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Helminths have evolved to become experts at subverting immune surveillance. Through 
potent and persistent immune tempering, helminths can remain undetected in human 
tissues for decades. Redirecting the immunomodulating “talents” of helminths to treat 
inflammatory human diseases is receiving intensive interest. Here, we review therapies 
using live parasitic worms, worm secretions, and worm-derived synthetic molecules 
to treat autoimmune disease. We review helminth therapy in both mouse models and 
clinical trials and discuss what is known on mechanisms of action. We also highlight 
current progress in characterizing promising new immunomodulatory molecules found 
in excretory/secretory products of helminths and their potential use as immunotherapies 
for acute and chronic inflammatory diseases.
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iNTRODUCTiON

Helminths are large multicellular organisms that can be either free living or parasitic. Parasitic 
helminths comprise the phyla of roundworms (nematodes), flatworms (platyhelminths), tapeworms 
(cestodes), and flukes (trematodes) and have plagued humans and archaic humans for hundreds 
of thousands of years. Today, these parasites remain one of the most successful families of infec-
tious agents on the planet, infecting more than one and a half billion people (1). In humans, heavy 
infection with parasites can lead to many serious health problems and sometimes even death (2, 3). 
However, a small worm burden typically has limited or no pathology and has even been suggested 
to be commensal to the host (4).

ANCieNT CLOAKeRS

Individual hookworms can live in the human intestine for up to 18 years (5). To achieve this impres-
sive feat, the parasites effectively cloak through multipronged immunomodulation. The principal 
immune subsystem targeted is T cell surveillance (6, 7), which determines self from foreign antigens 
through a vast yet structured in vivo T cell receptor repertoire (8). Specifically, the parasites stimu-
late the release of IL-4, IL-5, IL-10, and IL-13, which promotes Th2 polarization (9, 10) (Figure 1). 
Regulatory T  cell (Treg) development is also stimulated during hookworm infection (11) that 
enhances the cloaking effect through the release of the regulatory cytokines IL-10 and transform-
ing growth factor (TGF) β (12). In addition, hookworms induce activation of parasite-specific and 
total immunoglobulin E (IgE) and the mobilization of the innate immune systems including mast 

http://www.frontiersin.org/Immunology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2017.00453&domain=pdf&date_stamp=2017-04-24
http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
https://doi.org/10.3389/fimmu.2017.00453
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:john.miles@jcu.edu.au
https://doi.org/10.3389/fimmu.2017.00453
http://www.frontiersin.org/Journal/10.3389/fimmu.2017.00453/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2017.00453/abstract
http://loop.frontiersin.org/people/430384
http://loop.frontiersin.org/people/195724
http://loop.frontiersin.org/people/222448
http://loop.frontiersin.org/people/47201


FigURe 1 | Helminth excretory/secretory (eS) products effect on host immune cells. Infection with parasitic worms causes the host immune system to 
polarize into a Th2 response (preventing Th1 or Th17 immune response) characterized by Th2 cytokines. Helminth ES products can cause the differentiation of 
macrophages toward the M2 phenotype, resulting in a Th2 immune response. ES products can also prevent dendritic cell synthesis of pro-inflammatory cytokines 
and promote the production of immunoregulatory molecules such as IL-10 and TGFβ. A regulatory T cell (Treg) phenotype is also induced, promoting the protection/
suppression of inflammation produced by a Th1 autoimmune disease. Myeloid-derived suppressor cells (MDSC) function as immunoregulators, producing reactive 
oxygen/nitrogen species that inhibit the function of T cells.
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cells, eosinophils, and basophils (13). Indeed, a recent large-scale 
community deworming study showed that helminths actively 
decrease immune responsiveness and modulate immune check-
point expression in infected individuals (14). The intrinsic talent 
of parasitic worms to skew the immune response from Th1 to 
Th2/Treg has led to the idea of using live worms as immuno-
therapy (helminthic therapy) or, preferably, seeking compounds 
in helminth secretions for use as immunomodulatory drugs. 
Indeed, helminthic therapy in animal models and human trials 
has provided convincing evidence that low-dose inoculation can 
treat a number of autoimmune diseases.

iNCReASiNg BURDeN OF AUTOiMMUNe 
DiSeASe

Autoimmunity is the failure of the immune system to distinguish 
pathogens from self-antigens resulting in damage to healthy 
tissue (15). Today more than 80 autoimmune diseases have 
been identified, including inflammatory bowel disease (IBD), 
multiple sclerosis (MS), rheumatoid arthritis (RA), and type 1 

diabetes (T1D) (16). Autoimmune diseases are now estimated 
to affect almost 10% of the world’s population and collectively 
represent truly massive global disease and financial burdens (17). 
Most autoimmune diseases have no cures and are not knowingly 
preventable. Disconcertingly, for several decades, the developed 
world has seen steady increasing incidence of autoimmune disease 
(18–21). While genetic predisposition is known to be a key factor 
in susceptibility (22), the sudden surge in these diseases over a 
very short time period cannot be explained by genetics alone, 
but rather points to variations in environment and/or lifestyle  
(23, 24). Two major theories have been put forward to explain 
this epidemiology including the “hygiene hypothesis” and the 
“old friends’ hypothesis” (25, 26).

DiRTY OLD FRieNDS

The hygiene hypothesis, formulated in 1989, proposed that lower 
intensities of infections during early childhood could explain the 
emergence of asthma and hay fever later in life (25). The study 
suggested that declining family size, improvements in house-
hold amenities, and increases in personal cleanliness reduced 
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opportunities for cross infections in young families, resulting in 
a more widespread clinical expression of atopic diseases. Over 
time, this theory has broadened to include a catalog of chronic 
inflammatory diseases. Indeed, urban migration, increased access 
to clean water, and improved sanitation have reduced exposure to 
many infectious agents including helminths (27). Multiple epi-
demiological studies have shown an inverse correlation between 
microorganism exposure and the development of autoimmunity 
(28–33).

