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This is a call to encourage the search for a new vaccine to stop the progression of 
Mycobacterium tuberculosis infection to tuberculosis (TB) disease. TB is a highly dis-
creet and stigmatized disease, with a massive impact on human health. It has killed 
1.2 billion people in the last 200 years and still kills 1.5 million people per year. Over 
the last 20 years, the TB vaccine field has experienced spectacular developments, and 
we have learned about (1) the importance of the Th1 response in controlling infection, 
mainly against RD1 and Ag85 antigens; (2) the stability of the antigenic repertoire;  
(3) the dynamics of M. tuberculosis granulomas; or (4) the link between typical and atyp-
ical pulmonary TB and the immune status of the host. However, we still do not (1) know 
how to avoid M. tuberculosis infection and reinfection; (2) understand the major role of 
the increase in lesion size in progression from infection to disease; (3) the role of inter-
lobular septa in encapsulating pulmonary lesions; or (4) the role of neutrophilic infiltration 
and an exaggerated inflammatory response in the development of TB disease. These 
are strong reasons to pursue new, imaginative proposals involving both the antibody 
response and a balanced, tolerant immune response that averts progression toward TB. 
So far, the scientific mindset has been quite monolithic and has mainly focused on the 
stimulation of conventional T cells. But this approach has failed. For that reason, we are 
seeking unconventional perspectives to find a “pink swan,” a more efficacious and safer 
vaccine candidate.

Keywords: Mycobacterium tuberculosis, bacillus Calmette–Guerin vaccine, pink swan, dynamic hypothesis, 
Mycobacterium tuberculosis tolerance, damage theory

TUBeRCULOSiS CONTROL: A FAiLeD PROPHeCY

Discovery consists of seeing what everybody has seen, and thinking what nobody has 
thought—Albert Szent-György.

In 1993, the WHO declared tuberculosis (TB) a global emergency. The old, optimistic prophecy 
that had predicted its eradication by the year 2000 did not materialize. This enthusiasm was mainly 
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due to the short-term chemotherapy developed in the 1980s. 
Alongside relatively inefficient case detection, the problem 
was the relative nature of the “short-term” concept, meaning 
6 months and the fact that treatment required the administration 
of at least three different chemotherapeutic drugs. This approach 
needed a certain level of organizational support, such as the 
Directly Observed Therapy (DOTS) strategy that was not always 
achieved, for various reasons, and which, together with a lack of 
patient compliance due to the lengthy, cumbersome treatments, 
led to the generation of multidrug resistant strains (1), with some 
Mycobacterium tuberculosis sublineages being more prone to 
developing resistance than others (2). The irruption of the HIV 
epidemic also had a substantial impact on the induction of new 
TB cases. Finally, the increase in human mobility around the 
planet has linked high-incidence areas with low-incidence ones, 
while growing urbanization, with the inherent rise in crowding, 
has done the rest (3).

One aggravating problem is TB’s insidious nature, not only 
due to the clinical course of the disease but also because of the 
stigma linked to TB that leads patients and their families to hiding 
it (4). In consequence, social awareness of the magnitude of the 
problem of TB diminishes, leading to a reduction in the invest-
ments needed to defeat it.

Another reason for TB’s elusiveness is that infection is totally 
asymptomatic and harmless and does usually not progress toward 
disease. Hence, in TB, it is very important to distinguish between 
infection and disease. Infection is caused by the inhalation of 
aerosols with M. tuberculosis, which reach the alveolar space 
and infect alveolar macrophages. Nevertheless, this infection 
only causes disease in a minority of cases, and the risk decreases 
exponentially over time, being the highest (80%) during the first 
2 years after challenge (5). This is why there are no “explosive” TB 
epidemics over short-time periods, decreasing its visibility and 
reducing stakeholders’ and politicians’ interest in it. To tackle TB, 
short-term interventions and short-term solutions are far from 
being the answer.

Tuberculosis is the most underestimated major killer of 
humankind. TB has caused 1.2 billion deaths over the last 
200 years. Even nowadays, in the twenty-first century, TB caused 
1.5 million deaths and 9 million new cases, 480,000 of which 
were MDR-TB, in 2016 (6). Most importantly, a third of these are 
not even detected, a proportion that reaches 50% in some areas, 
especially in Asia and Africa (6).

