chr20 61451333 
(rs142639450)

G A NM_001853 c.G308A 
p.R103Q

0.022 0.31 23.5 Het: 1748, hom: 24 (119804);  
MAF: 0.01459

−1.09 0

HELZ2 chr20 62196625 G A NM_033405 c.G1843 
p.E615K

0.809 0.84 0.002 Het: 78, hom: 1 (70806);  
MAF: 0.0011

0.25 0

RTEL1 chr20 62319010 G T NM_016434 c.G1368T 
p.W456C

1.000 0 28.8 Not observed −1.71 0.78

Prediction scores were calculated with Polyphen-2 (42), SIFT (43), and CADD (44). Variant counts (in brackets: total analyzed alleles) and frequencies were downloaded from ExAC 
database (45) (accession date 21 February 2017) for the whole population.
Ref., reference; Obs., observed; het, heterozygous; hom, homozygous; pLI, probability of loss of function intolerance.

FigUre 2 | Pedigrees of rTel1-deficient patients and annotation of mutations. (a) Six RTEL1-deficient patients with their respective nuclear families are 
shown. P1 and P2 are part of a large consanguineous pedigree. P3 and P4 are twins. Heterozygous family carriers are indicated by half-filled symbols. P1–P4 carry 
homozygous missense mutations, P5 and P6 carry biallelic and monoallelic nonsense mutations, respectively. n.a., not analyzed. (B) The 1300aa RTEL1 isoform 
protein structure displaying the novel mutations described in this study (highlighted in bold, underlined font) along with previously reported mutations. Mutations 
previously reported using 1243aa isoform (NM_032957) in three reports (9, 10, 20) have been adapted to 1300aa isoform (NM_001283009). Heterozygous 
missense variants identified in association with pulmonary fibrosis (21–23) are not shown. For clarity, mutations are shown on protein level without “p.” as preceding.
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1243aa isoform (NM_032957) that compared to other isoforms 
holds a longer exon5 (+24aa) was detected at very low levels using 
RT-PCR in peripheral blood MNCs of patients and controls, while 
it was absent in fibroblasts, pointing toward tissue-dependent 
specificity of alternative transcripts (Figure  4A). Furthermore, 
we noticed higher expression of long transcript (present in 
both 1300aa/1400aa isoforms) in healthy MNC as compared to 
fibroblasts (Figure  4B). Finally, the longest 1400aa transcript 
was neither detectable in blood nor in fibroblasts using RT-PCR 
targeting exon 36 (not shown).

Both homozygous missense mutations identified in P1–P4 
did not affect mRNA expression in RTEL1-deficient patient cells 

(Figure 4B). As demonstrated by RT-PCR and cDNA sequenc-
ing, P5’s RTEL1 c.2652 + 5G>A mutation abolishes the original 
donor splice site, resulting in transcription prolongation of exon 
28, adding 159 bp out of intron 28 (Figure 4C, left panel). A novel 
premature stop codon (aa +13) results in loss of the proliferating 
cell nuclear antigen-interacting protein PIP motif, RING domain, 
as well as recently identified harmonin-like domains (46). The 
mutated transcript showed similar mRNA expression signal to 
the wild-type allele. The second frameshift mutation in P5 was 
predicted to be protein truncating however did not affect mutant 
mRNA level as shown by cDNA sequencing (Figure  4C, right 
panel).
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FigUre 3 | structure prediction and evolutionary conservation of RTEL1 mutations: p.Trp456cys; p.ile425Thr. (a) The mutated aa (p.Trp456Cys) is 
predicted to be located in a β-strand in the linker between the two helicase domains (arrow) and is predicted to be buried. (B) The mutated aa (p.Ile425Thr) is 
predicted to be located in α-helix. Structure of RTEL1 amino acids (aa) 1 (blue) to 754 (red) was predicted by I-TASSER covering the two helicase domains and their 
linker based on the structure of 2vsfA (5). Secondary structures were assigned with the program ICM-Browser, Molsoft LLC. (c) Trp456 and (D) Ile425 are highly 
conserved across 17 species.
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severe Telomere shortening and 
Premature senescence in rTel1 
Deficiency
Patients with RTEL1 deficiency exhibited very short telomeres 
(below the first percentile of age-matched controls) in BM, PB, 
and skin fibroblasts measured using qPCR and metaphase T/C-
FISH (Figures 5A,B). By contrast, parents of P1–P4 had normal 
telomere length (Figure 5B). To investigate if heterozygous car-
rier status affects telomere homeostasis under replicative stress, 
we investigated T-cell blasts of P1’s parents. Upon long-term 
expansion, heterozygous RTEL1Trp456Cys lymphocytes exhibited 
significant telomere shortening (Figure 5C), while homozygous 
RTEL1Trp456Cys cells died prematurely (not shown). RTEL1-
deficient fibroblasts of P1 and P3 showed poor growth and 
premature cellular senescence (Figure 5D). T-cell phenotyping 
in P3 and P4 revealed that the majority of CD4 T-cells had a naïve 
phenotype, while almost 50% of CD8 T-cells were terminally 
differentiated effectors with senescent phenotype (Figure 5E), as 
determined by CD57 co-expression (47, 48). The proportion of 
CD57+ T-cells increased over time in P3, despite absence of severe 
viral infections. Moreover, increased spontaneous apoptosis was 
observed in MNCs of P3 and P4 (Figure 5F). However, short-term 

