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Natural killer T  cells carrying a highly conserved, semi-invariant T  cell receptor (TCR) 
[invariant natural killer T (iNKT) cells] are a subset of unconventional T lymphocytes that 
recognize glycolipids presented by CD1d molecules. Although CD1d is expressed on 
a variety of hematopoietic and non-hematopoietic cells, dendritic cells (DCs) are key 
presenters of glycolipid antigen in vivo. When stimulated through their TCR, iNKT cells 
rapidly secrete copious amounts of cytokines and induce maturation of DCs, thereby 
facilitating coordinated stimulation of innate and adaptive immune responses. The 
bidirectional crosstalk between DCs and iNKT cells determines the functional outcome 
of iNKT cell-targeted responses and iNKT cell agonists are used and currently being 
evaluated as adjuvants to enhance the efficacy of antitumor immunotherapy. This review 
illustrates mechanistic underpinnings of reciprocal DCs and iNKT cell interactions and 
discusses how those can be harnessed for cancer therapy.
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NATURAL KiLLeR T CeLLS (NKT CeLLS)

Natural killer T cells belong to the group of innate-like T  lymphocytes and represent an impor-
tant link between the innate and the adaptive immune response. They can be activated in both 
antigen-dependent and independent manners, secrete large amounts of cytokines upon activation, 
and exhibit remarkable functional plasticity with both pro-inflammatory and immunoregulatory 
characteristics (1, 2). Depending on their T  cell receptor (TCR), CD1d-restricted NKT  cells are 
subdivided into type I or invariant NKT (iNKT) cells, and type II or diverse NKT (dNKT) cells. 
Herein, we will focus on the unique iNKT cell subset, which expresses a semi-invariant TCR and we 
refer the reader to excellent reviews on type II NKT cells elsewhere (3, 4).

In 1986 and 1987, respectively, three key discoveries facilitated the identification of this innate-
like T  cell subset. Two groups independently described a Vβ8-overexpressing, double-negative 
thymocyte subset in mice, while a third research team cloned an invariant TCR Vα14-Jα18 rear-
rangement from a set of murine suppressor T cell hybridomas (5–7). It was not until 10 years later 
that the ligands, which these peculiar cells recognize, were identified (8).

Type I NKT cells are characterized by the expression of a semi-invariant TCR (Vα14Jα18 paired 
with Vβ8, Vβ7, or Vβ2 in mice and Vα24Jα18/Vβ11 in humans) (3, 9). Interestingly, the Vα14 
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TCR is exclusively used by iNKT cells but not by conventional 
T cells (10). Furthermore, iNKT cell subsets bear morphological 
markers on their surface that were believed to be characteristic 
for natural killer (NK) cells like NKG2D (11), KLRG (12), IL-12 
receptor (13), or NK1.1 (CD161) (8, 14–16). However, although 
expression of these molecules may characterize some NKT cell 
subsets, other subsets do not share these NK  cell markers. 
Therefore, the more stringent characteristic of NKT cells appears 
to be their CD1d restriction (1).

Unlike conventional CD4+ or CD8+ T cells, iNKT cells recog-
nize antigenic glycolipids presented via the monomorphic MHC 
class I-like molecule CD1d (17, 18). iNKT  cell responses have 
proven to be highly conserved between humans and mice. They 
enhance the activation of innate immune cells, such as dendritic 
cells (DCs) and NK cells, and shape immune responses in concert 
with other lymphocytes, such as B cells. Thereby, iNKT cells not 
only act as an amplification relay but bridge innate and adaptive 
immunity (19–22). The frequencies of iNKT  cells among total 
lymphocytes differ greatly between tissues and the possibility 
of detecting these unconventional T cells has greatly improved 
by the introduction of lipid-loaded CD1d-tetramers (15, 16). In 
mice, iNKT cells are most abundant in the liver (10–30%) and 
the spleen (0.5–1.5%) with lower frequencies found in thymus, 
blood, bone marrow (all 0.2–0.5%), and lymph nodes (0.1–0.2%). 
In humans, substantial interindividual variability is observed. 
However, high iNKT  cell frequencies are detected in the liver 
(1%), omentum (10%), the adipose tissue (in which iNKT  cell 
frequencies vary between 0.5 and 1% of total CD3+ cells) (23), 
and in healthy donors iNKT cells represent 0.01–0.5% of PBMCs  
(24, 25). The iNKT cell subset develops in the thymus, emerges 
from the same progenitor pool as conventional T cells, and under-
goes somatic recombination and thymic selection. Rather than via 
thymic epithelial cells, iNKT cells are positively selected through 
interaction with double-positive thymocytes that CD1d-present 
endogenous ligands, leading to an unusually strong TCR signal. 
The directing of iNKT cell precursors toward a particular subset 
lineage may involve specific endogenous selecting lipid antigens 
(19, 26, 27). The majority of human thymic iNKT cells egresses 
during early fetal development and CD4+CD8− iNKT  cells are 
already present at birth, whereas murine iNKT cells only emerge 
during the first postnatal week (25, 28, 29). Distinct human 
iNKT cell subsets include CD4+/CD8−, CD4−/CD8−, and CD4−/
CD8+ whereas in mouse CD4+/CD8− and CD4−/CD8− subsets 
prevail (25).

