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Innate leukocytes manifest dynamic and distinct inflammatory responses upon chal-
lenges with rising dosages of pathogen-associated molecular pattern molecules such as 
lipopolysaccharide (LPS). To differentiate signal strengths, innate leukocytes may utilize 
distinct intracellular signaling circuitries modulated by adaptor molecules. Toll-interacting 
protein (Tollip) is one of the critical adaptor molecules potentially playing key roles in 
modulating the dynamic adaptation of innate leukocytes to varying dosages of external 
stimulants. While Tollip may serve as a negative regulator of nuclear factor κ of activated 
B  cells signaling pathway in cells challenged with higher dosages of LPS, it acts as 
a positive regulator for low-grade chronic inflammation in leukocytes programmed by 
subclinical low-dosages of LPS. This review aims to discuss recent progress in our 
understanding of complex innate leukocyte dynamics and its relevance in the pathogen-
esis of resolving versus non-resolving chronic inflammatory diseases.

Keywords: low-grade inflammation, toll-like receptor 4, toll-interacting protein, lipopolysaccharide, lysosome 
fusion, mitochondria

CURRenT KnOwLeDGe OF LOw-GRADe  
inFLAMMATiOn AnD LiMiTATiOnS

The innate immune system plays a pivotal role in the immediate recognition of pathogen-associated 
molecular patterns (PAMPs) through pattern recognition receptors (PRRs) and the subsequent 
induction of the inflammatory responses (1). Upon PAMP recognition, cell surface PRRs will activate 
intracellular adaptor molecules, protein kinases, and transcription factors (2). These molecules will 
trigger the subsequent inflammatory responses. The stimulation of PRRs and the signal transduction 
pathways associated with them ultimately result in gene expression of cytokines, chemokines, cell 
adhesion molecules, and immune receptors (3). This broad range of molecules together coordinates 
the complex responses of the host to infection and other inflammatory stimulants.

Among the germ line-encoded PRRs, the toll-like receptors (TLRs) play an intricate role in innate 
immune system regulation and the inflammatory response. These TLRs recognize a wide range of 
PAMPs such as viral components and invariant bacterial components. TLR7, TLR8, TLR9, and TLR3 
are located in the endolysosomal compartment and are responsible for detecting viral nucleic acids 

Abbreviations: C2, conserved 2 domain; CD, Crohn’s disease; CD14, cluster of differentiation 14; CUE, coupling of ubiquitin 
to ER degradation domain; IFN, interferon; IL-6, interleukin-6; IL-12, interleukin-12; I/R, ischemia–reperfusion; IRAK, 
interleukin-receptor-associated kinase; LPS, lipopolysaccharide; MAPK, mitogen-activated protein kinase; MD2, myeloid 
differentiation factor 2; NFκB, nuclear factor κ of activated B cells; PI3K, phosphatidylinositol-3-kinase; ROS, reactive oxygen 
species; TBD, Tom1-binding domain; TIR, toll/IL-1R homology; TGFβ, transforming growth factor β; TNFα, tumor necrosis 
factor α; Tollip, toll-interacting protein; TRAF6, tumor-necrosis-factor-receptor-associated factor 6; TRIF, TIR-domain-
containing adaptor protein inducing interferon-β; UC, ulcerative colitis.
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(4–8). By contrast, TLR2, TLR5, and toll-like receptor 4 (TLR4) 
detect different bacterial cell wall components and are localized on 
the cell surface. TLR7, TLR9, and TLR3 induce a robust type 1 
interferon (IFN) response, which is a key for antiviral defense 
(9). TLR9 not only recognizes viral components but also uniquely 
recognizes bacterial deoxycytidylate-phosphate-deoxyguanylate 
(CpG)-DNA from bacteria and hemozoin from plasmodium and 
induces an IFN response (10, 11). Alternatively, TLR2, TLR5, and 
TLR4 may preferentially induce pro-inflammatory cytokines, 
although TLR4 ligand can be more pleiotropic and induce both 
inflammatory cytokines and IFN responses (12, 13). Given the 
intriguing complexity of TLR4 responses, we have been focus-
ing on the dynamic modulation of TLR4 signaling networks. 
Lipopolysaccharide (LPS) is a ubiquitous surface component of 
Gram-negative bacteria and is recognized by innate immune cells 
through TLR4. It is well known that high dosages of bacterial 
endotoxin can induce a robust pro-inflammatory cytokine storm 
followed by a later refractory tolerant state with reduced cytokine 
expression (14). The cause of endotoxin tolerance is likely due 
to the induction of a multitude of negative regulators including 
IRAK-M, phosphatidylinositol-3-kinase (PI3K)/AKT, MKP-1, 
and SOCS (15).