proliferation, degranulation and effector cytokine production of 
T-cells were unaffected (Table 2).

homozygous RTEL1 Mutations result  
in genomic instability
Experimental evidence from studying RTEL1-deficient 
embryonic stem cells, C. elegans and human cell lines indicate 
that RTEL1 is required for maintaining genomic integrity and 
plays a key role in regulating homologous recombination (HR) 
(25–27). It is essential for the repair of mitotic and meiotic 
double strand breaks and its loss results in uncontrolled HR 
leading to chromosomal breakage. To test the functional effect 
of RTEL1 mutations on the genomic integrity in our patients, we 
investigated spontaneous and crosslinker-induced chromosomal 
damage (Figure 6). Chromosome preparations from fibroblasts 
of P1 showed elevated levels of chromatid/iso-chromatid rather 
than chromosome breaks and reunion figures (Figures 6A,D). 
End-to-end chromosome fusions were not observed. The spon-
taneous and MMC-induced G2 phase fractions of fibroblasts 
from P1 and P3 were significantly increased compared to normal 
controls (P < 0.001) (Figure 6E). By contrast, low dose of ion-
izing radiation (1.5 Gy) did not result in any abnormal findings 
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FigUre 4 | rna expression analysis and RTEL1 isoforms. (a) Four protein coding isoforms are shown and enumerated according to Ensembl nomenclature 
(RTEL1-014, -001, -011, -201). The RTEL1-014 mRNA isoform containing long exon 5 is only marginally expressed in mononuclear cells (MNCs) from peripheral 
blood (PB) or bone marrow (BM) and is not detectable in fibroblasts, as shown on the left panel. Right panel depicts higher levels of mRNA containing exon 34b 
(present in both 1300aa/1400aa isoforms) in control MNC as compared to normal fibroblasts. (B) RTEL1 mRNA expression in fibroblasts, PB MNC of healthy control 
(Ctrl), P1, P3, and healthy carrier. (c) Left panel: mutation c.2652 + 5G>A in P5 was confirmed by RT-PCR to abrogate the original donor splice site, adding 
+159 bp downstream in intron 28, resulting in an insertion of 53 triplets and a novel stop codon (+13aa). Right panel: second mutation in P5, c.3730delTG is 
detected in both BM genomic DNA and cDNA at comparable mutant-to-wild-type ratios.
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FigUre 5 | Telomere shortening, senescence, and spontaneous apoptosis. (a) Relative telomere length (RTL) was measured using qPCR below the first 
percentile of healthy pediatric population (n = 90, age 2–18 years) in Peripheral blood, bone marrow and skin fibroblasts of patients P1–P6. Median of at least two 
independent triplicate measurements is shown. (B) Telomere/centromere metaphase FISH (T/C-FISH) confirms short telomeres in P5 and in P3 but not in 
heterozygous parents of P3/4. (c) Telomere shortening in Trp456Cys-heterozygous T-cells of parents of P1 after PHA/IL2-induced long-term expansion. Bars 
indicate absolute telomere length examined by T/C-FISH at days 3 and 24 of culture. In addition, RTL h (T/S-ratio by qPCR, diamonds) was investigated at days 0 