Concordantly, the old friends’ hypothesis suggests that vari-
ous organisms, including helminths and microbiotas, have long 
coevolved with their mammalian hosts and act as inducers of 
immunoregulatory circuits (24, 34). This hypothesis has a sound 
rationale given that infectious agents, including helminths, 
are known to be potent modulators of T cell function and that 
dysregulation of T cell subsets (Th1 and Th17) are fundamental 
in autoimmune disease processes (35–37) including MS (38), 
RA (39), and psoriasis (40). Of note, an inverse association has 
been observed between the prevalence of certain helminths and 
autoimmune diseases (24).

ANiMAL MODeLS OF HeLMiNTH 
THeRAPY

Over the last decades, there have been numerous animal models 
used to study hookworm therapy for autoimmune disease (IBD, 
MS, RA, and T1D). Although these individual animal models 
do not fully reflect the pathology of human disease, the data 
obtained can be used for safety and at the very least predictive 
for therapeutic efficacy in humans. The following sections detail 
current animal models of helminth therapy and therapy with 
helminth-derived secretory products.

inflammatory Bowel Disease
Inflammatory bowel disease is characterized by a chronic relaps-
ing inflammatory condition of the gastrointestinal tract. IBD pri-
marily encompasses ulcerative colitis (UC) and Crohn’s disease 
(CD) (41). IBD pathogenesis is thought to involve dysregulation 
in mucosal immunity (42) and defects at the mucosal barrier, 
particularly a “leaky” intestinal epithelial barrier with impaired 
tight-junction formation can cause mucosal inflammation sec-
ondary to luminal antigen uptake (43, 44). While both diseases 
are forms of IBD, the autoimmune T cell responses exhibit differ-
ent biology (45). CD is driven by a Th1/Th17 response with large 
amounts of IFNγ, IL-12, and IL-23 playing key roles. In contrast, 
UC is considered a Th2-mediated disease, where increases in IL-5 
and IL-13 drive pathology through chronic inflammation (45).

Similar to CD, mouse models of experimental colitis trigger 
a Th1 type immune response, reflected by the infiltration of 
IFNγ-producing T cells in the colon (46). There are three types of 
animal models of IBD. These are broadly divided into (i) chemi-
cally induced models; (ii) models with experimentally altered 
immune responses; and (iii) models with intestinal epithelial 
defects (47). Chemically induced colitis models including the 
trinitrobenzene sulfonic acid (TNBS) model, dinitrobenzene 
sulfonic acid (DNBS) model, and dextran sodium sulfate (DSS) 

model are the most common platforms for IBD research. In 
the TNBS and DNBS models, colitis is induced via intrarectal 
instillation of the chemicals. In the DSS model, colitis is induced 
orally. Each model triggers a Th1 pro-inflammatory immune 
response within the intestine (48). A second broad model for 
IBD includes varieties of knockout mice (TGFβ1−/−, IL-10−/−, 
and STAT3−/−) that aid in the study of innate and adaptive 
immune responses during disease (49). These strains also allow 
for mechanistic investigations during acute or chronic enteritis. 
For instance; IL-10−/− mice develop spontaneous colitis that is 
characterized by histological findings similar to those of human 
IBD (50). The T cell transfer model has become one of the most 
widely used models to study pancolitis and chronic transmural 
inflammation in the intestine (49, 51). This method involves the 
adoptive transfer of naïve T cells (CD4+CD25−) into immuno-
compromised mice (52). Advantages of this method include 
early investigation of immunological events associated with the 
induction of gut inflammation and the ability to study the role of 
Tregs in inflammation. The final type of animal model of IBD is 
defective intestinal epithelial responses (53). Mouse models such 
as IKK-γ (NEMO), IKK-β, and mdr1a−/− develop spontaneous 
colitis due to compromised immunity at the epithelial cell wall. 
Many of these animal models of IBD show that colitis can be 
attenuated with prior exposure to different helminth species 
(54–59) (Table 1). Several of the parasites use the same immune 
regulatory mechanism, such as a Th2 polarization, which sup-
presses inflammation. These effects are commonly mediated 
through increases of cytokines including IL-4, IL-10, and IL-13 
production, as well as a decrease in the pro-inflammatory 
cytokines such as IFNγ and TNFα (Table 1).

Multiple Sclerosis
Characterized by neurodegeneration, MS leads to the severe 
impairment of mobility, vision, and coordination eventually 
resulting in paralysis (85). The primary cause of pathology is 
a misdirected immune response against the myelin sheath. 
Damage is mediated by immunoglobulin, complement, and 
T  cell immunity (86). Experimental autoimmune encepha-
lomyelitis (EAE) is a mouse model of MS characterized by a 
pro-inflammatory T  cell-mediated disease induced by priming 
with myelin proteins/peptides (87). CNS autoimmunity in both 
EAE and MS is mediated by Th1 and Th17 cells (88). Induction 
is thought to be dependent on the Th1 cytokine IL-12, playing a 
central role in macrophage activation and nitric oxide produc-
tion (89). Granulocyte-macrophage colony-stimulating factor 
(GM-CSF) and IL-1 are also considered key cytokines involved 
in the pathogenesis of EAE. GM-CSF is a key cytokine produced 
by T  cells required for susceptibility to EAE (90). IL-1β/IL-1R 
signaling in endothelial cells and leukocytes is critical for EAE 
development (91) and stimulates GM-CSF production. Together 
the cytokines interact to create a cycle of neuroinflammation 
in the CNS. Th2 cytokines appear to be protective, suggesting 
that Th skewing can prevent diseases or decrease disease sever-
ity. Akin to IBD, helminthic therapy in the EAE mouse model 
decreases the progression of EAE through the suppression of Th1 
and Th17 cells and induction of Th2 cells, Tregs, and regulatory 
macrophages (Table 1).

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


TABLe 1 | Helminth therapy in animal models of human autoimmune diseases.