THe QUeST FOR A New vACCiNe 
AGAiNST TB

Immediately after the declaration of the global emergency, the 
idea of having a more efficacious TB vaccine became a major 
goal. The Bacillus Calmette–Guerin (BCG) vaccine has been 
available since 1927. It is the world’s most widely used vaccine 
and has been administered massively to neonates, with over 3 
billion vaccinations performed so far (7). BCG can avoid the 
development of quickly progressing, deadly forms of the disease 
such as meningitis and disseminated (miliary) TB, but it neither 
avoids infection nor lung disease. In addition, BCG revaccination 

of teenagers, at a time when the effect of the first administration 
has dissipated, does not offer any additional protection to the 
population (8).

The enormous effort made over the last 20 years, seeking for 
a new vaccine based on a conventional T cell response, appears 
to have been of limited value. For that reason, the idea of search-
ing for a “pink swan” is spreading in the TB field. It is inspired 
by the concept of “black swan,” used in the field of economics 
by N.N. Taleb referring to an unpredictable event with massive, 
ground-breaking consequences. The “pink swan” illustrates a 
fresh, unconventional approach, driven by a currently unknown 
mechanism that will bring us a new, more efficacious and safer 
vaccine (9).

what we Have Learned So Far
The Th1 Cellular Immune Response:  
The Mouse Model
The reappraisal of TB vaccine development in the 1990s coincided 
with the availability of new, powerful tools for cellular immune 
analysis, like the flow cytometer, and the technology needed to 
generate knockout (KO) mice. Thanks to this, the paramount 
role of IFN-γ in the control of M. tuberculosis infection was soon 
demonstrated. IFN-γ-KO mice were the ones with the lowest 
survival ratio (10).

The experimental mouse model gained a lot of relevance and 
became the first gateway for every new candidate for vaccine 
development, while BCG became the positive gold standard. 
Mice vaccinated with BCG showed a reduction of around 0.7 logs 
in colony-forming units in the lung 3 weeks after challenge, when 
the highest bacillary load was reached. This was determined in 
inbred, immunocompetent mice, usually C57BL/6 (11).

It led to a search for vaccines able to induce a Th1 response 
against M. tuberculosis antigens. In fact, all vaccines currently 
in clinical trials were selected on the basis of their capacity to 
induce Th1 biased CD4 T cells and, to a lesser extent, on CD8 
T cell responses (12). Nevertheless, it soon became evident that 
M. tuberculosis infection could, in itself, induce a protective Th1 
immune response, at least as effective as the one induced by 
BCG vaccination. This prompted the need to look for candidates 
able to induce “something else” to ensure protection against  
M. tuberculosis infection (13).

This “something else” could be multifunctional T cells. These 
cells have a prolonged memory and effector potential and can 
produce not only IFN-γ but also IL-2 and TNF-α, reinforcing 
the surveillance against M. tuberculosis. The protective effect of 
these cells was described in the Leishmania model, where their 
presence was linked to a significant reduction in the number of 
lesions and amastigotes (14).