and 54, confirming rapid telomere shortening observed using T/C-FISH results. (D) High rate of senescence visualized by β-galactosidase staining (blue) in 
RTEL1-deficient fibroblasts, compared to a healthy control and a patient with TERC mutation. The percentage of SA-β-Gal positive senescent cells is shown in the 
bar graph. (e) CD57 expression on CD8 cells of age-matched healthy controls (Ctrl) and RTEL1-deficient P3 at 4 years (open square) and 5 years of age (solid 
square) and P4 at 5 years of age (triangle). **P value <0.01, calculated with a two-tailed t-test. (F) Increased spontaneous apoptosis in RTEL1-deficient peripheral 
blood mononuclear cell (PBMNC) of P4 after prolonged crude cell culture. Similar results were observed for P3 PBMNC (not shown).
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FigUre 6 | continued
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FigUre 6 | continued  
spontaneous chromosomal breakage and crosslink induced genomic instability. (a–D) Chromosomal aberrations in P1 fibroblasts exposed to 50 ng/ml 
mitomycin C (MMC), as indicated by arrows: (a) a multiradial and a triradial figure; (B) two atypical reunion figures as well as chromatid and chromosome breaks; 
(c,D) radial figures with chromatid breaks. (e) Spontaneous and MMC-induced G2 phase accumulation of RTEL1-deficient fibroblasts. Fibroblasts from healthy 
control (Ctrl) of Fanconi anemia patient (FA) run as controls. aDAPI stained cells from 48 h cultures w/o or w/10 ng/ml MMC; bone-tailed Student’s t-test, P1 or P3 
compared with normal controls. (F) G2 phase accumulation of RTEL1-deficient fibroblasts of P1, DAPI staining. Compared to an untreated healthy control (G1 
phase 72.5%, S phase 15.9%, G2 phase 11.6%), fibroblasts from P1 spontaneously show an elevated G2 phase proportion (G1 phase 72.8%, S phase 11.1%, G2 
phase 16.1%; left panels). Exposure to 10 ng/ml MMC increases G2 phase in P1 disproportionately (G1 phase 57.4%, S phase 9.5%, G2 phase 33.1%, arrow) 
compared to a control (G1 phase 69.6%, S phase 7.5%, G2 phase 22.9%). By contrast, 1.5 Gy irradiation reveals comparable G2 phase fractions (P1: 16.0%; 
control: 20.2%; right panels; DAPI staining). (g) Chromosomal break distributions of RTEL1-deficient fibroblasts of P1. Fibroblasts were left untreated or exposed to 
MMC for the last 24 h. Breakage rates amounted to 0.28 (0 MMC), 0.52 (10 ng/ml MMC), 2.71 (50 ng/ml MMC) or 4.72 (100 ng/ml MMC), respectively. These were 
elevated compared to normal control fibroblasts with breakage rates of 0.05 (0 MMC; normal mean, 0.02), 0.12 (50 ng/ml MMC; normal mean, 0.18), or 0.55 
(100 ng/ml MMC; normal mean, 0.36); the normal mean rate for 10 ng/ml is 0.06. Breakage rates of fibroblast P1 were more evenly distributed among all break 
classes and did not show the tendency toward metaphases with 10 or more breaks of FA fibroblasts at 100 ng/ml MMC.
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(Figure 6F). Without treatment, we observed metaphases with  
three and five breaks, rarely ever seen in normal controls 
(Figure  6G). Unexpectedly, repeated chromosomal breakage 
analysis performed on hematopoietic cells from our patients 
yielded normal results (Table 1).

