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Recurrent and Sustained viral 
infections in Primary 
immunodeficiencies
Melanie A. Ruffner, Kathleen E. Sullivan* and Sarah E. Henrickson

The Children’s Hospital of Philadelphia, Philadelphia, PA, United States

Viral infections are commonplace and often innocuous. Nevertheless, within the pop-
ulation of patients with primary immunodeficiencies (PIDDs), viral infections can be the 
feature that drives a diagnostic evaluation or can be the most significant morbidity for 
the patient. This review is focused on the viral complications of PIDDs. It will focus on 
respiratory viruses, the most common type of viral infection in the general population. 
Children and adults with an increased frequency or severity of respiratory viral infections 
are often referred for an immunologic evaluation. The classic teaching is to investigate 
humoral function in people with recurrent sinopulmonary infections, but this is often inter-
preted to mean recurrent bacterial infections. Recurrent or very severe viral infections 
may also be a harbinger of a primary immunodeficiency as well. This review will also 
cover persistent cutaneous viral infections, systemic infections, central nervous system 
infections, and gastrointestinal infections. In each case, the specific viral infections may 
drive a diagnostic evaluation that is specific for that type of virus. This review also dis-
cusses the management of these infections, which can become problematic in patients 
with PIDDs.
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iNTRODUCTiON

Frequent infections are a common reason for physician visits. Distinguishing a pattern or a type 
of infection that suggests an immunodeficiency as opposed to part of the normal susceptibility 
to infection can be a challenge. Common causes of recurrent infections are allergies, anatomical 
contributions, secondary immune deficiency, and an unusual burden of exposures. Primary immu-
nodeficiencies (PIDDs) are much less common and therefore difficult to appreciate during the wealth 
of infections that are typically seen in a physician’s practice. During the first 5 years of life, children 
can experience six to eight respiratory tract infections per year. These tend to peak in the winter 
months and daycare attendance, exposure to smokers, and atopy can increase this frequency signifi-
cantly (1–4). Respiratory tract infections in adults are somewhat less common; however, three to five 
respiratory tract infections per year in adults are typical (5). Recurrent sinus infections, pneumonia, 
and bronchitis are common signs of an immunodeficiency, recognizing that frequent bacterial infec-
tions of the respiratory track are often a harbinger of antibody disorders, the most common type 
of primary immunodeficiency. This review will address recurrent and sustained viral infections for 
which there are fewer studies to assist the physician in the identification of patients with potential 
immunodeficiency. This review will address unusual viral respiratory tract infections, systemic viral 
infections, infections of the brain and meninges, and cutaneous viral infections. Unusual viral infec-
tions can be a sign or complication of PIDD. There are several excellent reviews that address the 
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FiGURe 1 | Chest radiograph of a term male infant with X-linked severe combined immune deficiency and RSV pneumonitis, which was rapidly fatal despite 
adjunctive use of IVIG and inhaled ribavirin. He was treated with an infusion of maternal haplo-identical hematopoietic stem cells at 18 days of life. He was admitted 
at 10 days old (A) and died at 27 days old (B) due to worsening respiratory status. Note the absent thymus.
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overall approach to suspected PIDD (6–8). Bacterial infections 
are generally highlighted, and therefore this review will focus on 
unusual and severe viral infections.