Unfortunately, in the majority of cases, the presence of these 
cells did not appear to make a difference in TB disease develop-
ment between protected and non-protected subjects (15). They 
can be considered a marker determining the presence of long-
lasting memory cells, but this does not mean that they have to be 
protective. There are still several authors delving into this issue. 
Recently, it has been found that multifunctional cells specific for 
DosR and Rfp antigens can be linked to protection after using a 
long-term culture assay (16).
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FiGURe 1 | Dynamic hypothesis of Mycobacterium tuberculosis 
infection. Bacilli contained in an aerosol droplet of endogenous or 
exogenous origin (1) enter the alveolar space, infect it, and grow inside the 
alveolar macrophage (2). After necrotizing it, the bacilli infect neighboring 
alveolar macrophages and grow again, unleashing an inflammatory response 
that allows for the entry of monocytes and neutrophils in the lesions, and the 
drainage of bacilli via the lymphatic vessels (3). Once in the lymph node, the 
bacilli antigens are presented and a Th1 response is generated, resulting in 
the proliferation of specific effector lymphocytes that enter the systemic 
circulation toward the right heart. They reach the lung and are attracted to 
the infected lesions thanks to local chemokine production (4). The 
lymphocytes activate the infected macrophages, which kill most intracellular 
bacilli. A percentage of the bacilli become dormant and survive inside the 
necrotic tissue or the phagosomes of the macrophages (4a). Macrophages 
age and fill with lipid inclusions, turning into foamy macrophages, and are 
drained with the alveolar fluid toward the bronchial tree (6) entering the 
esophagus and reaching the gastrointestinal system where they are finally 
expelled from the body (7). Some of these foamy macrophages are destroyed 
on the way toward the pharynx, liberating the bacilli that become part of the 
aerosols and can reenter the lung again (1). This cycle is interrupted with the 
encapsulation and calcification of the granuloma, due to the action of the 
interlobular septa (5), or when neutrophils are attracted to the lesion, initially 
around the infected foamy macrophages, progressing toward a large degree 
of infiltration and cavitation (4b).
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Antigenic Discovery: The RD1-Encoded Antigen and 
the Ag85 Complex Proteins
At the beginning of the 1990s, two groups of M. tuberculosis 
antigens, the ones triggering the greatest Th1 response, gained 
great relevance. As dead bacilli were not able to induce a pro-
tective response in the mouse model, attention was turned to 
the proteins secreted by active growing bacilli (17). It was soon 
determined that there were two groups of proteins capable of 
triggering the greatest Th1 response. These were, on the one 
hand, the RD1-encoded antigens, mostly linked to the produc-
tion of ESAT-6 and its secretion via its carrier: CFP-10. ESAT-6 
is responsible for inducing the lysis of host cell phagosomes, thus 
being a paramount virulence factor (18). On the other hand, the 
Ag85 complex, which has a major role in the construction of the 
cell wall via its mycolyltransferase activity (19).

The Genomic Sequence
Mycobacterium tuberculosis sequencing is one of the milestones in 
the field of TB research. It has allowed a better comprehension of 
the physiology of M. tuberculosis and its regulatory mechanisms 
against stress (20). It has also been a key to a better understanding 
of the origin and evolution of the species as well as the charac-
terization of the different geographical families, linked in turn to 
the evolution of humankind (21). Interestingly, sequencing has 
also shown the extraordinary stability of the antigenic repertoire 
and the immune response against this repertoire, which does not 
vary according to the different families defined (22).

Granuloma Dynamics
Twenty years ago, there was the tendency to consider granulomas 
as a sort of “bunker” where bacilli were kept enclosed. Currently, 
intravital imaging offers the possibility of obtaining real-time 
videos of the organization of these structures, showing their 
dynamics, with a constant movement of cells entering and leav-
ing BCG-induced granulomas (23). In addition, the discovery of 
the formation of foamy macrophages in the granuloma and their 
drainage, infected with dormant bacilli, toward the bronchioles, 
explained the continuous reinfection and the constant growth 
of pulmonary infiltration in the murine model, while the bacil-
lary concentration remained stable (24–26). This observation 
led to the “dynamic hypothesis” concept, based on the constant 
drainage from the granulomas (27). This process is driven by old 
macrophages that, after phagocyting the cellular debris of the 
intragranulomatous necrosis together with the mixed dormant 
bacilli, become foamy macrophages and are drained with the 
alveolar fluid via the mucociliary escalator. Thus, the majority of 
dormant bacilli are drained toward the gastrointestinal tract, but 
there is a small proportion that, after the destruction of foamy 
macrophages in the bronchi, infect the internal aerosols, enabling 
pulmonary reinfection (Figure  1). Recent data using positron 
emission tomography in the experimental non-human primate 
model (28) and in the evaluation of TB treatment in humans  
(29) have demonstrated this endogenous reinfection process.

This phenomenon is the basis for at least two well-known 
practices: TB diagnosis in children, by looking for bacilli in 
stomach aspirates, even when open lesions are lacking (30), and 
the current latent tuberculosis infection (LTBI) treatment. The 

latter is based on the administration of isoniazid for 9 months 
(31). This drug is only active against growing bacilli. So how can 
it display efficacy killing dormant bacilli, which are responsible 
for LTBI? The answer is that dormant bacilli are eliminated via 
the physiological drain, and what isoniazid does is avoid reinfec-
tion caused by infected internal aerosols. Overall, the complete 
drainage of LTBI lesions takes around 9 months, demonstrating 
the dynamic nature of granulomas (27).