However, an often-ignored effect of Gram-negative bacteria is 
low-grade non-resolving inflammation. Gram-negative bacteria 
occur naturally within the mucosal system, and shed endotoxin 
may permeate through leaky mucosal layers into circulation 
contributing to low-level endotoxemia (16, 17). In contrast to 
high doses of LPS, circulating concentrations of super-low-dose 
LPS (1–100 pg/mL) remain in humans with chronic infections, 
people with obesity, as well as individuals experiencing natural 
process of aging. It may also occur in individuals with life styles 
that include excessive drinking and chronic smoking (18–23). 
Low levels of endotoxin have been shown to cause persistent low-
grade inflammation that is characterized by chronic low levels of 
pro-inflammatory mediators (24–29). Subclinical endotoxemia 
may program the host to a state of low-grade non-resolving 
inflammation, subjecting the host to more severe diseases (14, 30).  
Despite increasingly recognition that host innate leukocytes 
cannot only recognize the nature and identity but also the signal 
strengths of external stimulants, mechanisms responsible for 
the signal-strength-dependent leukocyte activation are not well 
understood.

MOLeCULAR CiRCUiTRieS 
ReSPOnSiBLe FOR SiGnAL-STRenGTH-
DePenDenT innATe iMMUniTY 
ReSPOnSeS

As mentioned above, studies conducted with varying dosages of 
LPS led to the concept of innate immune programming dynam-
ics and memory (31). Although extensive studies have revealed 
a large array of intracellular signaling molecules responsible for 
innate immune cell responses to LPS, their context-dependent 
modulations in response to varying dosages of LPS have just 
gotten attention. TLR4 is expressed on the surface of both 
hematopoietic and non-hematopoietic cells (32, 33). Like most 

surface receptors, TLR4 contains both an extracellular domain 
and an intracellular domain that has a highly regulated signaling 
cascade that follows activation. Though TLR4 is important for 
LPS recognition is has been shown that TLR4 alone may not be 
sufficient to elicit an inflammatory response. Myeloid differentia-
tion factor 2 (MD2) must have physical association with TLR4 in 
order to induce ligand activation (34). In addition, together with 
lipid-binding protein, cluster of differentiation 14 (CD14) as well 
as CD11b also play critical roles in LPS sensing by TLR4. CD14 
serves as a chaperone to recruit LPS to the TLR4–MD2 complex 
and is required for macropinocytosis in BMDM and DCs (35). 
CD11b may modulate LPS-induced signaling through both 
MyD88-dependent and -independent pathways (36). Through 
yet to be determined mechanisms, LPS interaction with the TLR4 
complex may trigger the differential recruitment of downstream 
adaptor proteins such as toll/IL-1R homology, MyD88, TRAF, 
TIR-domain-containing adaptor protein inducing interferon-β 
(TRIF), and TRAM (37).

Through the engagement of TLR4 receptor and possibly 
other less-defined coreceptors, varying dosages of LPS may 
selectively activate distinct intracellular adaptor molecules such 
as TIRAP, TRAM, MyD88, TRIF, SARM, and toll-interacting 
protein (Tollip) (38), through poorly defined dynamics. MyD88 
has been widely implicated in the robust responses of innate 
leukocytes to high doses of LPS (39). Recruitment of MyD88 
stimulates the phosphorylation of IL-1R-associated kinases 
(IRAKs). The pathway will then signal and activate many down-
stream molecules, which in turn phosphorylate and activate 
mitogen-activated protein kinases and IκB kinase complex, 
which leads to the activation of key transcription factors, 
nuclear factor κ of activated B cells (NFκB), and AP-1, as well 
as robust expression of pro-inflammatory cytokines (37). NFκB 
activation also induces the expression of inhibitor molecules 
such as IRAK-M, Tollip, IκB, and SOCS. With particular inter-
est, Tollip may inhibit TLR4 signaling by binding to IRAK-1 at 
resting state, thus reducing the cellular inflammatory response 
(40). MyD88 pathway may also activate PI3K pathway that 
further contribute to the induction of negative regulators of 
inflammatory processes (39, 41). Collectively, these negative 
regulators serve as negative feedback mechanisms to induce 
endotoxin tolerance.