impaired Proliferative capacity of B-cell 
Precursors and BM Derived cD34+ cells
We had the opportunity to investigate the B-cell distribution in 
BM and blood of P1 at age 22 months during an acute adenovirus 
infection and after clearance 3  months later (Figures  7A–C). 
During acute infection, we observed a differentiation arrest 
at the level of pre-BI-progenitors, resulting in the absence of 
pre-BII-progenitors and immature B-cells; and correspondingly 
very low numbers of peripheral B-cells (Figure 7B). After clear-
ance of infection all previously diminished B-cell populations 
normalized (Figure  7C). As the cellular immunity relies on 
continuous replenishment from hematopoietic stem cells (HSC), 
we additionally investigated the proliferative potential of primary 
RTEL1-deficient BM  cells. While total BM and CD34+ cells of 
P3 and P5 failed to expand in vitro, after prolonged culture the 
CD34+ population nearly disappeared (Figures 7D,E).

Unaffected V(D)J recombination and 
T-circle accumulation in rTel1 
Deficiency
The progressive B-cell lymphopenia is a frequent observation 
in the context of impaired somatic recombination, thus we also 
examined V(D)J recombination in RTEL1-deficient fibroblasts of 
P1. As depicted in Figure 8A, V(D)J recombination efficiency was 
unaffected and comparable to healthy controls. Based on recently 
published experimental data, RTEL1 has been proposed to dis-
mantle T-loops during replication thus preventing catastrophic 
cleavage of telomeres as a whole extra-chromosomal T-circle 
(27). Surprisingly, we did not detect elevated T-circle formation 
in any of our patients or carriers (in fibroblasts, BM and PB) 
using rolling circle amplification assay when compared to RTEL1 
null mouse cells and RTEL1-deficient human cells carrying the 
homozygous RTEL1Arg1264His-mutation (Figure 8B), thus suggest-
ing impaired T-loop disassembly may not be the only underlying 
cause of the disease.

hsc Transplantation corrects the 
immunological and hematological 
Phenotype of rTel1 Deficiency
Allogeneic HSCT was performed on P1 and P3 at 3.1 and 5.2 years, 
respectively. Both patients received non-manipulated BM after 
reduced intensity conditioning with fludarabine, thiotepa, and 
antithymocyte globulin. While P3 received BM from a 9/10 
MUD, P1 was transplanted from the 48 years old HLA-identical 
grandmother who was healthy and had RTL within normal range. 
At HSCT, RTEL1 deficiency was not yet identified in the family 
and we were unaware of the donor’s heterozygous state for the 
RTEL1Trp456Cys-mutation. Full donor chimerism was achieved 
from day +22 onward and remained stable. At last follow-up (day 
+1,530), P1 showed persisting hematological and immunological 
reconstitution. There were no signs of graft-versus-host-disease 
or chemotherapy-related toxicity. Chronic diarrhea improved 
with clearance of viral infections. Nonetheless, her esophageal 
stenosis persists over time and requires frequent dilatation to 
allow normal oral nutrition. Similar to other recently described 
DC patients P1 also developed multiple pulmonary arteriovenous 
malformations with need for continuous oxygen support (20). 
The course of HSCT in P3 was uneventful. Full donor chimerism 
was achieved from day +30 onward. At last follow-up at 2 years 
6  months post HSCT the patient was 7  years 8  months old, 
showed good developmental progress and normal hematological 
and immunological function. His oral leukoplakia showed mod-
erate progress but he did not show signs of esophageal stricture 
or other mucosal problems so far.