iNKT CeLL HeTeROGeNeiTY  
AND eFFeCTOR FUNCTiONS

Initially believed to be a rather rigid and homogenous cell  
population that merely acts upon TCR stimulation, it became 
recently clear that based on their respective transcriptional pro-
grams, distinct iNKT cell subsets with designated functional prop-
erties exist and that iNKT cells may balance immune homeostasis 
via their steady-state activity. TCR-induced transcription factors 
Egr2 and Egr1 lead to transcription of PLZF, the key transcrip-
tional factor during the development of iNKT cells (30). In fact, 
although only a subset of fully matured iNKT cells are positive 

for PLZF, the majority of iNKT cells expresses this transcription 
factor at one point during development (31–34). Depending on 
the subsequent transcriptional program, thymic CD24hi/CD69+ 
iNKT  cell precursors diverge into distinct sublineages (35).  
TH1 iNKT cells (NKT1) express T-bet and Bhlhe40 and mainly 
release IFNγ upon TCR ligation. TH2 iNKT  cells (NKT2) pre-
dominantly express GATA3 and PLZF and release IL-4 and IL-13 
already in steady state. IL-17-producing iNKT17 express RORγt, 
a subset of Bcl-6-dependent, CXCR5- and PD1-expressing 
iNKT follicular helper cells secrete IL-21, thereby shaping 
B  cell responses. IL-10-producing immunoregulatory NKT10 
are FOXP3-negative but positive for the transcription factor 
E4BP4 (20, 27, 36–38). Recently, a KLRG-expressing subset of 
iNKT cells has been described, which shows an effector-memory-
like phenotype and is able to mount stronger secondary responses 
to cognate antigen (12).

Invariant NKT cells can be activated either upon stimulation 
of their TCR by CD1d-presented glycolipid antigens, or in a 
TCR-independent manner (e.g., by cytokines) (39, 40). Upon 
activation, iNKT cells readily proliferate and undergo significant 
remodeling of their surface expression patterns with regards to 
several markers, such as NK1.1 and the semi-invariant TCR (41).

Although iNKT cells have adaptive characteristics, they exist 
in a preactivated memory-like effector state primed to release 
large amounts of immunomodulatory cytokines (including 
IFNγ, IL-4, IL-13, IL-17, GM-CSF, and TNF-α) not only upon 
engagement of their TCR but also in response to innate signals 
(13). One of their key features is the cytokine-mediated trans-
activation of other innate and innate-like immune cell subsets, 
thereby amplifying initial responses (19, 42–45). In addition, 
iNKT cells may also provide both antigen-specific cognate and 
non-cognate help for B cells (20, 46, 47) and in turn can be acti-
vated by B  cells (48, 49). Interestingly, unlike the non-cognate 
iNKT  cell–B  cell interactions, antigen-specific iNKT  cell help 
induces a more innate-biased B cell response, which is charac-
terized by a discontinuous germinal center B cell expansion and 
rapid initial proliferation of IL-10-producing B cells, but fails to 
induce humoral memory (50).

A key difference between iNKT cells and conventional T cells 
are the kinetics of their responses, which in case of iNKT cells 
occur already within hours after engagement, as opposed to 
several days in the case of conventional T cells (1, 51). In line with 
this, iNKT cells have been reported to carry preformed mRNA 
of cytokines in their cytoplasm, which enables them to rapidly 
release large quantities of these effector molecules upon TCR liga-
tion (52, 53). The translational regulation of preformed cytokine 
mRNA has been shown to be dependent on p38 MAPK (54).