Animal model Helminth species Outcomes Reference

inflammatory bowel disease
Trinitrobenzene sulfonic acid 
(TNBS)

Schistosoma mansoni Helminth infection attenuates TNBS-induced colitis via Th2 polarization.  
Mediated through increases in IL-4 and IL-10 and decreases in IFNγ

(54, 55)

TNBS Heligmosomoides polygyrus Helminth infection attenuates TNBS-induced colonic injury and  
inflammation via Th2 polarization. Mediated through increases in IL-4 and IL-13

(60)

TNBS S. cercariae Both infection with helminth and immunization with recombinant  
P28GST attenuates TNBS-induced colitis. Mediated through Th2  
polarization and modulation of eosinophil recruitment

(61)

TNBS Schistosoma japonicum Ova infection prevents TNBS-induced colitis via Th2 polarization.  
Mediated through increases in IL-4, IL-5, and IL-10 and decreases in IFNγ

(56, 62, 63)

Dextran sodium sulfate 
(DSS)

S. mansoni Helminth infection attenuates DSS-induced colitis. Egg injections are ineffective.  
Mediated through macrophage trafficking

(64)

DSS Anisakis simplex Therapeutic treatment with recombinant rAs-migration inhibitory factor  
protein attenuates DSS-induced colitis. Thought to be mediated through  
regulatory T cell (Treg) expansion and increases in IL-10

(65)

DSS Acanthocheilonema viteae Therapeutic treatment with recombinant cystatin protein attenuates  
DSS-induced colitis. Thought to be mediated via targeting and modulation of macrophages

(66)

Dinitrobenzene sulfonic acid 
(DNBS)

Trichinella spiralis Helminth infection reduced severity of DNBS-induced colonic damage.  
Mediated through increases in IL-4 and IL-13 and a decrease in IFNγ

(42)

DNBS Hymenolepis diminuta Helminth infection in WT and IL-22−/− mice attenuates DNBS-induced colitis. 
 An increase in the number of mucus-containing goblet cells in the  
small intestine was observed in WT but not IL-22−/− mice

(67)

NSAID Trichuris muris Helminth infection in Nod2−/− mice restored SI goblet cell numbers/morphology  
and decreased IFNγ-secreting CD8+ T cells in the intestine

(68)

TCT H. polygyrus Helminth infection in Rag mice attenuates TCT-induced colitis.  
Mediated through decreases in IL-12 and IFNγ and increases in IL-13 and Treg

(69)

TCT H. polygyrus Helminth infection in Rag mice attenuates TCT-induced colitis.  
Mediated through altered dendritic cell (DC) function in the mucosa

(57)

Multiple sclerosis
Experimental autoimmune 
encephalomyelitis (EAE)

S. mansoni Helminth infection attenuated the clinical course of EAE. Therapeutic  
exposure significantly delayed the development of symptoms.  
Mediated through an increase of IL-4 and decrease of pro-inflammatory cytokines

(70, 71)

EAE T. spiralis Helminth infection maintained Th2 immunity after EAE induction.  
Transfer of T cells from infected mice to EAE immunized mice  
amelioration disease and protected from disease

(72)

EAE Fasciola hepatica Helminth infection attenuated the clinical course of EAE.  
Mediated through migration interference of DCs, macrophages eosinophils,  
neutrophils and CD4+ T cells

(73)

EAE S. japonicum Helminth infection reduced inflammation and demyelination in spinal cords.  
Mediated through a Th2-biased microenvironment of low IFNγ and high  
IL-4 production in the spleen and CNS

(74)

Type 1 diabetes
Non-obese diabetic (NOD) S. mansoni Helminth infection or ova injection prevented disease if administered  

before the onset of pancreatic infiltration (<4 weeks of age).  
Mediated through a Th2-biased environment of increased IL-4, IL-5, IL-10, and IL-13

(75, 76)

NOD H. polygyrus Helminth infection protects animals from disease for <35 weeks.  
Thought to be mediated through Th2 skewing and modulation  
of IL-4 and IL-13 expression. Mechanism independent of IL-10 and CD4+/CD25+ T cells

(77, 78)

NOD T. spiralis Helminth infection protected animals from disease for <37 weeks. Thought to be  
mediated by increases in CD4+ cells and decreases in CD8+  
and NK cells in the pancreas. Th2 skewing noted

(77)

Diabetic retinopathy Ancylostoma caninum Transgenic mice expressing neutrophil inhibitory factor (NIF) are protected  
from diabetic retinopathy. NIF did not compromise normal immune  
surveillance but did result in large amounts of superoxide

(79)

Rheumatoid arthritis
CIA S. mansoni Helminth infection attenuates disease. Mediated through decreases  

in IFNγ, TNFα, and IL-17 and increases in IL-4 and IL-10
(80)

(Continued )
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Animal model Helminth species Outcomes Reference

CIA S. japonicum Helminth infection attenuates disease incidence and severity.  
Protection was infection stage dependent. Mediated through  
decreases in IFNγ and autoantibodies and increases in IL-4 and IL-10

(81)

CIA A. viteae Prophylactic and therapeutic admiration of an excretory/secretory (ES)-62 analog attenuates 
disease. Mediated through decrease in inflammasome  
activity and IL-1β at disease site

(82)

MRL/Lpr H. polygyrus Helminth infection attenuates incidence and severity of spontaneous disease.  
Mediated through increases in IL-4 and IgG1 and decreases  
in lymphocyte infiltration at disease site

(83)

Systemic lupus erythematosus
MRL/Lpr A. viteae Therapeutic administration of ES-62 analogs attenuates incidence  

and severity of disease. Mediated by reducing MyD88  
and IL-6 in kidney infiltrating macrophages

(84)

TABLe 1 | Continued
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Type 1 Diabetes
Type 1 diabetes is characterized by a progressive cellular infil-
tration of the pancreas resulting in the destruction of insulin-
producing cells (92). The non-obese diabetic (NOD) mouse 
provides a model of human disease through mimicking polyuria, 
glycosuria, weight loss, and lymphocytic infiltration of the islets 
of Langerhans (75, 93, 94). At 5 weeks of age, immune infiltration 
of the pancreas begins, ultimately ending in lymphocyte-directed 
destruction of β-cells (95). Pathology is dependent on CD4+ and 
CD8+ T cells, with the CD4+ population having a Th1 phenotype 
(96). Antigen-presenting cells including B  cells, dendritic cells 
(DCs), and macrophages are key mediators of disease through the 
presentation of self-antigens. Similar to the IBD and EAE models 
discussed above, helminthic therapy in the NOD mouse also trig-
gers Th2 skewing due to increases in IL-4 and IL-13 expression, 
ameliorating Th1-mediated disease (Table 1).