By sharp contrast, super-low-dose LPS does not induce 
robust activation of NFκB, and only mildly induce low-grade 
inflammatory responses (42). Super-low-dose LPS also fails 
to induce the expression of negative regulators, thus allowing 
the non-resolving low-grade inflammation to persist (43). 
Under such non-resolving inflammatory process, our recent 
study reveals that MyD88 is not the primary adaptor molecule 
being utilized in the signaling process. Rather, TRAM/TRIF 
and Tollip may step in and serve to propagate the low-grade 
inflammatory process (44). Tollip-deficient macrophages 
have reduced expression of pro-inflammatory cytokines only 
when challenged with a super-low-dose LPS signal (44, 45). 
These findings suggest that Tollip serves as a positive signal to 
propagate low-grade inflammation. This is in contrast to the 
inhibitory effect of Tollip on high-dose LPS induced strong 
NFκB activation and cytokine storm.
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FiGURe 1 | illustration of distinct domains of toll-interacting protein, 
relevant binding partners, and potential functions.

FiGURe 2 | Potential roles and modulations of toll-interacting protein (Tollip) in acute and chronic inflammation. Under strong and acute inflammatory 
conditions, cell membrane-localized Tollip serves as a negative inhibitor for nuclear factor κ of activated B cells (NFκB) signaling pathway, facilitates the resolution of 
inflammation, and clearance of cellular debris as well as excessive lipids. However, under low-grade inflammatory conditions, Tollip undergoes translocation from 
cellular membrane to mitochondria. Dislocated Tollip loses its homeostatic function, fails to facilitate lysosome fusion. Instead, mitochondrial Tollip may facilitate 
non-resolving low-grade inflammation.
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TOLLiP STRUCTURe AnD SUBCeLLULAR 
LOCALiZATiOn

At the structural level, Tollip has three distinct domains with the 
Tom1-binding domain (TBD), the conserved 2 domain (C2), and 
the coupling of ubiquitin to ER degradation (CUE) domain as seen 
in Figure  1 (46). The Tollip TBD is involved in protein sorting 
via association with target of Myb protein (TOM1), clathrin, and 
ubiquitin during early endosomal interactions (47). The TBD was 
recently shown to be disordered in its native state, but upon bind-
ing to the Tom1 GAT domain the structure composed of the first 
22 amino acids becomes better organized. The C2 domain is found 
in over 100 different proteins and is approximately 130 residues 
in size. The C2 domain has been shown to bind to phospholipids 
in both a calcium-dependent and -independent manner (48). In 
proteins, such as synaptotagmin, calcium binding will not induce 
a confirmation change, but will affect the electrostatic potential 
that augment phospholipid binding (48). This suggests that the C2 
domain functions primarily through electrostatic activation. As 
previously discussed, the C2 domain of Tollip has been shown to 
bind specifically to phospholipids and shows a broad preference for 

phosphoinositides, thus enabling Tollip localization with cellular 
membranes rich in phospholipid such as cell membrane, endo-
some, and lysosome (49–52). The ability of Tollip C2 domain to 
interact with PI(3)P was recently shown to be drastically dimin-
ished when the Tollip TBD binds with the Tom1 GAT domain. This 
study reveals that Tollip association with Tom1 may affect the PI(3)P 
binding of Tollip as well as its localization to endosome/lysosome 
(53, 54). The CUE domain is typically a much smaller domain of 
approximately 40 residues and performs a variety of functions, 
such as protein sorting and interacting with ubiquitinated proteins. 
The CUE domain is very similar to the ubiquitin-binding UBA 
domain, which contains a three-helix bundle. The CUE domain 
contains a conserved MFP and LL motif in the α-helix1 and 
α-helix3, respectively (55). These two motifs are well known for 
interacting with the hydrophobic patch of ubiquitin (55). When 
stimulated with high doses of LPS, Tollip may aggregate at cellular 
and/or lysosome membranes with IL-R1 and TLR4, contributing 
to the inhibition of TLR4-mediated immune response via the CUE 
domain. Tollip also negatively regulates IRAK-1 and IRAK-2 by 
directly binding to these proteins via the CUE domain and inhibiting 
auto-phosphorylation (40) (Figure 2).