Aside from rapidly releasing numerous immunomodulatory 
cytokines, iNKT  cells also have immediate cytotoxic capacity, 
which correlates with the amount of surface CD1d on the target 
cell (55). While reports in patients suffering from acute myeloid 
leukemia (AML) and juvenile myelomonocytic leukemia describe 
(analogous to NK cell-mediated cytotoxicity) predominant usage 
of the perforin/granzyme B pathway in executing cytotoxicity, 
other reports in C57BL/6 mice ascribe a higher importance to 
Fas/FasL interaction (55). In addition to exerting direct effector 
functions, it becomes more and more apparent that iNKT may 
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shape immune responses indirectly through crosstalk with other 
immune subsets.

Myeloid-derived suppressor cells (MDSCs) are a unique Gr1+ 
population of activated myeloid cells that retain an immature 
phenotype and are functionally able to dampen adaptive immune 
responses during malignancies and infection (56). De Santo et al. 
described an intriguing mechanism through which iNKT  cells 
reverse the suppressive properties of MDSCs during influenza A 
virus (IAV) infection in a CD1d- and CD40:CD40L-dependent 
manner (57). While infection of both CD1d−/− and Jα18−/− mice 
with the IAV strain A/Puerto Rico/8/34 (PR8) lead to a more 
severe phenotype and a greater expansion of CD1d- and CD40-
expressing MDSCs in the lungs of Jα18−/− and CD1d−/− mice as 
compared to PR8-infected wild-type mice, only adoptive transfer 
of iNKT cells into Jα18−/− mice ameliorated the disease course 
and reduced MDSC numbers whereas CD1d−/− mice remained 
hypersusceptible and depicted unchanged numbers of MDSCs. 
MDSCs isolated from the lungs of PR8-infected Jα18−/− mice 
depicted a stronger suppressive activity as those from wild-type 
mice. Pulsing MDSCs with αGalCer or TLR agonists (for TLRs 3, 
7/8, and 9) in the presence of iNKT cells reduced suppressive activ-
ity of MDSCs. The results of this study suggest that TLR-mediated 
upregulation of (yet to be defined) endogenous iNKT cell ligands 
contribute to the iNKT  cell-mediated modulation of MDSC 
suppressive activity during IAV infection. Accordingly, immu-
nosuppressive properties of MDSCs isolated from IAV-infected 
patients could be reversed by iNKT cells (57). Likewise, it was 
shown that MDSCs pulsed with tumor-associated antigens and 
the prototypic iNKT  cell agonist αGalCer fail to suppress 
cytotoxic T  lymphocytes (CTLs) and do not induce generation 
of FOXP3+ T  regulatory cells (TREGs), thus leading to longer 
survival of mice in a murine metastatic tumor model. Activated 
iNKT cells are able to modify MDSCs, transforming them back 
to a more immunogenic APC phenotype (58). MDSCs do not 
only include macrophages but also neutrophils, which acquire 
immunosuppressive properties such as IL-10-secretion, result-
ing in damping of antigen-specific T cell responses (59). It was 
shown that the acute-phase protein serum amyloid A 1 fosters 
iNKT-mediated conversion of suppressive activity of neutrophils. 
This immunomodulatory crosstalk between iNKT  cells and 
neutrophils is highly dependent on CD1d:TCR interaction (60). 
All-trans-retinoic acid (ATRA) is known to promote MDSC dif-
ferentiation (61, 62). Exposure of αGalCer-loaded MDSCs with 
ATRA has shown to restore immunogenicity of this immune 
subset in an iNKT cell-dependent way (63). These findings extend 
the previously reported arsenal of iNKT  cells to execute their 
immunomodulatory functions.

Like MDSCs, tumor-associated monocytes/macrophages 
(TAMs) are part of the tumor microenvironment but unlike 
MDSCs, TAMs are Gr1− (64). Primary human neuroblastoma cells 
are CD1d−, however, the tumor neuroblastoma microenvironment 
is highly enriched for CD68+/CD1d+ TAMs, which aliment tumor 
growth mainly through secretion of IL-6. CD1d-dependent kill-
ing of growth-promoting TAMs via iNKT cells decelerated tumor 
growth in a NOD/SCID human neuroblastoma xenograft model 
(65). Tumor necrosis factor related apoptosis inducing ligand 
(TRAIL)-expressing autologous or allogeneic CD4+ iNKT  cells 

induce apoptosis in myeloid leukemia cells derived from AML 
patients. However, TCR:CD1d interaction was not required for 
this effector function (66). Further TCR-independent effector 
functions include NKG2D-dependent cytotoxic degranulation 
(11), differential cytokine expression pattern upon stimulation 
with IL-2, IL-12, IL-18 (67) and potentiating NK-cell mediated 
cytotoxicity in an IL-2-dependent manner (68).

iNKT CeLL ACTivATiON BY DCs

The CD1 family is comprised of five isoforms that can be parti-
tioned in two groups. Group 1 consists of CD1a, CD1b, CD1c, 
and CD1e and group 2 only includes CD1d. While all isoforms 
can be found in humans, only CD1d is expressed in mice (69).