Rheumatoid Arthritis
Rheumatoid arthritis is characterized by chronic inflammation 
in the joints and overexpression of the cytokines TNFα, IL-1, and 
IL-6 (97). Pathogenesis involves both genetic predisposition and 
environmental trigger(s). A number of induced and spontaneous 
mouse models have been developed that recapitulate features of 
human disease (98). Both induced and spontaneous models of 
RA have been shown to benefit from helminthic therapy through 
decreasing inflammasome activity at the site of disease and the 
production of Th1 cytokines such as TNFα, while increasing IL-4 
and IgG1 production (Table 1).

CLiNiCAL TRiALS OF HeLMiNTHiC 
THeRAPY iN AUTOiMMUNe DiSeASe

inflammatory Bowel Disease
Ten clinical trials indicate that controlled, low-dose helminthic 
therapy is safe in IBD and related GIT diseases, with some trials 
showing statistically significant efficacy at endpoint (Table 2). In 
2003, an open-label phase 1 trial examined safety by exposing 
CD and UC patients to pig whipworm ova (99). Four patients 
with active CD and three patients with UC were given a single 
oral dose of live eggs. Patients were routinely monitored using 

multiple disease and quality of life indexes over a period of 
12  weeks. The trial found that all patients improved clinically 
without any adverse events. While patients improved for a mean 
duration of approximately 8  weeks, three patients experienced 
remission relapse 12 weeks after single helminthic therapy. The 
study suggested that multiple doses may be required to prolong 
the benefit of treatment. The study also found that there were no 
significant clinical complications when patients received multiple 
doses of live eggs at 3-week intervals for 30  weeks. The group 
followed up with a placebo-controlled trial of 54 UC patients. 
The pig whipworm arm received an oral dose of live ova at 
3-week intervals for 12 weeks (100). Again, whipworm therapy 
produced no adverse events. Between the treatment and placebo 
groups, statistically significant efficacy was observed at 12 weeks 
in two separate indices in post hoc analysis. One limitation of pig 
whipworm therapy is that humans are not the natural host and 
repeated dosing is required to maintain ongoing infection. In 
addition, given the larvae are invasive, site of infection is unpre-
dictable with potential migration into the lymphatics and/or 
small blood vessels (101). The problems of repeated inoculation 
and unpredictable migration motivated an alternative modality. 
In 2006, a proof-of-concept study explored human hookworm 
for the treatment of CD (102). While both hookworm and 
whipworm possess parasite lifecycles that require development 
in the external environment and therefore unable to prolifer-
ate directly in the host; the hookworm is adapted to survive in 
humans and establish a chronic infection that can last for years 
from a single inoculation. This makes human hookworm an 
attractive therapeutic, as a defined dose can be controlled and 
eliminated via anthelmintic therapy (103). CD patients with 
longstanding but mostly inactive disease were inoculated with 
25 or 50 live hookworm larvae in an initial and reinoculation 
trial. Disease index for CD patients was unchanged until week 17. 
After 20 weeks, clinical scores improved and five patients were in 
remission at week 45.

Two recent human hookworm clinical trials explored the safety 
and efficacy of hookworm therapy in celiac disease (104, 105). The 
first double-blind, placebo-controlled study inoculated patients 
twice with 15 live hookworm larvae followed by an aggressive oral 
gluten challenge after patient intestinal infection was established 
(105). Experimental infection proved to be safe but did not 
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TABLe 2 | Clinical trials using helminth therapy for the treatment of autoimmune diseases.

Trial/phase Species Treatment Status Results Reference

Celiac disease
NCT01661933 
Phase 1/2

Necator 
americanus

Larvae inoculation at weeks 0 (n = 10)  
and 4 (n = 10), followed by small,  
incremental gluten challenge in 12 subjects

Complete No serious adverse events. Ten  
subjects successfully completed  
low-dose gluten challenge

(104)

NCT00671138 
Phase 2

N. americanus Larvae inoculation at weeks 0 (n = 10)  
and 12 (n = 5) and placebo (n = 10).  
Twenty subjects challenged at 20 weeks  
with 16 g gluten orally per day for 5 days

Complete Transient enteritis in five subjects. 
Hookworm-infected mucosa retained 
healthy appearance. Infection resulted  
in no obvious benefit on pathology

(105)

NCT00671138 N. americanus Larvae inoculation at weeks 0 (n = 7) and  
12 (n = 7). Seven subjects challenged at  
20 weeks with 16 g gluten orally per day for 5 days

Complete No serious adverse events. Duodenal 
biopsies cultured with gluten antigen 
produced more IL-10 and IL-5 
postinfection

(106)

NCT02754609 
Phase 1

N. americanus Larvae inoculation at weeks 0 and 8 (n = 40).  
Placebo group included (n = 10)

Active

Ulcerative colitis (UC)
Phase 2 Trichuris suis Oral inoculation (2,500 ova) at 2-week intervals  

for 12 weeks (n = 30). Placebo group  
included (n = 24)

Complete Treatment cohort saw 43%  
improvement in disease index.  
No serious adverse events

(100)

NCT01433471 
Phase 1

T. suis Two arms. First arm, oral inoculation (2,500 ova)  
at 2-week intervals for 12 weeks followed by placebo  
for 12 weeks. Second arm, placebo for 12 weeks  
followed by oral inoculation (2,500 ova) at 2-weeks  
intervals for 12 weeks

Complete No study results posted

Crohn’s disease
Phase 1 T. suis Oral inoculation (2,500 ova) monitored over  

12 weeks in 7 patients (4× Crohn’s disease, 3× UC)
Complete Clinical improvements observed with no 

serious adverse events. Three patients 
experienced remission relapse 12 weeks 
after the initial dose

(99)

Phase 1 N. americanus Larvae inoculation at week 0 (n = 9).  
Reinoculation between weeks 27–30 (n = 5)

Complete No serious adverse events. Five  
patients from first inoculation were in 
remission at week 45

(102)