The Relevance of Primary and Postprimary TB
Along with the massive chest X-ray surveillance programmes 
after the Second World War (32) came the concept of primary 
TB: the disease developed in childhood, spontaneously healed, 
and calcified and thus easily seen on an X-ray. Generally, primary 
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TB showed a pattern with a nodule in the lower lobes and lymph 
node calcification. Postprimary (adult) disease was character-
ized by the presence of infiltration with or without cavitation in 
the upper lobe, without affecting the lymph nodes. It was then 
speculated that postprimary TB was the consequence of the 
reactivation of a secondary seeding of Mycobacteria that escaped 
via the blood circulation from the primary lesions in the lower 
lobe during childhood. This theory (the “Unitary Concept”) also 
considered that, once infected, subjects were always infected and 
protected against external reinfection (33).

The analysis of the relationship between recently acquired 
and remotely acquired pulmonary TB, clinical and demographic 
variables, and radiographic features by using molecular finger-
printing and conventional epidemiology has proven that adults 
can develop upper lobe infiltration—cavitation as a consequence 
of a recent infection and that the radiological pattern is related 
to the immune status of the patient and not to the time lapse 
after infection (34). Radiologically speaking, today, we define two 
patterns: the atypical one, when the lower lobes plus the lymph 
nodes are affected, which is seen in immunosuppressed persons, 
and the typical pattern, observed in immunocompetent persons 
who display upper lobe infiltration without the lymph nodes 
being affected.

what we Have Missed
M. tuberculosis Can Always Infect and Reinfect Us, 
Regardless of Our Immune Status
So far, up to 13 vaccine candidates are already in the clinical pipe-
line (35). None of them have ever proven the capacity to avoid M. 
tuberculosis infection (36). Such a demonstration would represent 
the greatest scientific achievement in the twenty-first century. But 
it will not happen.

Mycobacterium tuberculosis infection takes place in the 
alveolar macrophage. This cell specializes in keeping the alveoli 
clean and is constantly infected. Fortunately, this cell does not 
recruit help from the immune system every time it is infected, 
otherwise our lungs would be constantly inflamed and the gas 
exchange function seriously hampered. The special anatomy of 
the alveolar space also has to be considered. Alveoli are sealed 
from the bloodstream to preserve the correct surface tension and 
avoid their collapse. Therefore, the presence of antibodies in this 
space is impossible, and an antibody-based immune response 
cannot avoid infection (37).

Moreover, the growth of M. tuberculosis is quite peculiar. It is 
slow, with a doubling time of around 24 h, and it blocks the mac-
rophage apoptosis mechanism (38). This means that the bacilli can 
benefit from the internal milieu of the macrophage for growing 
until they cause its necrosis. As the maximum capacity of a human 
alveolar macrophage is around 60 bacilli, necrosis after infection 
by only 1 bacillus takes place around 6 days after its phagocytosis 
(39). Once the first macrophage has been destroyed, the bacilli 
infect the neighbor alveoli, aided by the constant movement of 
the lung, and the process starts all over again. However, after the 
destruction of several macrophages, there is enough chemokine 
production to induce an inflammatory response, drain the bacilli, 
and trigger the immune response in the lymph node.

This immune response is based on the proliferation of specific 
Th1 lymphocytes in the lymph node. It can happen quicker if 
there are already specific memory lymphocytes but, in any case, 
those cells have to locate the lesion, and they will be attracted 
to it only if a big enough inflammatory response is generated 
(40, 41).

All in all, this means that alveolar macrophages can be con-
tinually infected, even when specific effector lymphocytes are 
available, because they require a local inflammatory response 
strong enough to attract them (42).

In this regard, it is well known that the higher the TB incidence 
in a region, the higher the reinfection rate its inhabitants suffer 
and the greater the chance of TB induction (43). This is a very 
important point. Traditionally, disease induction caused by 
reactivation has been overemphasized to the point that vaccine 
efficacy is only tested against one challenge. High-incidence areas 
need a vaccine able to offer protection against multiple reinfec-
tions. This is obvious. In fact, it is probably the most important 
reason why BCG does not work in several geographic areas 
(42), and there is a simple explanation. As mentioned earlier,  
M. tuberculosis infection itself induces a protective immune 
response equal to the one elicited by BCG (13). Therefore, 
BCG vaccination only provides an advantage against the initial  
M. tuberculosis infection, by eliciting a faster immune response. 
However, in the context of several reinfections, there is no such 
advantage, as reinfection itself induces the immune boost, so 
there is no advantage of being BCG vaccinated. Of course other 
factors might also play a role, like coinfection with parasites 
(44) or environmental mycobacteria (45), together with indi-
vidual genetic susceptibility (46). On the contrary, what seems 
to be unrelated is the varying virulence exhibited by specific  
M. tuberculosis strains (47).