Dendritic cells constitutively express CD1d and may activate 
iNKT cells by presenting antigenic glycolipids. CD1d is a highly 
conserved non-polymorphic MHC class I-like transmembrane 
molecule; its expression is regulated by cytokines as well as 
through engagement of innate receptors (70). Similar to the 
structurally related MHC class I molecules, CD1d represents a 
heterodimer comprised of the CD1d heavy chain non-covalently 
coupled to β2-microglobulin. Many hematopoietic and non-
hematopoietic cell types express CD1d on their surface either 
constitutively or upon activation (71–75). However, in mice, 
constitutively CD1d-expressing DCs appear to be the most potent 
APCs for exogenous glycolipids (76–78). The interaction between 
iNKT cells and DCs is not unidirectional but characterized by 
reciprocal feedback loops depending on the chemical structure 
of the CD1d ligand as well as the nature of the APC (Figure 1) 
(9, 76). DCs acquire and CD1d present exogenous lipid antigens 
for the direct recognition by iNKT cells but may also transduce 
innate signals toward to the induction of iNKT cell responses (39, 
40, 79). In many cases, the activation of iNKT cells results from a 
combination of TCR-mediated recognition of cognate lipid anti-
gen and TCR-independent signals. For example, pattern recogni-
tion receptor (PRR)-bearing DCs will CD1d-present endogenous 
glycolipids in response to stimulation with pathogen-associated 
molecular patterns (39, 79–81). Recent studies suggest that PRR 
activation may specifically modulate the lysosomal processing 
of glycolipids in APCs to increase the abundance of endogenous 
iNKT cell agonists (80, 81). In concert with signals provided by 
pro-inflammatory cytokines secreted by PRR-activated DCs, the 
weaker TCR recognition of endogenous antigens is sufficient for 
iNKT cell activation (39, 40). To which extent similar cytokine 
signals are required for iNKT activation by microbes expressing 
stimulatory lipid antigens remains debated (13, 82). iNKT cells 
constitutively express the IL-12 receptor and PRR-mediated 
secretion of IL-12 by DCs triggers Stat4 phosphorylation and 
consecutive IFNγ secretion in iNKT cells (13, 83). Furthermore, 
direct cellular contact between DCs and iNKT  cells in a 
CD40:CD40L-dependent manner provides a strong feed-forward 
signal, resulting in additional IL-12 production by DCs and con-
secutive further upregulation of the IL-12 receptor on iNKT cells. 
CD40/CD40L as well as CD28:CD80/CD86 interactions are 
required for subsequent iNKT  cell-mediated-IFNγ secretion 
whereas IL-4-secretion was described to be solely dependent on 
CD28:CD80/CD86 interaction (83, 84). Co-administration of 
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iNKT cell agonist αGalCer and OVA in CD40−/− and CD40L−/− 
mice leads to abrogation of CD4+ and CD8+ T  cell responses, 
while DCs are not affected in their ability to present antigen on 
MHC class I or II and are capable of upregulating CD80/86 (77). 
Recent reports show that artificial APCs loaded with iNKT cell 
agonists can activate and expand human iNKT cells in vitro as 
potently as autologous immature DCs. Engineering artificial 
APCs with differential association to co-stimulatory factors 
will help to obtain valuable insights into the crosstalk between 
iNKT cells and DCs and will foster our understanding of how to 
harness their therapeutic potential (85–87).

CD1d TRAFFiCKiNG iN MOUSe 
PROFeSSiONAL APCs

Similar to MHC class I molecules, CD1d molecules are synthe-
sized, folded, and equipped with β2-microglobulin in the ER 
(Figure  2) (88). Analogous to the placeholder function of the 
pseudopeptide CLIP in MHC class II, CD1d most likely leaves 
the ER with an endogenous lipid in its antigen-binding groove in 
order to maintain stability. The biochemical nature of these lipids 