NCT01434693 
Phase 1

T. suis Sequential dose escalation (500, 2,500,  
and 7,500 ova) given orally (n = 27).  
Placebo group included (n = 9)

Complete Minor adverse events seen in both 
placebo and treatment groups. Infection 
resulted in no obvious benefit to  
pathology. Seven thousand five hundred 
ova dose was safe and well tolerated

(107)

NCT01576471 
Phase 2

T. suis Oral inoculation (7,500 ova) at 2-week  
intervals for 10 weeks. Placebo group included

Unknown Study results unknown

NCT01279577 
Phase 2

T. suis Oral inoculation (low, medium, and  
high-dose ova) with placebo group included

Complete Study results unknown

NCT02281916 
Phase 2

Schistosoma 
mansoni

Injections of P28GST protein (100 µg)  
at 1-month intervals for 3 months (n = 24)

Active

Multiple sclerosis
Clinical  
monitoring

Multiple  
species

Prospective clinical monitoring study  
of parasite-infected patients (n = 12)  
and non-infected patients (n = 12)

Complete Parasite-infected patients presented 
with fewer numbers of exacerbations. A 
significant increase in IL-10 and TGFβ  
and a decrease in IL-12 and IFNγ 
observed in self-reactive cells

(108)

Clinical  
monitoring

Multiple  
species

Prospective clinical monitoring study of parasite- 
infected patients with relapsing-remitting disease 
(n = 12). Four patients received antiparasitic  
treatment over the monitoring period

Complete After antiparasitic treatment, patients 
presented with increased numbers of 
exacerbations. This was met with a 
decrease in IL-10- and TGFβ-secreting 
cells

(109)

NCT00645749 
Phase 1

T. suis Oral inoculation (2,500 ova) at 2-week intervals for 
12 weeks (n = 5). Baseline versus treatment  
exploratory trial

Complete No serious adverse events. Increases  
in serum IL-4 and IL-10 during  
treatment. A trend decrease in disease 
index during treatment

(110)

NCT00645749 
Phase 2

T. suis Oral inoculation (2,500 ova) at 2-week intervals  
(n = 18)

Active, not 
recruiting

(Continued )
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Trial/phase Species Treatment Status Results Reference

NCT01006941 
Phase 2

T. suis Oral inoculation (2,500 ova) at 2-week intervals for 
12 weeks (n = 10)

Complete Well tolerated with only mild and self-
limiting adverse events. Infection resulted  
in no obvious benefit to pathology

(111)

NCT01470521 
Phase 2

N. americanus Single dermal inoculation (25 larvae) at week 0  
(n = 36). Placebo group included

Complete Study results unknown

NCT01413243 
Phase 2

T. suis Oral inoculation (2,500 ova) every 2 weeks for 
12 months. Placebo group included.  
Total study (n = 50)

Terminated Unknown

NCT00630383 
Phase 2

N. americanus Single dermal inoculation (25 larvae) at week 0.  
Placebo group included

Withdrawn 
prior to 
enrollment

Superceded by similar study

Psoriasis
NCT01836939 
Phase 1

T. suis Two arms. First arm, oral inoculation (2,500 ova) every 
2 weeks for 10 weeks. Second arm, oral inoculation 
(7,500 ova) every 2 weeks for 10 weeks. Total study 
(n = 8)

Complete Study results unknown

NCT01948271 
Phase 1

T. suis Oral inoculation (7,500 ova) every 2 weeks for  
14 weeks

Terminated Lack of efficacy

NCT02011269 
Phase 2

T. suis Three arms. First arm, oral inoculation (7,500 ova)  
every 2 weeks for 10 weeks. Second arm, oral 
inoculation (15,000 ova) every 2 weeks for 10 weeks. 
Third arm, placebo comparator

Withdrawn Unknown

Rheumatoid arthritis
EUCTR2011-
006344-71-DE 
Phase 1

T. suis Oral inoculation (2,500 ova) every 2 weeks for 24 weeks. 
Placebo group included. Total study (n = 50)

Prematurely 
ended

Study results unknown

Adapted and updated from Ref. (112). Information of clinical trials has been gathered from http://ClinicalTrials.gov and EU Clinical Trials registry available at the time of publication.
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result in clinical benefit following gluten challenge. Interestingly, 
follow-up immunological analysis found that hookworm infec-
tion altered cellular immunity (106), through decreasing basal 
levels of IFNγ and IL-17 in the intestine and altering CD4+ T cell 
immunity both in the intestine and, interestingly the circulatory 
system. The second study combined live hookworm larvae inocu-
lation (20 larvae per individual) with desensitization, specifically 
a sustained gluten microchallenge (104). Of note, no uninfected 
controls were used in the study. Escalating gluten challenges were 
well tolerated and resulted in stabilization or improvement across 
all tested indices of gluten toxicity. IFNγ-producing intestinal 
T  cells were observed to decrease, while Treg numbers in the 
epithelium increased significantly. Three human clinical trials 
for IBD that have been completed are yet to post study results 
(NCT01433471, NCT01576471, and NCT01279577) (Table  2). 
A larger phase 1b dose-ranging hookworm trial for celiac disease 
treatment is underway (NCT02754609) (Table 2).

Multiple Sclerosis
Six clinical trials in MS have been completed or are in progress for 
helminthic therapy (Table 2). In 2007, a prospective study of MS 
patients who were recently positive for parasitic infections (and 
negative for the 2 previous years) were followed over approxi-
mately 5 years via disease score and immunomonitoring (108). 
The study found significantly lower disease scores and lower 
numbers of disease exacerbations in helminth-infected patients. 
Compared with uninfected patients, myelin basic protein-specific 
T cells in the peripheral blood showed increased IL-10 and TGFβ 
production and decreased IL-12 and IFNγ production. Increased 

success of in  vitro cloning efficacy of Tregs was also noted in 
infected MS patients when compared with uninfected patients. 
A succeeding study followed the same relapsing–remitting MS 
patients with natural parasitic infections from the previous study 
for approximately 7 years (109). During the course of study, four 
MS patients received anthelmintic treatment due to worsen-
ing symptoms associated with infection. Posttreatment, there 
was a significant increase in disease score in these individuals 
accompanied by a permanent alteration of immune phenotype 
in the circulatory system (decreases in IFNγ-secreting cells and 
absolute Treg numbers). Asymptomatic, persistently infected 
patients maintained a significantly lower disease score across 
the monitoring period. It was speculated that helminths induce 
regulatory networks that could explain environment-related 
epidemiology of disease.