On the other hand, Tollip translocate to mitochondria in cells 
challenged with super-low-dose LPS (52). When the CUE domain 
is mutated at its MFP motif, causing an inability to interact with 
ubiquitinated proteins, the Tollip CUE domain mutant fails to 
translocate to mitochondria and remains at endosome–lysosome 
(52). The molecular mechanisms for Tollip translocation are not 
clear. Structural analyses suggest that ubiquitin binding via Tollip 
CUE domain may reduce its interaction with phospholipids (56). 
Since phospholipids are primarily localized at cell membrane, 
endosome, lysosome, and Golgi, but not on mitochondria (57), 
enhanced ubiquitin interaction and reduced phospholipid bind-
ing of Tollip may be responsible for its translocation of Tollip from 
lysosome membrane to mitochondria. These molecular and cellu-
lar studies suggest that Tollip may play distinct roles in modulating 
inflammation through its differential subcellular localization.
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LYSOSOMAL TOLLiP AnD iTS  
POTenTiAL ROLe in ReSOLUTiOn  
OF inFLAMMATiOn

Toll-interacting protein may associate with cell membrane and/
or other intracellular membrane structures such as endosomes,  
lysosomes, and Golgi, due to its affinity with phosphoinositide 
through its C2 domain. Tollip has been shown through kinetic studies 
to reversibly bind to PtdIns3P (phosphatidylinositol 3-phosphate) 
and PtdIns(4,5)P2 (phosphatidylinositol 4,5-bisphosphate), with 
low micromolar affinity (51). Through its phospholipid interaction, 
Tollip may fulfill its homeostatic role by inhibiting IRAK-mediated 
robust NFκB signaling and cytokine storm under acute and severe 
inflammatory conditions (58). Indeed, Tollip was shown to be criti-
cally important during the development of endotoxin tolerance, by 
suppressing the robust NFκB pathway and preventing cytokine 
storm (58). Tollip-deficient cells or mice fail to develop endotoxin 
tolerance when challenged with higher dose LPS (59).

Furthermore, PtdIns(4,5)P2 has been shown to be necessary for 
vacuole fusion and it has been speculated that PtdIns(4,5)P2 plays 
a direct role in membrane fusion by binding and recruiting specific 
molecules to the vacuoles being fused (60). PtdIns3P has also been 
shown to play an important modulatory role in autophagy (61). 
By interacting with these lipids, Tollip may fulfill its role in the 
fusion of the endosome/autophagosome with the lysosome (52). 
Proper fusion of autolysosome may enable efficient clearance of 
cellular stress molecules and restore cellular homeostasis (62). 
Lysosomes are not only critical for autophagy completion but also 
serve as major signaling platforms for innate immunity signaling 
by recruiting key signaling molecules such as MAVs and STATs 
(63). Tollip may serve as a negative regulator to dampen innate 
stress signaling processes at the lysosome platform (Figure 1).

MiTOCHOnDRiAL TOLLiP AnD iTS  
ROLe in LOw-GRADe inFLAMMATiOn

Under low-grade inflammatory conditions, however, Tollip was 
shown to be cleared away from lysosome, thus compromising 
its homeostatic function (52). By sharp contrast, Tollip trans-
locates to mitochondria through its CUE domain interaction 
upon stimulation with super-low doses of LPS. Mitochondrial 
Tollip, instead, is an important facilitator for the generation of 
mitochondrial reactive oxygen species (ROS), which drives the 
expression of pro-inflammatory mediators through the activa-
tion of selected transcription factors such as C/EBPδ (42, 64). 
Tollip-deficient macrophages have been shown to be unable to 
induce mitochondrial ROS (43). Along with ROS reduction in 
Tollip-deficient cells, there have also been reports of significantly 
decreased interleukin-6 and tumor necrosis factor α (TNFα) in 
Tollip-deficient cells (43, 45). Under low-grade chronic inflam-
matory conditions, Tollip-deficient mice have reduced levels of 
pro-inflammatory cytokines such as TNFα, interleukin-12, and 
elevated levels of anti-inflammatory cytokines such as transform-
ing growth factor β (TGFβ) (65). Potentially due to its transloca-
tion away from lysosome, Tollip-deficient cells also express higher 
levels of IFN-induced genes. Together, these studies suggest that 

the mitochondria localization of Tollip may play an important 
role in the low-grade inflammatory response of innate leukocytes.