ReSPiRATORY viRAL iNFeCTiONS  
iN PiDD

Respiratory viruses are extremely common in most patients with 
PIDDs (9, 10). In most cases, they represent nuisance infections 
that can be a predisposing condition leading to bacterial super-
infection. In patients with antibody defects, respiratory infections 
fall into this category. Although defense against recurrence of res-
piratory tract viruses is mediated largely by antibody, eradication 
of an infecting virus is mediated largely by the T cell compartment. 
Respiratory viral infections are therefore more significant in 
patients with T cell immune deficiencies. Today, many newborns 
with severe combined immune deficiency (SCID) are detected 
by newborn screening; however, this is not true in all parts of the 
world, nor is it true in all states in the USA. A study by the PIDTC 
found that 21% of their cohort had a respiratory infection prior to 
transplant with the most common being parainfluenza followed 
by RSV, rhinovirus, and influenza (11). Although other types 
of infections were more common as presenting features in this 
cohort, respiratory infections were among the least likely to resolve 
prior to transplant. All viral infections are typically prolonged in 
patients with T cell defects. However, in SCID, there are no T cells 
and a simple respiratory virus will progress relentlessly unless a 
hematopoietic stem cell transplant (HSCT) allows the infant to 
develop a competent immune system (Figure 1) (11). The specific 
pathogens to which children with T cell defects are susceptible 
include all of those common in the general population. RSV, 
influenza, and rhinovirus are typically the most prevalent during 
the respiratory season (12). Coronavirus and metapneumovirus 

have been increasingly recognized as causing respiratory infec-
tions. Exposures will dictate the pattern of viral infections in 
patients with T cell defects. The severity of disease is a result of 
both the degree of T cell compromise and the nature of the infect-
ing virus. Any patient with prolonged viral infections is at risk 
for bacterial superinfection. It is not, therefore, uncommon to 
see a mixed picture of viral and bacterial infections. Additionally, 
severe T cell defects are associated with compromised antibody 
production, also contributing to a mixed infection picture.

T cell defects are associated with a generally increased predis-
position to viral infections. IRF7 deficiency, in contrast, is associ-
ated with a selective susceptibility to influenza (13). It is otherwise 
uncommon to see an isolated susceptibility to a respiratory virus. 
The single reported patient had a severe primary infection with 
influenza associated with poor production of type I and type III 
interferons.

Diagnostic Approach
There are many specific genetic types of immunodeficiencies 
associated with T cell deficiency, and the diagnostic considera-
tions are different depending on the age of the patient. Infants 
with a prolonged or severe respiratory viral infection should be 
evaluated for SCID, and patients of any age with dysmorphic 
features or other associated features should be evaluated for 
chromosome 22q11.2 deletion syndrome (14). Most states now 
have a newborn screening program to detect SCID. The results 
can be accessed to identify significant T cell lymphopenia in early 
infancy. Newborn screening has significantly improved survival 
of infants with SCID. There are, however, significant T cell disor-
ders not identified by this test, and therefore, T cell disorders still 
represent a concern in the setting of a prolonged viral infection. 
T cell enumeration is often the quickest way to screen for T cell 
defects. The vast majority of T cell deficiency conditions will have 
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TABLe 1 | EBV susceptibility.

Phenotype Gene defect viral 
susceptibility

Other features

EBV viremia ITK EBV Lymphoma
EBV viremia MAGT1 EBV Lymphoma
EBV viremia CD27 EBV Low IgG
EBV viremia CORO1A Many viruses Lymphoma
EBV HLH SH2D1A EBV Lymphoma, 

dysgammaglobulinemia, 
and vasculitis

EBV HLH XIAP EBV Hypogammaglobulinemia
EBV 
lymphoma

MCM4 EBV, CMV Malignancy, short stature, 
adrenal insufficiency

Primary 
familial HLH

PRF1, UNC13D, 
STX11, STXBP3

EBV, CMV, 
others

Pigmentary 
dilution with 
HLH

LYST, RAB27A, 
AP3B1, BLOC1S6

EBV, CMV, 
others

Pigmentary dilution

EBV 
susceptibility 
with broad 
infectious 
susceptibility

Leaky SCID, 
most combined 
immunodeficiencies, 
WASP, WIPF1, 
PLCG2, PRKCD, 
ORAI1, STIM1, 
IKBKG, CASP8, 
STAT1 GOF, 
DOCK8, GATA2

Many viral 
susceptibilities

Gene dependent

GOF, gain of function; LOF, loss of function; EBV, Epstein–Barr virus; HLH, 
hemophagocytic lymphohistiocytosis; CMV, cytomegalovirus; SCID, severe combined 
immune deficiency; IgG, immunoglobulin G.
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low T cell numbers or at least low CD4/CD45RA (naïve) T cell 
counts. Additional studies include proliferative studies, exclu-
sion of HIV, and sequencing panels to identify inborn errors of 
immunity.