and the exact mechanisms underlying the respective transfer 
processes are not fully elucidated yet. However, the ER chaperone 
protein microsomal triglyceride transfer protein (MTP) has been 
suggested to load phospholipids onto nascent CD1d (89). CD1d, 
after having passed several protein quality control checkpoints, 
follows the secretory pathway and is being guided to the Golgi 
apparatus and subsequently reaches the cell surface (88, 90). From 
there, CD1d is being internalized in clathrin-coated pits via the 
interaction of the adaptor protein complex 2 (AP2) and adaptor 
protein 3 (AP3) through tyrosine-based sorting motifs present 
in the cytoplasmic tail of CD1d, and subsequently delivered to 
endosomal compartments (91–93). The autophagic machinery 
assists in the recruitment of AP2 to CD1d molecules. Loss of 
the essential autophagy protein ATG5 in DCs impaired clathrin-
dependent internalization of CD1d molecules via AP2 and, thus, 
increased surface expression of stimulatory CD1d:glycolipid 
complexes, which resulted in enhanced iNKT activation (94).

Having generated a knock-in mouse by homologous recombi-
nation in which all CD1d is expressed as CD1d-EYFP, Sillé and 
colleagues described that in order to activate iNKT cells, endo-
somal sorting of CD1d is dependent on both its tyrosine-based 
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sorting motif and on the association with the invariant chain (Ii) 
in peripheral DCs (95).

CD1d itself is unable to extract and acquire lipids from mem-
branes and, therefore, is in need of lipid transfer proteins (LTPs) 
that, in analogy to the MHC class II/H2-DM interaction, facilitate 
loading of antigens within the endosomal/lysosomal compart-
ment. Low molecular-weight proteins called saposins (A, B, C, 
and D), GM2 ganglioside activator (GM2A), and the Niemann–
Pick type C1 and C2 proteins (NPC1 and NPC2, respectively) 
have so far been identified to mediate the loading of lipids on 
CD1d molecules (96–99). Additionally, in the cases of saposins 
and GM2A, it was reported that these molecules also aid in the 
unloading of lipids from the CD1d antigen-binding groove (93). 
Following sampling of antigens in the endo/lysosomal system, 
loaded CD1d molecules are being recycled to the cell surface, 

similar to MHC class II molecules, and present bound antigens 
for iNKT cell activation.

eNDOGeNOUS AND eXOGeNOUS iNKT 
CeLL ANTiGeNS

Different from MHC class I or II-restricted antigen presentation 
during which processing of proteins or larger peptides results in 
smaller antigenic peptides presented by polymorphic antigen-
presenting molecules, monomorphic CD1d presents mainly 
unprocessed lipids of varying size and biochemical structure 
(100). Lipid antigens that stimulate CD1d-restricted iNKT cells 
comprise endogenous (also called self-lipids) and exogenous  
(e.g., microbial-derived) non-peptidic molecules. Within 
the mammalian class, self-lipids predominantly consist of 
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glycosphingolipids (GSLs) and phosphoglycerolipids (69). 
Endogenous self-lipids have been described to be crucial for 
thymic selection of iNKT cells via CD4+CD8+ thymocytes (28, 98) 
but might also be involved in modulating antiviral and antineo-
plastic iNKT activity in the periphery (57, 79, 101). With regards 
to MHC molecules, methodological advances in proteomics 
allowed for progressive elucidation of the MHC-binding immu-
nopeptidome in recent decades (102). In stark contrast, little is 
known about the endogenous lipid repertoire bound on CD1d 
in vivo, which is largely due to the fact that current techniques to 
extract CD1d molecules from cell membranes irretrievably entail 
the dissociation of CD1d-associated ligands. Although genera-
tion of secreted human CD1d molecules (sCD1d) by truncating 
the transmembrane and cytoplasmic domains shed some light 
on which lipid antigens are associated with CD1d (103), this 
approach implicates obvious shortcomings. Since the intracel-
lular cytoplasmic tail of CD1d is required for trafficking of CD1d 
through endolysosomal compartments in which lipid exchange 
and transfer occurs (28, 104), the detected lipidom is unlikely 
to reflect the in vivo setting. Therefore, the development of more 
refined techniques is required for the unequivocal identification 
of in vivo-relevant endogenous CD1d ligands.