Size Matters: The Role of Interlobular Septa
Standard medical practice for TB diagnosis entails the tuberculin 
skin test or the interferon gamma release assay to determine if 
a person is infected with M. tuberculosis. In case of positivity, 
the next step is a chest X-ray to look for lesions in the lungs. TB 
lesions can be distinguished in the lung with this technique once 
they reach a diameter of 10 mm (48).

Traditionally, when attempting to illustrate the progression 
from infection to disease, the size of TB lesions in both cases was 
shown to be the same (49); only the bacillary bulk harbored in 
each of them varied. This could be anecdotal, but it has certainly 
influenced many researchers.

Looking at the progression of lesions in large mammals, infec-
tion lesions are not bigger than the ones we see in mice, around 
0.5–1 mm at the time the immune response appears, 3 weeks after 
challenge (25). The major difference is that large mammal’s lungs 
are structured in cubes of around 1 cm3 surrounded by a collagen 
bag, the interlobular septum. These septa make up a net that 
conveys the forces induced by the movement of the diaphragm 
to inflate the lung, without tearing the delicate structure of the 
parenchyma designed for gas exchange (50). Fibroblasts in the 
septa can detect tiny lesions in the parenchyma, even those with 
a diameter of less than 1 mm. Once detected, they encapsulate 
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FiGURe 3 | Size matters in progression toward tuberculosis (TB).  
(A) Disease development as it is usually represented in publications.  
The only difference shown is that, in the lesion corresponding to disease, 
there is a higher bacillary concentration. (B) A more realistic approach. The 
TB disease lesion is exudative, with a predominance of neutrophilic infiltration 
together with massive necrosis, and it is much larger than the infected lesion. 
It must be taken into account that lesions need to be at least 10 mm in 
diameter to be visible on a chest X-ray and that infection lesions measure 
between 0.5 and 2 mm.

FiGURe 2 | encapsulation process of Mycobacterium tuberculosis 
lesions. (A–D) Interlobular septa are represented in green. Once the lesion  
is contacted, the encapsulation process starts surrounding it. The capsule 
completely envelops the lesion and aids the organization of miofibroblasts 
that stabilize the lesion. Non-drained necrotic tissue finally becomes calcified. 
Data are obtained from Gil et al. (51).
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them within 1–2  weeks, as has been demonstrated in the TB 
experimental model in minipigs (51) (Figure 2).

The size of lesions in disease should be depicted at least 10 
times larger than the infected ones, to aid understanding of the 
process (Figure 3). In fact, one of the most important questions 
when addressing the issue of the progression from infection to 
disease should be how can a lesion of less than 1 mm become 
a 10  mm one. Especially taking into account the special cir-
cumstances found in the human lung, where the encapsulation 
process is so efficient.

Precisely why the encapsulation process has merited so 
little interest in the TB field should be questioned, seeing how 
important it is for interrupting bacillary drainage, ensuring the 
infection remains latent, and avoiding progression from infection 
to disease.

Neutrophils Are Key to Disease Development
Neutrophils are cells associated with acute infectious disease, 
mainly by extracellular pathogens (52), and linked to explosive 
inflammatory reactions that develop over the course of hours and 
usually end with the destruction of the infiltrated tissue, which 
fills with apoptotic or necrotic neutrophils, producing pus.

Mycobacterium tuberculosis is a slowly growing intracellular 
pathogen. This is the reason why, for a long time, and especially 
over the last 20 years, the role of neutrophils in TB has not been 
considered. This is clearly illustrated by the virtual models that 
have been built: neutrophils are not even mentioned (53).