Management
Management of respiratory tract infections in non-SCID T cell 
defects is largely supportive with optimization of bronchodila-
tors, antiviral therapy if available and attention to nutrition (12). 
Management of respiratory tract infections in SCID is highly 
problematic. There is a race to replace the immune system before 
the virus can progress to the point of no return. This race is highly 
dependent on the type of transplant donor, type of conditioning, 
and type of transplant, but respiratory infections clearly impact 
the transplant outcome (11). Any adjunctive measure to improve 
respiratory status should be sought.

SYSTeMiC viRAL iNFeCTiONS iN PiDD

Children with severe T cell defects are also susceptible to systemic 
viral infections. Patients with SCID are extremely susceptible to 
progressive infection with cytomegalovirus (CMV) as well as other 
systemic viral infections. Infants with suspected SCID should 
be protected from exposures such as breast milk, transfusions, 
potentially infected siblings, live viral vaccines, and caregivers.

There is another circumstance in which susceptibility to 
gamma-herpes viruses such as CMV and Epstein–Barr virus 
(EBV) occurs. Table 1 lists conditions in which gamma-herpes 

virus susceptibility dominates the clinical picture. Patients with 
cytolytic T  cell defects (with or without concomitant NK  cell 
defects) exhibit a unique susceptibility to these gamma-herpes 
viruses (15). In some circumstances, the susceptibility is almost 
entirely limited to susceptibility to either severe mononucleosis 
or hemophagocytic lymphohistiocytosis (HLH). HLH is char-
acterized by excessive immune activation and can be diagnosed 
either by a molecular diagnosis consistent with HLH or clinically 
when patients meet five out of eight criteria: fever, splenomegaly, 
cytopenias affecting two or more blood lineages, hypertriglyc-
eridemia and/or hypofibrinogenemia, hemophagocytosis, low/
absent natural killer cell activity, hyperferritinemia, and high 
soluble interleukin-2 receptor levels (16). Any patient present-
ing with exceptionally severe mononucleosis or HLH should be 
screened for the HLH defects.

A second phenotype with susceptibility to EBV has a smolder-
ing or even asymptomatic presentation. These patients generally 
have an increased risk of lymphoma due to chronic EBV, but the 
manifestations of EBV may be subtle or absent. The X-linked 
disorder due to deficiency of MAGT1 is associated with a mild 
susceptibility to other infections but chronic EBV. Similar condi-
tions include deficiencies of CD27, CTPS1, RASGRP1, CD70, and 
MCM4. The importance in recognizing this group is due to their 
unpredictable capacity to control EBV and the risk of lymphore-
ticular malignancies.

Nearly all of the leaky SCID types and the combined immu-
nodeficiencies are associated with an increased risk of CMV and 
EBV (17, 18). This set of disorders can have a broad phenotype 
including Omenn’s phenotype, autoimmunity, granulomas, and 
infections (18–23). In these patients, EBV and CMV can drive 
progression to malignancy, and they require careful monitor-
ing. Leaky SCID has been defined as T cell lymphopenia (CD3 
300–1,500 cells/mm3); functional impairment as defined by 
proliferative responses, absence of maternal engraftment, and 
most often having identified hypomorphic mutations in genes 
associated with SCID.

Diagnostic Approach
When the consideration is prolonged infection with gamma-
herpes viruses without HLH, T cell counts and function can be 
helpful as supporting information but often genetic testing is the 
quickest approach. For HLH disorders, enumerating the HLH 
criteria is a useful exercise. CD163 staining of the bone marrow 
can be a sensitive way to identify active hemophagocytosis, but 
this is not required for the diagnosis (15, 16, 24). Additional 
maneuvers are measurement of IL-2R in the serum and CD107a 
on the surface as a marker for degranulation. HLH can occur 
without an underlying PIDD, and thus genetic analysis is often 
central to the management. Nearly always an underlying PIDD 
will require HSCT as definitive therapy, whereas HLH due to 
uncommon infections such as Leishmania, certain influenza 
viruses, and arboviruses will not require HSCT.