DiscUssiOn

Dyskeratosis congenita represents a genetically heterogeneous 
group of disorders characterized by telomere shortening leading 
to BMF and mucocutaneous symptoms (1). Patients with HHS 
phenotype additionally suffer from cerebellar hypoplasia and 
immunodeficiency resulting in profound susceptibility for early-
onset systemic infections (3, 5). The latter can often be difficult 
to distinguish from primary defects of lymphocyte development 
such as severe combined immunodeficiencies (SCID) (8, 49). 
Immunophenotyping revealed a T+B−NK− phenotype in P1–P5, 
which in the context of pancytopenia pointed toward an inherited 
BMF syndrome. The normal percentage of circulating naïve T-cells 
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FigUre 7 | impaired proliferative capacity of B-cell progenitors in vivo and cD34+ cells in vitro. (a) Normal ontogeny of B-cells in bone marrow (BM).  
B Prec, B-cell precursors; CLP, common lymphoid progenitor; HSC, hematopoietic stem cells; ImmB, Immature B-cells. (B) B-cell differentiation is markedly 
impaired in BM of P1 during severe adenovirus infection. CLP/ProB subsets are greatly reduced while B cell precursors are missing. (c) Between infectious intervals, 
all populations recover. (D,e) Total and CD34+ selected HSC from P3 and P5 fail to expand in non-differentiating culture. Ctrl, healthy control.
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suggested a regular thymic output in our patients. Furthermore, 
normal V(D)J recombination and lack of radiosensitivity argued 
against an initially assumed B−NK− SCID in index patient P1. ES 
of the index family identified homozygous mutation in the DNA-
helicase gene RTEL1 as the molecular cause of disease. Biallelic 
RTEL1 mutations had been identified as the molecular basis in a 
subset of patients with HHS (9–13). Overall, we found two novel 
homozygous missense mutations in P1–P4 and three novel trun-
cating mutations in P5 and P6. Homozygous mutations in our 
patients correlated with onset of symptoms within the first 3 years 
of life and faster disease dynamics. By contrast, in P5 with biallelic 

truncating mutations, relevant hematologic problems developed 
in the second decade of life and were apparently precipitated by 
an EBV infection. Finally, P6 with only one truncating mutation 
was identified following a work-up for thrombocytopenia and 
macrocytosis seen in a routine blood count prior to orthopedic 
surgery at 17 years of age.

By comparison, the reported mutational landscape for RTEL1 
deficiency shows a tendency of clustering at helicase domain 
2 and between/at harmonin 1 and 2 (Figure 2B). These muta-
tions, identified in 24 pedigrees with DC are mostly compound 
heterozygous and in the majority of those cases there is at least 
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FigUre 8 | Unaffected V(D)J recombination and T-circle formation. (a) V(D)J recombination rate in RTEL1-deficient fibroblasts of P1 is comparable to a 
healthy control. V(D)J-RAG2, RAG1 vector alone; V(D)J + RAG2, RAG1 and RAG2 vectors combined. (B) Phi29-dependent telomeric circle (T-circle) amplification 
assay. Top left: fibroblasts of P1 (p.Trp456Cys) and P3 (p.Ile425Thr) as compared to VA13 ALT cells (a human lung fibroblast cell line that maintains telomeres in the 
absence of telomerase and accumulates free TC). RTEL1-deficient mouse embryonic fibroblasts (MEFs) were used as positive controls and Rtel1−/− floxed (F/F) 
MEFs, and BJhTERT (hTERT immortalized human foreskin fibroblast cell line) as negative controls. Top right: TC accumulation in cells of a patient with a 
homozygous RTEL1 mutation p.Arg1264His (previously reported) in comparison to undetectable TC in P1 (p.Trp456Cys). Bottom: TC amplification assay in 
T-lymphoblasts of P1 and family members (GF, grandfather; GM, grandmother; F, father; M, mother; S, sister), healthy controls (Ctl), a patient with confirmed 
mutation in TERC, and P5 with a compound heterozygous RTEL1 mutation. T-lymphoblasts were expanded from total peripheral blood mononuclear cell using PHA 
(lanes 5–18) or anti-CD3/28 beads (lanes 19–24). Phi29, Phi29 DNA polymerase; Rtel1F/F, Rtel1 floxed MEFs before Cre-mediated excision of the Flox alleles; 
Rtel1−/−, Rtel1-deficient MEFs after Cre-mediated excision of the Flox alleles. Wt, wild type.
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one nonsense truncating mutation per case (similar to P5). The 
rare exception are homozygous RTEL1Phe964Leu and RTEL1Arg1264His-
mutations located at C-terminus (10, 13, 14). By contrast, 
homozygous RTEL1Ile425Thr and RTEL1Trp456Cys-mutations reported 
here reside closer to N-terminus, in between two functional heli-
case domains.