Looking at the TB murine model, the authors have observed 
the presence of neutrophils during the acute phase, inducing tiny 
infiltrates, and have even related their presence to the presenta-
tion of antigens to the lymph nodes, but mainly as a limited 
phenomenon. This limited role is observed in all inbred mice but 
one: the C3HeB/FeJ. Ten years ago, it was observed that C3HeB/

FeJ mice infected with M. tuberculosis surprisingly developed 
massive intragranulomatous necrosis (54). Further research was 
conducted to ascertain if this necrosis was linked to liquefaction, 
in which case, the model could be considered a “human-like” TB 
disease model. Consequently, the evolution of the lesions was 
carefully followed. The results showed how the size of the lesions 
increased rapidly, in a matter of days, thanks to peripheral growth 
linked to infected foamy macrophages heavily surrounded by 
neutrophils. From these original lesions, new ones appeared, 
and they all coalesced to induce massive lesions (55). This pro-
cess illustrated how a lesion of less than 1 mm could become a 
10 mm one, avoiding the encapsulation processes seen in large 
mammals. The process takes place in around 10 days (Figure 4).  
A parallelism can be drawn with the way soap bubbles are formed, 
and this has aided its modeling, becoming known as the “bubble 
model” (56).

At the beginning of the twentieth century, authors demon-
strated that TB patients present two kinds of lesions: proliferative 
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FiGURe 4 | evolution toward active tuberculosis (TB). (A) The process toward a neutrophilic infiltrated lesion favors the induction of new lesions and their rapid 
growth; this leads to lesion coalescence and the induction of an active TB lesion. On the contrary, (B) shows a well-controlled lesion, without neutrophilic infiltration, 
which hardly induces new lesions and soon becomes encapsulated, blocking the induction of active TB.
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and exudative. The former are well structured and controlled, 
based on the presence of epithelioid cells and lymphocytes, like 
the ones developed by infected mice. The latter are mainly infil-
trated with neutrophils and related to the expansion of the lesions 
and the induction of cavitation and liquefaction (57). A recent 
review on human pathology run in parallel by Hunter, searching 
through a wider selection of authors, has led to the same conclu-
sion (58). In addition, the role of neutrophils has recently been 
reinforced by the data obtained from a search for a biosignature 
for TB progression (59, 60).

Tuberculosis tropism in the upper lobes can be also explained 
by neutrophilic infiltration. Upper lobes tend to mobilize less 
than the lower ones, simply because that is the region where the 
lungs “hang,” while the lower region is more directly influenced 
by the diaphragmatic contraction. The lack of mobilization in 
the upper lobes causes lower blood circulation and lower gas 
exchange, leading to an increase in oxygen pressure that had 
traditionally and erroneously been linked to higher bacillary 
growth (61). What is relevant about the lack of mobilization in 
the upper lobes is that bacilli tend to accumulate locally after the 
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FiGURe 5 | Differences in local drainage determine the nature of the 
lesion. (A) The necrosis of an alveolar macrophage releases intracellular 
bacilli. The rate of bacilli drainage follows the breathing amplitude of the lobe, 
which is lower in the upper lobes, resulting in lower bacillary drainage (B). 
As a result, new incoming macrophages must face higher bacillary 
concentrations that, once the inflammatory response is triggered, cause a 
predominance of neutrophilic infiltration and the induction of neutrophilic 
extracellular traps that favor extracellular bacillary growth. This is the perfect 
scenario for the protective role of circulating antibodies, which can neutralize 
the bacilli and reduce the inflammatory response, controlling progression 
toward TB disease. (B1) The progression without antibodies. (B2) The 
control achieved by the presence of neutralizing antibodies. On the contrary, 
the larger breathing amplitude in the lower lobes causes significant bacillary 
dissemination, so macrophages face lower bacillary loads, favoring a less 
inflammatory lesion dominated by macrophages (C).

FiGURe 6 | Relationship between the volume of a cavity and the 
whole-body mass of a host. Several laboratory animals plus humans are 
represented, comparing their mass with that of a cavitation. This is to 
illustrate the fact that in mice they would hardly develop, because they would 
disappear. Unable to eliminate the bacillary load, the majority of mouse 
strains (except C3Heb/FeJ) tolerate the presence of a constant, relatively 
high bacillary concentration in their lobes, controlling the induction of an 
excessive inflammatory response.
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destruction of alveolar macrophages. This accumulation means 
that new, incoming macrophages have to phagocyte higher bacil-
lary concentrations than in the lower lobes. This in turn causes 
more necrosis and the attraction of neutrophils that lead to the 
rapid increase in the size of the lesion (Figure 5). This fact also 
induces a Th17 immune response that stabilizes the neutrophilic 
infiltration at that site (62).