Management
Management of systemic viral infections relies on the availability 
of antiviral compounds. For CMV, therapy is often begun with 
ganciclovir or valganciclovir (25, 26). Foscarnet may be added if 
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FiGURe 2 | Bilateral plantar warts on a patient who had experienced 5 years 
of immune suppression for a cardiac transplant. Deep palmoplantar warts 
such as those in the top panel are referred to as myrmecila and can be 
painful. The small black markings are characteristic and represent small 
blood vessels that have grown into the exophytic lesion. Photo credit: 
Marissa J. Perman, MD.
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the virus is resistant or progressive in spite of adequate ganciclovir 
(27). Bone marrow toxicity from ganciclovir may also require a 
change to foscarnet. EBV in some cases is treated with rituximab 
to eliminate one important reservoir of virus (28). When HLH is 
present, a systemic approach to stabilize the patient and treat the 
underlying inflammation is essential (29). Risks and benefits of 
antiviral therapy must be carefully weighed as all approaches can 
have significant adverse events. Management decisions are often 
impacted by subsequent transplant strategies.

CHRONiC viRAL SKiN iNFeCTiONS iN 
PRiMARY iMMUNODeFiCieNCY

Cutaneous manifestations are common in PIDD. As many as 
two-thirds of the patients have cutaneous manifestations at some 
point. Atopy, infection, and inflammatory lesions have all been 
described, and there may be interplay between the features (30). 
Awareness of common skin infections is important both to aid 
in the early diagnosis and also in the treatment of potentially 
life-threatening infections that can begin in the skin. Bacterial 
infections are one of the most common findings in PIDD. For 
example, folliculitis, abscesses, and impetigo are typical in neu-
trophil defects. Similarly, a significant subset of PIDD diagnoses 
is associated with fungal infections. These can be seen both in 
T  cell defects as well as defects of the myeloid compartment. 
Chronic mucocutaneous candidiasis is most often due to defects 
that affect the Th17 cell production or function. These diseases 
generally do not overlap those with a susceptibility to cutaneous 
viral infections. One exception is STAT1 gain-of-function (GOF) 
mutations that render patients susceptible to a broad range of 
cutaneous infections. Viral infections of the skin are not nearly 
as common but are much more suggestive of PIDD. Severe her-
pes infections and papillomavirus are particularly characteristic 
of PIDD and can become the most notable feature in a patient. 
Chronic herpes virus and papillomavirus, in turn, predispose to 
cutaneous carcinoma and surveillance becomes important for 
this evolution. In this section, we will provide a brief synopsis 
about the individual disorders associated with susceptibility to 
papillomavirus.

Papillomaviridae
There are more than 200 strains of human papillomavirus (HPV). 
The diverse strains have variable malignant potential and tissue 
tropism. HPV causes warts in the general population with an 
incidence of cutaneous warts (Figure  2) that range from 1 to 
12% (31–33). School age children have been estimated to have 
a cutaneous warts prevalence of over 40% (34). While sexually 
active women 20–24 years of age have a prevalence of genital pap-
illomavirus of nearly 50% (35), clinically significant genital warts 
occur in only 5% of women (36). Genital HPV infection has been 
associated with malignant transformation, leading to the develop-
ment of the first vaccine intended to prevent cancer. Worldwide, 
5% of cancer is caused by HPV (37). Nearly all T cell disorders can 
be associated with increased susceptibility to warts; however, there 
is a small group of PIDDs that have warts as a cardinal feature (38). 
In these patients, the warts are recurrent, severe, and resistant to 
therapy. In most cases, the specific papillomaviruses are identical 

to those in the general population, and the appearance of the warts 
is the same as in the general population. In epidermodysplasia 
verruciformis (EV), however, there is a broader susceptibility to 
HPV types. In addition, the cutaneous manifestations are often 
atypical. Table 2 compares the features of the different conditions 
described below.