The first helminthic therapy trial for MS was published in 2011 
(110). Here, five MS patients were given repeated oral doses of pig 
whipworm for 12 weeks in a baseline versus treatment-controlled 
exploratory trial. Results revealed that helminthic therapy was 
well tolerated, and some favorable trends were observed in 
disease scoring. Increases in serum IL-4 and IL-10 levels were 
noted in four of the five patients. The second helminthic therapy 
trial for MS was published in 2015 (111). Here, 10 MS patients 
were given repeated oral doses of pig whipworm for 12 weeks. 
Treatment was well tolerated with only mild and self-limiting 
adverse events. However, no positive effect on disease activity was 
observed, and there was no alteration in the examined immune 
biomarkers in the peripheral blood. For both pig whipworm tri-
als, it is currently unknown if the relatively short infection period 
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of 12 weeks is sufficient time to initiate clinical efficacy. Several 
phase 1/2 clinical trials using pig whipworm or hookworm are 
currently recruiting or ongoing (Table 2). In addition to IBD and 
MS, two helminthic therapy trials have been conducted for the 
treatment of other autoimmune disease such as psoriasis and RA 
(Table 2). However, a number of trails for MS (NCT01413243 and 
NCT00630383), psoriasis (NCT01948271 and NCT02011269), 
and RA (EUCTR2011-006344-71-DE) have been terminated or 
withdrawn prior to enrollment due to supersession by another 
study, possessing a lack of efficacy or an unknown cause.

Helminthic therapy is not without controversy. Direct treat-
ment with living worms could cause pathology. Furthermore, the 
idea of being infected with a living parasite may be a difficult 
task for many patients. With these limitations in mind, immu-
nomodulatory proteins and peptides secreted by helminths have 
become a more attractive target for drug development. Here, the 
use of immunomodulatory drugs derived from helminth mol-
ecule “blueprints” would provide a safer and more controllable 
therapeutic modality.

iMMUNe MODULATiNg eXCReTORY 
SeCReTORY PRODUCTS

Excretory/secretory (ES) products are the primary interface 
between parasitic worms and their hosts (113). ES products 
contain a mixture of proteins, glycoproteins, and small molecular 
weight compounds that are secreted from the oral openings or 
outer body surfaces (114). ES products are essential for helminth 
survival/propagation, allowing the parasites to evade immune 
surveillance. While a number of studies have reported the ben-
efits of ES products in treating autoimmune diseases in mouse 
models, to date, only a few worm-derived immunomodulatory 
macromolecules and recombinant proteins have been character-
ized in depth. Likewise, ES proteins investigated to date represent 
only an infinitely small slice of the bioactive compounds found 
in the complex fluids of helminths. There have been multiple 
inventories of ES proteins generated from different types of 
parasitic worms including Fasciola hepatica (115), Trichinella 
spiralis (116), Haemonchus contortus (117), Brugia malayi (118), 
Teladorsagia circumcincta (119), Schistosoma mansoni (120), 
and Ancylostoma caninum (114). Many studies focus on higher 
molecular weight proteins (>5 kDa) (114), and there is a notable 
absence of research on lower MW products (1–5  kDa). Large-
scale sequencing projects have revealed the presence of peptides 
within the genome/transcriptome of Necator americanus and 
Ancylostoma ceylanicum (121–123). In particular, a group of 
peptides highly expressed in hookworm species exhibit sequence/
structural homology to the Stichodactyla helianthus toxin (ShK) 
family of peptides (referred to as ShKT domains).

excretory/Secretory-62
Excretory/secretory-62 is a phosphorylcholine (PC)-containing  
glycoprotein from the ES of the rodent nematode Acantho­
cheilonema viteae (124). ES-62 is known to inhibit the activation 
of B cells and T cells (125, 126) and has also been found to polarize 
antibody production through increased serum levels of IgG1 but 
not IgG2a (127). ES-62 affects B cells by stimulating the regulatory 

cytokine IL-10 and inducing a hyperresponsiveness to antigen 
(128). Due to its immunomodulatory potential, ES-62 was tested 
in an induced RA mouse model and was found to reduce disease 
severity and progression when administered following disease 
onset (129). ES-62 was also therapeutically effective in a mouse 
model of systemic lupus erythematosus (SLE) (84). Recently, two 
small synthetic molecule analogs, based on the active PC-moiety, 
have been shown to be effective in the mouse models of RA (82) 
and SLE (84).

Neutrophil inhibitory Factor (NiF)
Neutrophil inhibitory factor (NIF) is a glycoprotein from the ES 
of the canine hookworm A. caninum (130). NIF selectively binds 
the CD11b/CD18 complex, a pattern recognition receptor found 
on polymorphonuclear leukocytes. When activated, the complex 
plays an essential role in immune clearance through the facilita-
tion of neutrophil adhesion to the endothelium, transmigration 
across the epithelia and phagocytosis of opsonized targets (131). 
Binding of NIF to CD11b/CD18 antagonizes function (132), 
making the molecule a potential candidate for treating acute and 
destructive inflammatory processes such as cerebral ischemic 
injury. In a phase 2 safety study on acute stroke patients, NIF was 
well tolerated over a wide dose range (133). This led to a study 
in acute ischemic stroke patients where it was hypothesized that 
NIF may improve neurological recovery through inhibition of 
neutrophil migration. However, NIF did not show improved 
clinical outcome, and the study was terminated (133). Since then 
there has been a number of animal models demonstrating the 
potential benefits of NIF in acute inflammatory diseases such as 
allergic lung inflammation (134) and diabetic retinopathy (79). 
Interestingly, evidence of homologous NIF proteins has been 
reported in other parasites including F. hepatica (135).