In this regard, it must be assumed that some genetic poly-
morphism must determine a more intensive reaction to this 
challenge, thus explaining why certain families were more 
prone to suffer TB than others. Unfortunately, precisely which 
polymorphism promotes this exaggerated inflammatory 
response has not been yet clarified, but it would certainly signify 
a valuable improvement in the field.

The Role of Antibodies in Progression toward 
Disease
The presence of antibodies does not offer protection against  
M. tuberculosis infection, because they cannot enter the alveolar 
space. However, the study of progression of infection in C3HeB/
FeJ mice has demonstrated that neutrophilic infiltration builds 
neutrophilic extracellular traps that favor the extracellular growth 
of bacilli (63). In this phase, the presence of antibodies might 
certainly help to stop the progression of the lesion (Figure  5), 
enabling the encapsulation process and avoiding progression 
toward disease.

Several authors have proven the protective effect of anti-
bodies. The article that reflects this process best investigated 
the protective effect of passive transference of M. tuberculosis-
specific antibodies in a model of TB reactivation in SCID mice. 
The results clearly showed a protective effect, with a threefold 

reduction in lung infiltration and a 2-log reduction in pulmonary  
bacillary load (64).

Unfortunately, there is little information on the protective 
role of antibodies in humans. Only two projects have linked 
their level to disease prognosis: the case of antibodies against 
lipoarabinomannan and against the 38-kDa antigen, while the 
presence of IgG against Ag85A has been related to a reduced risk 
of developing TB disease in a case–control study in infants (65). 
Recently, an antibody-related signature has been identified for 
latent-infected or active TB patients, where glycosylation plays 
a key role (66).

Should We Tolerate M. tuberculosis?
Why do a minority of patients infected by M. tuberculosis develop 
TB disease? As Figure 6 shows, mice will never develop lesions 
of the same magnitude as humans. The difference resides in the 
fact that although both bacilli and host cells have the same size; 
humans have a higher number of cells so, potentially, a certain 
amount of tissue can be destroyed without hampering our health 
status, at least more than in the case of mice.

Traditionally, mice have been considered “resistant” to  
M. tuberculosis infection because they show prolonged survival, 
usually quite similar to that of non-infected mice. In guinea 
pigs, considered susceptible, the contrary happens, because they 
generally die within weeks of infection. However, if the bacillary 
load is examined, it is found to be very high in mice compared to 
guinea pigs. This means that mice are not resistant, but tolerant to 
the infection, because they do not control the bacillary load, but 
it does not hamper their health status (67).

This led to the theory of the “damage-response” framework 
of microbial pathogenesis, which classifies all infectious diseases 
according the virulence potential of the pathogens and the 
response of the host to the pathogen. In the case of TB, the response 
against M. tuberculosis is a double-edged sword, advocating the 
need for a balanced immune response. Both a too weak or too 
strong immune response can cause active TB (68). It appears 
that in TB this concept has been poorly addressed. Invariably, 
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FiGURe 7 | Damage theory of infectious diseases. This picture illustrates Arturo Casadevall’s “damage theory” (68). In the case of TB, a weak immune response 
leads to the proliferation of lesions and dissemination of the bacilli. However, the induction of an excessive inflammatory response also leads to exudative lesions 
characterized by massive tissue destruction. In this regard, we can consider that TB develops two kinds of diseases, and in between there is a wide range of 
situations where the immune response is balanced and allows the host to live with the bacilli without hampering its health status.
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induction of TB disease is linked to some sort of immunosuppres-
sion, but the consequences of an exaggerated immune response 
are poorly understood (Figure 7).

The relationship between a greater immune response and 
progression toward TB disease has recently been determined 
by an increased frequency of activated HLA-DR+ CD4+ T cells 
being linked to a heightened risk of TB disease (69). This higher 
immunological activation is probably originated by intercur-
rent infections like those caused by cytomegalovirus (CMV). 
Similarly, one of the major risks fueling TB is being overweight, 
which is related to type II diabetes (70), and in turn to a systemic 
pro-inflammatory response (71).