TOLLiP invOLveMenT in DiSeASe

Translational studies with both animal models and human clini-
cal studies in the recent years have yielded compelling data that 
support the role of Tollip in inflammatory diseases. For example, 
Tollip expression has been found to be significantly increased in 
ischemia–reperfusion (I/R)-challenged brain tissue of humans, 
rats, and mice in vivo (66). In this study, it was also discovered 
that Tollip-deficient mice are protected against acute I/R injury 
by reducing neuronal apoptosis through decreased expression 
of pro-inflammatory and pro-apoptotic genes, while increasing 
anti-apoptotic genes (66).

Recent genetic and mechanistic studies also reveal that 
Tollip is involved in the pathogenesis of gut mucosal inflam-
matory syndromes such as inflammatory bowel disease (IBD), 
Crohn’s disease (CD), and ulcerative colitis (UC) (59, 67–69). 
These syndromes may be results of altered microbiome as well 
as altered mucosal immune environment. TLR4 expression is 
significantly increased in IBD, while Tollip expression is signifi-
cantly decreased in both active and inactive UC and CD (59, 69). 
We recently reported that Tollip-deficient mice suffer from more 
severe chemically induced acute colitis with unabated expression 
of pro-inflammatory cytokines (59).

Genetic variants in human TOLLIP gene have been associated 
with idiopathic pulmonary fibrosis (IPF) (70). IPF is a devastating 
disease and is characterized by an interstitial fibrotic process and 
high mortality, which has an unknown etiology. Although lung 
transplant may hold treatment potential, the immunosuppression 
associated with transplant therapies may cause severe side effects 
(71). There were three TOLLIP single nucleotide polymorphisms 
(rs111521887, rs5743894, rs5743890) identified in the genome-
wide association study that were associated with protection 
against IPF. TOLLIP expression was decreased by 20% in patients 
carrying the rs5743890 allele. This allele showed protection from 
development of IPF, but once IPF was developed the patients had 
higher mortality rates (70). The other two variants, rs111521887 
and rs5743894, showed decreased TOLLIP expression by 40 and 
50%, respectively. Another SNP in TOLLIP, rs3750920, was also 
linked with IPF (72). This SNP was associated with decreased 
Tollip expression. Cell samples from patients with the rs3750920 
SNP exhibit reduced TLR4 signaling activation when challenged 
with N-acetylcysteine (72). In addition to IPF, genetic variants in 
human TOLLIP, rs3168046 and rs3793965, have been associated 
with lung transplant primary graft dysfunction (PGD). These 
mutations increase the risk of PGD, which once again exemplifies 
the importance of Tollip in the regulation of inflammation and 
disease (73). It is likely that similar to IPF, decreased Tollip levels 
may contribute to increased expression of pro-inflammatory 
cytokines and subsequent graft rejection.

In a recent study from our group, we observed that Tollip-
deficient mice tend to develop larger yet stable atherosclerotic 
plaques with increased lipid deposition as well as increased plaque 
content of smooth muscle cells and collagen (65). We reported that 
the increased lipid deposition may be due to disrupted lysosome 
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fusion and compromised lipophagy due to Tollip deficiency (65). 
On the other hand, Tollip-deficient mice have reduced circulating 
levels of pro-inflammatory cytokines such as TNFα, and increased 
levels of anti-inflammatory TGFβ. This may explain the stable 
atherosclerosis phenotype with increased smooth muscle cells 
and collagen. Together, these data reveal compound phenotypes 
associate with Tollip variants and deficiency, and further suggest 

that Tollip may play pleiotropic roles in a context-dependent 
fashion as we discussed in this review.
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