Migration inhibitory Factor (MiF)
Macrophage migration inhibitory factor (MIF), a human cytokine 
homolog, is from the ES of human-tropic nematodes (136). 
Paradoxically, mammalian MIF is thought to be pro-inflammatory 
and involved in a number of inflammatory diseases including 
asthma, RA, IBD, and psoriasis (65). Two secretory MIF homologs 
have been identified in nematodes: MIF-1 and MIF-2, possessing 
40% and 27% identity with the mammalian protein, respectively 
(137). It has been shown that helminth-derived MIF interacts with 
the ubiquitously expressed antigen presentation protein CD74, 
suggesting a role in immunomodulation (138). Mammalian MIF 
has been found to influence macrophage migration, T cell activa-
tion (139), NK cell activation (140), and immunoglobulin synthe-
sis (141), leading to the amplification of inflammatory responses. 
In contrast, studies on MIF-2, isolated from the nematode Anisakis 
simplex, have shown amelioration of disease in a DSS-induced 
colitis model (65) and an allergic airway inflammation model 
(142). The effect is mediated through Treg induction.

Cystatins
Cystatins are a group of immunomodulatory proteins found in 
helminth ES products. Cystatins, along with stefins and kinino-
gens, belong to a superfamily of cysteine protease inhibitors found 
across metazoan and plant taxa. Cysteine protease inhibitors are 
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responsible for various biological and pathological processes 
including protein catabolism, antigen processing, and inflam-
mation (143). Helminth-derived cystatins have been described 
in many parasite species including Onchocerca volvulus (144), 
B. malayi (145), Nippostrongylus brasiliensis (146), and A. viteae 
(143). These proteins produced by helminths have been found to 
target monocytes/macrophages both in vivo and in vitro, trigger-
ing the release of IL-10 that suppresses inflammatory T cells (147, 
148). The cystatin from A. viteae was found to suppress both DSS-
induced colitis and allergic lung inflammation in mice (66). In a 
murine model of asthma, treatment with recombinant cystatin 
prevented Th2 development of disease. Compared with controls, 
treated mice has significantly reduced eosinophil recruitment, 
reduced numbers of autoimmune T  cells, reduced IL-4, and 
reduced total IgE. In a murine model of colitis, cystatin-treated 
mice showed significant decreases in inflammatory index and 
reduced epithelial damage compared to controls. The mechanism 
of action in both disease models was mediated by macrophages 
and IL-10 dependent. The immunomodulating effects of cystatins 
have also been examined in pig intestinal inflammation, where 
pigs treated with transgenic probiotic-secreting A. vitaea cys-
tatin possessed a significantly reduced inflammatory score and 
reduced infiltration of immune cells in the colon compared with 
controls (148).

Helminth Defense Molecules (HDMs)
Helminth defense molecules (HDMs) are a newly discovered 
family of secreted immunomodulatory proteins that share 
biochemical and structural characteristics with the mammalian 
“cathelicidin-like” host defense peptides (HDP) (149). HDPs are 
found in both the animal and plant kingdoms and play important 
roles in innate immune defense against parasites, fungi, bacteria, 
and viruses (150). HDMs within helminth ES are thought to 
minimize excessive inflammation, which helps the survival of 
the host and in turn survival of the parasite (151). FhHDM-1 
is a HDM secreted by the trematode F. hepatica that adopts an 
α-helical structure (151). FhHDM-1 binds LPS and inhibits inter-
action with TLRs on macrophages. The protein has been shown to 
protect mice from LPS-induced inflammation and, when mixed 
with LPS, significantly reduces TNFα and IL-1β levels in circula-
tion. Mechanistically, FhHDM-1 works by preventing NLRP3 
inflammasome activation in macrophages through inhibiting 
endolysosomal acidification (152).

P28gST
P28GST is a glutathione S-transferase secreted by the platyhel-
minth blood fluke S. mansoni (153). P28GST modulates mucosal 
immunity in mice and humans by increasing Th2 cytokine 
production (61). Encouragingly, immunization using a recom-
binant P28GST protein was as effective as helminthic therapy in 
reducing colitis in the TNBS model; however, a pro-Th2 adjuvant 
was essential for activity (61). P28GST treatment produced 
lower local and systemic levels of IL-5 and IL-13 and encouraged 
eosinophil trafficking, which was crucial for therapeutic effect. 
P28GST has already successfully undergone phase 1 clinical trials 
for safety and immunogenicity studies (NCT01512277) (154) and 
is currently in a phase 2 trial in CD (NCT02281916) (Table 2).

Anti-inflammatory Protein-2 (AiP-2)
Anti-inflammatory protein-2 (AIP-2) is derived from the ES of 
the canine hookworm A. caninum. Hookworm ES products have 
been shown to be protective in mouse models of colitis (58, 59, 
155). AIP-2 was found to be one of the most abundant proteins 
in the hookworm ES proteome (114), and it was recently dem-
onstrated that intranasal delivery of recombinant AIP-2 protein 
could suppress airway inflammation in a mouse model of asthma 
and suppress antigen-specific T cell proliferation in human sub-
jects allergic to house dust mite using in vitro stimulation (156). 
Mechanistic studies showed that AIP-2 is primarily captured by 
mesenteric DCs and that therapeutic effect was dependent on 
both DCs and Tregs. In contrast to P28GST, AIP-2 suppressed 
eosinophil infiltration into the lungs, the site of pathology.

TgFβ Pathway Manipulation
TGFβ is a potent regulatory cytokine important in lymphocyte 
and myeloid cell differentiation and function system (157). In 
particular, TGFβ is a key player in the induction of immunologi-
cal tolerance (158) and production can be influenced by several 
mechanisms of parasite infection, including host homeostasis, 
pathogen-triggered TGFβ production, and parasite mimicry 
(158). TGFβ homologs/orthologs/ligands have been character-
ized from several species of helminth including A. caninum 
(159), B. malayi (160, 161), F. hepatica (162), Heligmosomoides 
polygyrus (163), and the Schistosoma genus (164–166). In the 
gut, the induction of regulatory cytokines such as TGFβ is 
important in suppressing colitis. A study using transgenic 
mice with T cell-specific defects in TGFβ signaling developed 
spontaneous colitis (166). Here, infection with H. polygyrus 
did not prevent colitis or dampen mucosal Th1 responsiveness, 
indicating an essential role of T cell TGFβ signaling in regulating 
mucosal T cell responses.