The work by Green et al. in the cynomolgus macaque model 
demonstrated that the animals that did not progress toward TB 
disease had significantly higher frequencies of Tregs in peripheral 
blood prior to infection, compared to macaques that developed 
active disease, supporting the idea that more Tregs prior to infec-
tion correlates with a better infection outcome (72). This made 
others consider protection against TB the consequence of a bal-
anced immune response, able to stimulate a Th1 immune response 
but without causing too much damage, especially without causing 
excessive neutrophil infiltration (67, 73). In this regard, the proof 
of concept that a decreased inflammatory response causes a 
reduction of the bacillary load was experimentally demonstrated 
in a TB murine model after treatment with ibuprofen (74), a clear 
indication of the new approach towards the use of host-directed 
therapies in TB (75). Following this logic, a promising strategy to 
stop progression toward TB disease appears to be the induction of 
M. tuberculosis protein purified derivative-specific memory Tregs 
to counterbalance the Th17 (76–78). The role of Tregs has been 
controversial for a long time, as it was related to counterbalance 

Th1 response (79). This concept was progressively refined, placing 
Tregs in a more neutral role, without increasing the bacillary load 
in lesions at all (80), or even a protective one (81, 82). The fact is 
that the models that were used did not develop human-like lesions, 
and therefore, the role of pathology and exudative progression 
was not explored. When this parameter is included, as in C3HeB/
FeJ mice (55) or NHP (72), Tregs response is clearly beneficial 
and is related to the interruption of progression toward active TB.

In conclusion, after 30 years of investing heavily in “bacilli-
oriented therapies” to destroy M. tuberculosis, there now seems 
to be a new opportunity to address the control of TB epidemics 
using “host-oriented therapies,” which would enable a physiologi-
cal approach to living with the presence of this bacillus: simply 
tolerating it!

One World, Ecology, Coinfection
Studies in wild-type animals have highlighted the role of coin-
fection in TB. In this case, it is important to note the impact of 
parasitosis as a source of Tregs response, balancing the immune 
response and thus protecting against progression from infection 
to disease. This concept must be approached cautiously as, so far, 
parasitosis has been related to a neutral (83, 84) effect in humans 
with regard to progression toward TB disease. On the contrary, 
concurrent infections such as CMV are potent immunity activa-
tors favoring progression toward TB (85, 86).

TB iS A COMPLeX iNFeCTiON: THe 
QUeST FOR THe “PiNK SwAN”

Tuberculosis is the consequence of a major, complex process and, 
even though we have accumulated a vast amount of information 
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and knowledge about it, we desperately need new tools and novel, 
groundbreaking concepts to aid us in the search for more effica-
cious strategies to curtail TB progression.

As a consequence of a lack of resources, TB researchers 
tend to organize in synergistic, monolithic consortiums to act 
coordinately and obtain funding. This is a positive and intelligent 
organizational set up, but it can be potentially deleterious from 
the intellectual point of view, as it can lead to homogeneous 
thinking.

It has been claimed that “out of the box thinking” is needed 
and that we are seeking for a “pink swan” (9): a unique and revo-
lutionary concept that will have a massive impact in the field. The 
recruitment of all research groups under one single strategy may 
be incompatible with reaching this target. Large organizations 
need to harmonize to seek consensus. This is very important to 
complete file-intensive projects, requiring many samples, many 
subjects, etc. such as clinical trials. However, it probably is not 
that convenient when searching for new concepts, blue-sky 
thinking, because unifying, harmonizing exercises tend to have 
too great influence on the group, and marginalize divergent 
approaches.

In this sense, the fresh approaches to old methodological sys-
tems for testing new vaccines are very interesting. Mycobacterial 
Growth Inhibition Assay (MGIA), to ascertain mycobactericidal 
capacity, in spite of not yet understanding the mechanism of 
action (87) and the use of the monocyte:lymphocyte ratio in 
peripheral blood to predict the induction of TB disease are two 

clear examples of novel, imaginative ways of looking for a protec-
tive surrogate marker (88).

In a nutshell, it is necessary to encourage the creation of instru-
ments to fund “free-thinking” concepts to advance TB research. 
In particular, it would be interesting to recruit knowledge from 
other disciplines, with fresh concepts and new ideas, to drive 
innovative projects capable of leading us to our “pink swan.”
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