Based on the results from cellular and animal models, RTEL1 
is essential for DNA replication, and plays a key role in HR and 
telomere maintenance. In agreement with recent reports, we 
here show that very short telomeres in various primary tissues, 
and chromosomal breakage in fibroblasts represent the cellular 
phenotype of human RTEL1 deficiency (Table 4). It remains to be 
answered why the genomic instability is restricted to fibroblasts 

but not hematopoietic cells of RTEL1-deficient patients. One 
potential explanation might be the tissue-dependent expression 
of various RTEL1 isoforms with their specific functionality. 
Supporting this, we show that different isoforms are expressed 
at uneven levels in fibroblasts and hematopoietic cells. Our 
experimental findings on genomic instability reflect a DNA repair 
disorder of inter-strand crosslinks. The spontaneous G2 phase 
accumulation and chromosomal aberrations, and pronounced 
MMC-induced G2 phase arrest of RTEL1-deficient fibroblasts 
resemble the phenotype of Fanconi anemia fibroblasts of most 
subtypes. Thus far, genomic instability had not been considered a 
defining feature in DC, but notably, Dokal and colleagues previ-
ously reported spontaneous chromosomal rearrangements in 
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TaBle 4 | Phenotype of rTel1 deficiency in mouse and human.

Mouse human

Genetic background and disease severity Rtel−/− embryonic lethal •	 Compound heterozygous: DC/HHS (24 patients/18 families)
•	 Homozygous missense: p.Phe964Leu, p.Arg1264His mutations in DC/

HHS (4 patients/3 families), NK cell deficiency (1 patient)a

Rtel+/− no abnormalities •	 Heterozygous nonsense: hypocellular BMF, DC/HHSb (2 patients/1 
family), lung fibrosis (9 patients/6 families)

•	 Heterozygous missense: thus far only in DC-like disease (1 patient) and 
pulmonary fibrosis (14 patients/10 families)c