Prostaglandin (Pg) Homologs
Prostaglandin E2 belongs to a family of autocrine and paracrine 
acting lipids, which in mammals are known to regulate many 
immune responses. Several reports have described that different 
helminth species including S. mansoni (167), T. taeniaeformis 
(168), and B. malayi (169, 170) produce PG homologs. A recent 
study identified a PGE2 homolog as a major component of 
Trichuris suis ES and suggests that secretion of this homeostatic 
factor contributes to protective potential in inflammatory dis-
eases (166). PGE2 directs the immunologic balance away from 
Th1 responses toward a Th2 type response by modulating DC 
polarization (171). PGE2 can also promote resolution of inflam-
mation and subsequent tissue repair (172) with evidence show-
ing regeneration of epithelial crypts after DSS intestinal injury  
(173, 174).

ShK
ShkT domains are relatively short peptides, 36–42 amino acids 
in length, containing 6 conserved cysteines and other conserved 
residues. ShKT domains adopt a fold with two almost perpen-
dicular stretches of helices that are linked by three disulfide bonds 
that stabilize the structure (175). ShKTs have been found in both 
the plant and animal kingdoms suggesting ancient origins (176); 
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however, the largest family of ShKTs are found in helminths 
(177). ShK from the sea anemone S. helianthus was one of the 
first immune modulating peptides discovered (178). ShK blocks 
the voltage-gated potassium channel Kv1.3 at low picomolar 
concentrations (179) by binding to a shallow vestibule at the outer 
entrance of the channel, which occludes entrance to the pore. 
Kv1.3 channels are expressed on the surface of human T  cells 
and are vital for activation by regulating membrane potential and 
calcium (Ca2+) signaling (180, 181). Kv1.3high IKCallow channel 
phenotype is found exclusively in activated human effect memory 
T cells (TEM), whereas naïve and central memory T cells (TCM) 
remain Kv1.3low upon activation. In MS, myelin-reactive T cells 
are predominantly TEM cells, exhibiting the Kv1.3high IKCallow phe-
notype after activation with myelin antigens. Therefore, selective 
inhibition of autoreactive TEM cells with disulfide rich Kv1.3 block-
ers could be a valuable new therapeutic lead for the treatment of 
MS (182). A phase 1 clinical trial was conducted to assess safety, 
tolerability, and pharmacokinetics of the ShK peptide in healthy 
volunteers (NCT02446340). Given a satisfactory safety profile, a 
phase Ib trial was recently conducted in psoriasis patients with 
results yet to be published (NCT02435342) (Table 2).

AcK1 and BmK1
A large family of ShK-related peptides have recently been discov-
ered in helminths, including two peptides known as AcK1 and 
BmK1 (177). AcK1 is a 51-residue peptide found in the ES of the 
hookworm A. caninum and the human pathogen A. ceylanicum. 
BmK1 is a C-terminal domain of a metalloprotease from the ES 
of B. malayi (176). Both peptides have been found to adopt heli-
cal structures that closely resemble ShK. To overcome problems 
in folding during de novo production, a truncated version of 
AcK1 (AcK1t) was designed lacking the first nine N-terminal 
residues, and an analog of BmK1 (BmK2) was designed based 
on the ShK-channel interaction surface, differing from the native 
peptide by five residues. Both analogs fold without difficulty, 
yielding a well-resolved, hydrophilic-eluting product. AcK1t and 
BmK2 were found to block Kv1.3 channels in the low-to-mid 
nanomolar range, while BmK1 was found to block the channel 
at low micromolar concentrations. AcK1t and BmK2 were found 
suppress mouse T cell proliferation in vitro and, in human T cells 
suppress mitogen stimulation. The results of these studies provide 
evidence that helminth peptides could potentially replace pro-
biotic worm-based therapies to treat TEM-mediated autoimmune 
diseases such as RA, MS, T1D, and psoriasis (183–185). This 
would avoid complications of live worm therapy, providing a safer 
and more controllable therapeutic for inflammatory diseases.

THe FUTURe OF HeLMiNTH-BASeD 
THeRAPieS

The potential for helminth-based therapies to treat autoimmune 
diseases have been demonstrated in animal models and clinical 
trials highlighted in this review. To date, the majority of clini-
cal trials treat patients with live helminths. Justifiably, there are 
concerns with this method, including the associated health risks 

of infection with a live pathogen. However, there is the large  
potential to harness the specific immunomodulatory ES proteins 
from helminths to develop more traditional “pill”-based treat-
ments. The synthetic production of ES-derived immunomodu-
lators would alleviate concerns associated with live infection, 
and they can be produced recombinantly in high quantities at 
relatively low cost (186). In addition, the molecules could be 
directly delivered to the site of pathology for diseases such as IBD 
using probiotic carries that secrete the drug (187). Large-scale 
technologies such as genomics, proteomics, and metabolomics 
have increased the rate of discovery of new helminth-derived 
immunomodulators from the genome, and there is little doubt 
many more candidates will be discovered in the coming years.

CONCLUSiON

With the accruing global burden of autoimmune disease, 
helminths have become of heightened scientific interest due to 
their ability to activate immunoregulatory circuits and control 
immunity. There is strong evidence in mouse models that hel-
minthic therapy, ES components, and helminth-derived synthetic 
molecules can treat and/or prevent inflammatory diseases such as 
IBD, T1D, MS, RA, and asthma. Thus far, human trials in celiac 
disease, UC, CD, MS, RA, and psoriasis have established that 
therapy is safe with some evidence of therapeutic effect. However, 
results in the first wave of human trials are not as striking as 
mouse disease models. Discordance in mouse/human translation 
is certainly not unique to this system, as is well known in other 
settings for a number of reasons (188). Of note, a number of the 
clinical studies conducted to date were not controlled, comprised 
small sample sizes, and/or did not use human-tropic helminths. 
Forthcoming trials will directly address these limitations. Going 
forward, the concurrent development of helminth-derived anti-
inflammatory molecules provides many novel opportunities for 
safer and more controllable therapeutics against chronic inflam-
matory diseases. Indeed, inclusive efforts in characterizing and 
mimicking the full immunomodulating abilities of helminths are 
only in their infancy and much potential exists in this space.
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