The lysosomal glycosphingolipid isoglobotrihexosylceramide 
(iGb3), a moderate activator of iNKT cells, has been proposed to 
function as a self-lipid (105). However, the biological relevance of 
this finding warrants further investigation (106, 107). Other can-
didate self-lipids to be involved in iNKT cell development are the 
peroxisomal-derived ether-bonded phospholipids 1-O-1′-(Z)- 
hexadecenyl-2-hydroxy-sn-glycero-3-phosphoethanolamine 
and 1-O-1′, 9′-(Z,Z)-octadecadienyl-2-hydroxy-sn-glycero-3-
phosphoethanolamine. Not only depicted the synthetic plasmalo-
gen C16-lysophosphatidylethanolamine (pLPE) similar iNKT cell 
stimulatory capacities as the prototypical agonist αGalCer 
but mice deficient in glyceronephosphate O-acyltransferase 
(GNPAT), the peroxisomal enzyme essential for synthesis of 
ether lipids, showed impaired iNKT cell development. However, 
GNPAT−/− mice still harbored around 50% of iNKT cells found in 
GNPAT-competent mice (108). Other endogenous lipid antigens 
might, therefore, be involved in thymic selection of iNKT cells as 
well and the understanding of the relative contribution and dis-
tinct functions of a given endogenous CD1d ligand to iNKT cell 
biology will need further clarification.

Most exogenous CD1d ligands identified to date are of bacte-
rial origin. iNKT cell-activating lipid antigens have been found 
in Borrelia burgdorferi [α-galactosyldiacylglycerols (αGalDAGs)] 
(109), Sphingomonas spp. (α-glucuronosylceramides and α–galac-
turonosylceramides) (40, 110, 111), Streptococcus pneumoniae, and 
group B Streptococcus [α-glucosyldiacylglycerols (αGlcDAGs)] 
(112), Mycobacterium tuberculosis (phosphatidylinnositol man-
nosides) (113), Helicobacter pylori (cholesteryl α-glucoside) 
(114), and Bacteroides fragilis (α-galactosylceramides) (115). 
But also the porifera Agelas mauritianus (α-galactosylceramides)  
(8, 116) and the ascomycete Aspergillus fumigatus (asperamide B) 
(117) have been reported to contain antigenic lipids that activate 
iNKT cells.

The α-linked monoglycosylceramide αGalCer, initially iso-
lated from Agelas mauritianus was the first glycolipid identified 

to activate iNKT  cells. Its synthetic derivative KRN7000 has  
become a commonly used experimental tool in iNKT  cell 
research and to this day remains to be the most potent iNKT cell 
agonist (8, 116). Until recently, it was believed that mammalian 
cells are incapable of generating α-anomeric GSLs such as 
αGalCer. Making use of high-sensitivity biological assays, lipid 
immunopurification, and multiple reaction monitoring-mass 
spectrometry, Kain et al. reported that trace amounts of α-linked 
GSLs (both, αGluCer and αGalCer) are produced in mammalian 
cells and most likely function as endogenous ligands during 
thymic selection of iNKT cells (81).

iNKT CeLL-MeDiATeD MATURATiON AND 
LiCeNSiNG OF DCs

As a feedback loop, αGalCer-activated iNKT  cells contribute 
to maturation of DCs in vivo resulting in increased cell surface 
expression of MHC class II, the co-stimulatory molecules CD40, 
CD80, CD86, and the endocytic receptor DEC-205. iNKT cell-
matured DCs elicit specific CD4+ and CD8+ T  cell responses 
against a co-administered peptide. The observed DC maturation is 
highly dependent on iNKT cells since administration of αGalCer 
fails to induce DC maturation in Jα18−/− mice lacking iNKT cells 
(118). Challenge with OVA-expressing tumors demonstrated 
significant tumor resistance in animals that had been previously 
immunized with OVA in combination with the iNKT cell agonist 
αGalCer (119). In mice, the unique subset of CD8α+ DCs is 
able to cross-present extracellular antigens via MHC class I to 
evoke CTL responses (120). Both mouse (121) and human (122) 
studies have shown that cross-presentation is CD4+ T helper (TH) 
cell dependent. The interaction between mouse CD4+ TH cells 
and DCs leads to release of CCL3 and CCL4 attracting CCR5-
expressing CTLs to the site of cross-presentation (123). However, 
the CCR4-CCL17-dependent licensing of DCs by iNKT cells for 
cross-presentation has been described as an alternative pathway. 
iNKT  cell-mediated upregulation of CCL17 in DCs required 
CD1d and spatial interaction between iNKT  cells and DCs 
(124). Interestingly, Arora et al. reported that despite numerous 
cell types expressing high levels of CD1d, the CD8α+ DCs are 
the most competent presenters of lipid antigens in  vivo (125). 
Whether and to which extent these mechanisms are translated to 
humans, remains to be addressed.