Radiosensitivity No: MEFs Rtel−/− No

Crosslinker sensitivity (MMC-induced) Yes: MEFs Rtel−/− Yes: fibroblasts
No: PB

Chromosomal instability (spontaneous) Yes: ES Rtel−/− Yes: fibroblasts
No: PB

Telomere shortening Yes: ES Rtel−/− Yes: fibroblasts and PB/bone marrow

BMF and immune deficiency n.a. (lethal) Yes: BMF and T+B−NK− phenotype

Cancer predisposition n.a. (lethal) Unknown, so far not reportedd

MEFs, mouse embryonic fibroblasts; ES, embryonic stem cells; MMC, mitomycin C; n.a., data not available; +/−, heterozygous; −/−, homozygous; DC, dyskeratosis congenita; 
HHS, Hoyeraal-Hreidarson syndrome; BMF, bone marrow failure; PB, peripheral blood.
aRecently, homozygous missense mutation, p.Arg1264His (14) was reported in a 23-month-old girl born with isolated natural killer cell deficiency.
bSo far, only one heterozygous nonsense mutation p.Arg986X (9) was reported in two brothers with severe DC and their healthy mother, in addition to P6 reported here.
cBallew et al. (13) reported a heterozygous mutation p.Ala621Thr (equals p.Ala645Thr in NM_032957 isoform) in a patient with BMF and short telomeres; Deng et al. (12) reported 
on a lung fibrosis in an otherwise healthy family member with heterozygous mutation (p.Met492Ile). Similarly, Newton et al. (21) and Kannengiesser et al. (22) reported pulmonary 
fibrosis in 11 patients in 5 families (mutations: p.Pro484Leu, p.Pro647Leu, p.Ser688Cys, p.His1124Pro, p.Tyr49Met, p.Arg213Trp, and p.Phe964Leu); Stuart et al. (23) also 
demonstrated three patients with pulmonary fibrosis and short telomeres harboring heterozygous missense variants p.Pro484Leu, p.Pro647Leu, and p.His1124Pro.
dSeveral studies demonstrated an association between RTEL1 rs2297440, rs6010620, and rs6062299 polymorphisms and the risk of glioma (53).
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DC-fibroblasts (50). Moreover mouse Rtel1−/− embryonic stem 
cells displayed many chromosome breaks and fusions upon dif-
ferentiation in vitro (Table 4) (51). Nevertheless, it is too early to 
speculate whether, in analogy to genomic instability syndromes, 
RTEL1 deficiency might be associated with an increased cancer 
predisposition manifesting later in life. Interestingly, the analysis 
of mice with deficient RTEL1–PCNA interaction revealed acceler-
ated onset of tumorigenesis in a p53−/− background (52). However, 
the clinical histories of all our families and the published data do 
not support the notion of increased tumor risk. Yet, it is rather 
difficult to assess cancer predisposition in patients succumbing 
early in life or when RTEL1 deficiency does not affect global 
genome integrity. Finally, it is evident that the clinical penetrance 
is higher and onset much earlier for immunodeficiency, and BMF 
as opposed to potential tumor susceptibility.

T-loop disassembly during replication has been reported as one 
of the chief functions of RTEL1 (10). This prevents catastrophic 
cleavage of telomeres as whole T-circles by the SLX4 complex, 
facilitating the physiological replication of telomeric repeats. 
Of note, T-circle accumulation was not observed in primary 
fibroblasts or T cells of our patients with mutations p.Trp456Cys, 
p.Ile425Thr, p.Pro884_Gln885ins53X13, and p.Cys1244ProfsX17 
unlike in recently reported patients with biallelic RTEL1 muta-
tions (homozygous p.Arg1264His; compound heterozygous 
p.Leu710Arg/p.Lys897Glu and p.del398_422/p.Arg957Trp) 
which exhibited substantial T-circle accumulation (10, 13). 
However, the results of our study are in line with observations 
made by Deng et  al. who also have not identified increased 
T-circle formation in patient cells with compound heterozygous 
mutations p.Met492Ile/p.Arg974X (12). In conclusion, it is 
possible that mutations abolishing the PIP-boxes and thus the 

RTEL1-PCNA interaction do not result in T-circle formation, as 
recently reported for the PIP-mutant mouse (12, 52). The muta-
tions characterized by us possibly do not affect regions necessary 
for T-loop disassembly and the suppression of telomere loss as a 
whole circle.

We demonstrate a marked vulnerability of RTEL1-deficient 
cells to replicative stress in vivo and in vitro. This is in analogy to 
findings revealing that RTEL1 is indispensable for replication by 
associating with the replisome and promoting normal genome 
replication (52). Systemic infections demand for a high replica-
tive turnover, which is markedly limited in RTEL1 deficiency. 
This is reflected by the insufficient B-cell lineage proliferation, 
as well as expansion incapability and premature apoptosis of 
CD34+ cells of our patients. It is expected that RTEL1-deficient 
HSC lose their self-renewal capacity due to impaired telomere 
replication and cell proliferation, ultimately resulting in pro-
liferative exhaustion of the HSC compartment and progressive 
BMF. Consequently, the numbers of B-cell precursors diminish 
over time, leading to hypogammaglobulinemia and loss of 
specific antibodies in some of our patients. Overall, the replica-
tive capacity seems to be severely limited even in the absence 
of infectious replicative stimuli. This notion is supported by the 
observation of premature senescence in fibroblasts and T-cells, 
in addition to the increased spontaneous apoptosis of RTEL1-
deficient MNCs in vitro—a mechanism which may expectedly 
result in a progressive loss of immune cells in vivo. Classic tests to 
evaluate for T-cell effector functions (i.e., short-term prolifera-
tion, degranulation, and effector cytokine production) delivered 
normal results in RTEL1-deficient patients. However, T-cells 
of heterozygous carriers demonstrated a significant telomere 
shortening upon mitogen-induced long-term proliferation while 
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homozygous cells die prematurely. We therefore assume that the 
observed susceptibility to viral disease in RTEL1 deficiency and 
likely in other DC-subtypes may be a consequence of T-cell 
exhaustion upon repeated proliferation stimuli triggered by 
infections. In addition, loss of effector T-cells due to BMF and/
or premature senescence as suggested in adult DC patients (49) 
may have further contributed to secondary T-cell deficiency in 
our patients.