FUNCTiONAL OUTCOMeS OF iNKT CeLL 
ACTivATiON

Recognition of CD1d:glycolipid complexes via the iNKT cell TCR 
can result in either pro-inflammatory TH1-biased or TH2-biased 
cytokine production by iNKT  cells (2, 18). Mechanisms that 
mediate such potentially opposing functional outcomes need to 
be taken into account in designing iNKT cell-targeting therapies. 
Differential expression of co-stimulatory signals on distinct APC 
subsets (126, 127) and the chemical structure of iNKT cell agonists, 
which target iNKT cell ligands to distinct APC populations (128, 
129) contribute to the functional outcome of iNKT cell activation. 
In serum, soluble iNKT cell agonists associate with lipoprotein 
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particles or are transported bound to serum LTPs, which facilitate 
glycolipid uptake by APCs and loading onto CD1d molecules 
(130–132). Several receptors mediate the uptake of glycolipids for 
CD1d presentation, including the low-density lipoprotein recep-
tor and the scavenger receptors SRA, SRB1, and CD36 (130, 132). 
Importantly, the specificity of this serum transport and receptor-
mediated uptake is largely influenced by minor modifications of 
the chemical structure of iNKT  cell agonists (133), suggesting 
that specific “targeting-motifs” could be used to direct glycolipid 
antigens toward distinct uptake pathways in order to modulate 
the resulting iNKT cell effector response (132). Besides affecting 
glycolipid uptake, the chemical structure of iNKT cell agonists 
may also influence the nature of the presenting APC as well as 
the context in which the antigen is CD1d presented. In general, 
the CD1d presentation of glycolipid antigens requires their access 
to the lysosomal loading compartment, which provides multiple 
glycosidases for antigen processing and lysosomal LTPs to assist 
in the solubilization and loading of glycolipids into CD1d (96–98, 
134–136). There is evidence that lipid antigens eliciting a TH2-
type iNKT  cell cytokine response do not require intracellular 
loading onto CD1d but may directly bind surface CD1d instead. 
Such TH2-biased iNKT  cell agonists typically possess short or 
unsaturated acyl chains, which increase their solubility in the 
aqueous environment but also favor a rapid displacement from 
CD1d upon recycling to the lysosome (137–140). The surface 
CD1d loading might bypass inclusion of such CD1d/lipid antigen 
complexes into lipid microdomains (139). Similarly, differential 
immune responses have been described for MHC class II mol-
ecules when presenting peptides either dependent or independ-
ent of lipid rafts (141). In addition, the anatomical context can 
modulate iNKT  cell cytokine responses. In mice, the principle 
presenters of αGalCer and other TH1-biased antigens in vivo are 
CD8α+ DEC-205+ DCs (76), while the presentation of TH2-biased 
iNKT  cell agonists was found to be more promiscuous, likely 
due to their ability to directly load onto cell surface CD1d (128). 
Furthermore, Lee et al. (142) showed that differential routes of 
lipid antigen application may dramatically alter the iNKT  cell 
activation pattern due to a distinct anatomical distribution of 
iNKT cell subsets.

THeRAPeUTiC iMPLiCATiONS

Their ability to mature DCs and to transactivate both CTLs and 
NK cells for tumor cell eradication (143, 144) reflect the potential 
of iNKT cells in improving cancer immunotherapy (Figure 3). 
However, in contrast to encouraging studies performed in experi-
mental models (145), clinical trials using direct administration of 
soluble αGalCer in cancer patients failed to show promising results 
(146). Aside from high interindividual variability in iNKT  cell 
frequencies and inefficient targeting of particular subsets of lipid 
presenting cells, direct administration of antigenic glycolipids 
was shown to induce PD1:PDL1-dependent long-term anergy 
(147–149) or induction of regulatory IL-10-producing iNKT cells 
(36, 150), which negatively affect antitumor responses (150). As 
an alternative to αGalCer administration, DCs can be glycolipid-
pulsed ex vivo followed by re-infusion. This strategy has proven 
to induce prolonged activation of iNKT  cells rather than a  