Several observations indicate that although heterozygous 
RTEL1 mutations can facilitate telomere shortening, their patho-
genic effect can be compensated by the functional wild-type allele 
in vivo, as opposed to biallelic mutations which result in severe 
clinical phenotype. First, the missense heterozygotes described 
in our study were clinically healthy, had normal telomere length, 
and did not show signs of anticipation. Missense heterozygous 
RTEL1 mutations reported thus far did not result in DC pheno-
type despite telomere shortening in some of the carriers, with the 
exception of p.Ala621Thr in one patient with DC-like phenotype 
(Figure  2B; Table  4) as reported by Ballew et  al. (9). Notably, 
majority of the cases reported with solely heterozygous RTEL1 
mutations are found to be associated with telomeropathy-related 
lung fibrosis (21) and familial pulmonary fibrosis (22, 23) with 
no immunologic or hematologic phenotypes (Table 4). Second, 
favorable HSCT outcome with no signs of graft failure more than 
4 years after HSCT in P1, who was transplanted from a heterozy-
gous mutation carrier, suggests that certain missense RTEL1 
mutations in heterozygous state may not affect the HSC capacity. 
However, given the observation that the HSCT procedure itself 
results in telomere loss corresponding to telomere aging of 
roughly 15 years cautious long-term monitoring of engraftment 
is warranted in P1. It should be noted that transplantation from 
clinically silent heterozygous family member is generally not 
recommended in DC (54, 55).

The classical mucocutaneous triad pinpointing toward DC 
(leukoplakia, dystrophic nails, and reticular pigmentation) may 
be completely missing or only partially present even years after 
onset of BMF and immunodeficiency in RTEL1-deficient patients. 
Determination of telomere length could therefore be considered a 
first-line diagnostic procedure in early-onset immunodeficiency 
with T+B−NK− phenotype, particularly when associated with 
hypocellular BMF. Initially, BMF may only be transient and/or 
associated with systemic infections.

Therapeutic options are limited in RTEL1-deficient patients. 
Although androgens can fairly improve blood counts they 
do not ameliorate the infectious complications. While HSCT 
offers a potential cure for all BMF-associated symptoms, it also 
reveals a decision conflict in DC patients. Non-hematological 
complications (e.g., mucosal fragility and lung fibrosis) are not 
accessible and may be even aggravated by the procedure itself. 
However, HSCT can ultimately improve the clinical outcome and 
the quality of life and may therefore be considered in patients 
with life-threatening immunodeficiency and BMF. Whether 
HSCT prevents or increases the risks for tumorigenesis in RTEL1 
deficiency remains unanswered at present. Since chemotherapy-
related toxicity is excessive in DC independently of the genetic 
cause, it is obvious that reduced intensity preparative regimens 
are warranted. In our patients, genomic instability was observed in 

fibroblasts but not in hematopoietic cells. Nevertheless, alkylating 
DNA-crosslinking drugs such as busulfan, platins, nitrosoureas, 
and nitrogen mustards (i.e., cyclophosphamide, melphalan) might 
have to be considered with caution. Finally, we observe stable 
hematopoiesis without signs of replicative exhaustion in P1 after 
HSCT from a family donor with heterozygous RTEL1 missense 
mutation. Nevertheless, given the short follow-up observation of 
4 years, and in line with previous reports of unfavorable HSCT 
outcome in a situation with family donor who is DC mutation 
carrier, the present data are too limited to support HSCT from 
silent RTEL1 mutation carriers.
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