regulatory/anergic phenotype, inhibits metastasis in an experi-
mental melanoma model, and can expand human iNKT  cells 
in vivo (78, 151, 152). Additionally, adoptive transfer of αGalCer-
pulsed matured DCs expands iNKT  cells in advanced stage 
cancer patients (153). A clinical phase I study in a limited number 
of individuals with metastatic malignancies reported that transfer 
of immature monocyte-derived DCs loaded with αGalCer was 
associated with a stronger recall response (154). Matured DCs 
as compared to immature DCs increased the observed beneficial 
effects significantly (153, 154). Another phase I trial during which 
patients with head and neck squamous cell carcinoma (HNSCC) 
were treated via singular co-administration of autologous in vitro 
expanded iNKT cells (intraarterial) and submucosal application 
of αGalCer-loaded APCs showed partial clinical response (155). 
In a small phase II clinical study in HNSCC patients using the 
same treatment regimen, 50% of the patients depicted tumor 
regression while 50% showed stable disease (156). Promising 
results were reported from a phase I-II study in non-small cell 
lung cancer patients: sequential intravenous administration 
of αGalCer-pulsed PBMCs increased the frequencies of IFNγ-
producing cells in a majority of patients. This iNKT cell-mediated 
TH1 skewing in responders was associated with significantly 
prolonged median survival time (157). In a follow-up study, two 
candidate genes, LTB4DH and DPYSL3, were proposed to predict 
responsiveness to abovementioned treatment regimen (158). Late 
stage cancer patients often times are immune suppressed and 
retrieving enough APCs from these individuals for autologous 
transfer might prove difficult. Therefore, novel artificial APC 
constructs may help to circumvent lack of appropriate autologous 
APC numbers (85–87). Moreover, novel glycolipid-antigen deliv-
ery systems that systematically target relevant APC populations 
are currently being investigated. Some of these nanovector sys-
tems already show promising results. αGalCer-containing silica 
microspheres, poly(lactic-co-glycolic acid) (PLGA) polymers, 
and modified liposomes have already been reported to efficiently 
elicit iNKT cell responses (159–161). In order to initiate in situ 
responses of DCs, artificial adjuvant vector cell systems have 
been recently introduced. Herein, allogeneic CD1d-expressing 
NIH3T3 fibroblasts loaded with αGalCer were transfected with 
target-antigen mRNA. Injection of NIH3T3 fibroblasts lead to 
activation of iNKT  cells, consecutive maturation of DCs, and 
activation of NK cells and antigen-specific CTLs. Animals that 
were immunized with adjuvant vector cells show potent immu-
nity against antigen-bearing tumors. Interestingly, memory CTL 
responses can still be detected 12  months after initial single 
injection (143, 162).

Humans, as compared to mice, show high interindividual 
variability in iNKT cell frequencies. Patients with low steady-state 
numbers of iNKT cells might not efficiently profit from autolo-
gous transfer of lipid-pulsed APCs. Mouse embryonic fibroblast-
derived induced pluripotent stem cells (iPSCs) can readily 
differentiate into functional iNKT  cells. These iPSC-derived 
iNKT cells are able to produce IFNγ and mediate anti-neoplastic 
effects in  vivo (163). Therefore, patients with low iNKT  cell 
frequencies may be reconstituted with iPSC-derived iNKT cells 
as an efficient means to fully harness their immunomodulatory 
potential (143).
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First attempts in using engineered iNKT cells with chimeric 
antigen receptors (CARs) show promising results. CAR-bearing 
iNKT  cells home to designated tumor sites, eradicate tumor 
cells, and effectively execute cytotoxicity against TAMs without 
inducing graft-versus-host disease (164). Additionally, CD62L+ 
CD19-specific CAR-bearing iNKT  cells show potent immuno-
therapeutic efficacy in a B cell lymphoma model (165).

In conclusion, murine and clinical trials performed to date 
demonstrate that therapeutic strategies that harness the biology 
of iNKT cells are generally well tolerated and, in some cases, effec-
tive in inducing tumor regression and prolonged survival. All of 
the tested and currently investigated strategies harness both the 
powerful cytolytic and adjuvant activity of iNKT cells in order to 
enhance protective antitumor immune responses. In order to fully 
exploit their therapeutic potential, it will not only be essential to 
elucidate the differential effector functions and modes of activa-
tion of individual iNKT cell subsets but also the immunological 

contexts and transcriptional programs that direct CD24hi/CD69+ 
iNKT cell progenitors into development toward specific iNKT cell 
subpopulations as well as determinants that gear specific iNKT cell 
subsets to distinct anatomical sites (31, 142, 166). Profound 
mechanistic insight into understanding how DCs activate and 
instruct iNKT cells and which factors regulate iNKT cell responses 
are prerequisites for improving the efficacy of iNKT cell-targeting 
therapies. In addition, clinical trials will be instrumental in identi-
fying the optimal ligands and APC populations to induce vigorous 
iNKT cell activation and in determining the routes and intervals of 
administration to achieve sustained antitumor immunity.
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