DOCK8 Deficiency
Patients with DOCK8 deficiency have a complex combined 
immunodeficiency secondary to disrupted cytoskeletal rear-
rangement (39). This includes an inability to properly assemble 
the immune synapse that fosters the signaling cascades required 
for lymphocyte memory differentiation (40). Lymphocyte migra-
tion through tissues is also compromised, contributing to the sus-
ceptibility to cutaneous infections (39). T cell counts are typically 
low for age, and there is impaired memory differentiation that 
may be progressive with age (41). Clinical features resemble that 
seen in Wiskott–Aldrich syndrome (WAS) including low IgM 
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TABLe 2 | Cutaneous viral infections in primary immunodeficiencies.

viral family virus increased susceptibility in which PiD Other features

Papillomaviridae HPV Ataxia telangiectasia; DOCK8; EV (EVER1, EVER2, 
RHOH; LCK); GATA2; Idiopathic T cell lymphopenia; 
Netherton syndrome; STK4/MST1; WHIM (CXCR4); 
WILD, CARMIL2/RLTPR, Clouston’s syndrome

EV: warts are often flat, appearing as actinic keratosis or seborrhea-like 
lesions and can have increased susceptibility to unusual HPV strains. No 
other infectious susceptibility
DOCK8, GATA2: also include susceptibility to HSV. Progressive lymphopenia 
seen

Herpesviridae HHV8/KSHV IFNGR1, OX40 Susceptibility to mycobacteria

HSV DOCK8; GATA2; NEMO; STAT1 GOF; STK4; CXCR4; 
Wiskott–Aldrich syndrome (WAS)

DOCK8, NEMO, STAT1 GOF: broad infectious susceptibility
CXCR4: pancytopenia, abnormal neutrophils
WAS: thrombocytopenia, eczema

VZV DOCK8; GATA2; STAT3 GOF; IFNGR1; RHOH; STAT1 
GOF; STK4

DOCK8, NEMO, STAT1 GOF: broad infectious susceptibility
CXCR4: pancytopenia, abnormal neutrophils
WAS: thrombocytopenia, eczema

Poxviridae MCV DOCK8; GATA2; IKBKG; STAT1 GOF; STK4; CXCR4; 
CARMIL2/RLTPR

DOCK8, IKBKG, STAT1 GOF: broad infectious susceptibility
CXCR4: pancytopenia, abnormal neutrophils
WAS: thrombocytopenia, eczema

Orf virus STAT1 GOF Broad infectious susceptibility

GOF, gain of function; LOF, loss of function; HPV, human papilloma virus; HSV, herpes simplex virus; EV, epidermodysplasia verruciformis; WHIM, warts, hypogammaglobulinemia, 
infections, and myelokathexis.
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and elevated IgE and IgA. Patients have significant atopy, infec-
tions, impaired specific antibody responses and poor memory 
B  cell responses, increased rates of malignancy, elevated IgE, 
and eosinophilia and are highly susceptible to cutaneous viral 
infections. Early in life, the atopic manifestations may dominate 
while the infectious susceptibility evolves. Skin infections are 
most often caused by HPV (including increased risk of malignant 
transformation of skin lesions), herpes simplex virus (HSV), mol-
luscum contagiosum virus, and varicella zoster virus (42). HSCT 
has been shown to be curative (43).

Epidermodysplasia Verruciformis
The term EV refers to a group of disorders in which patients are 
susceptible to beta-HPV with severe diffuse warts, and there is 
a striking increase in the rate of skin carcinomas (44). EVER1/
TMC6 and EVER2/TMC8 inactivating mutations cause auto-
somal recessive (AR) EV. EVER proteins are intracellular zinc 
transporters, and mutations lead to altered cell activation and a 
more permissive environment for HPV. Interestingly, the only 
infectious susceptibility is to HPV. Most patients present in child-
hood, but the appearance of the warts can lead to misdiagnosis 
as seborrhea or tinea versicolor. The warts are generally worse on 
sun-exposed skin for reasons that are not clear. The specific HPV 
types are not necessarily those seen in the general population as 
wart-associated. The therapy in EV is usually local control since 
the susceptibility does not relate to hematopoietic cell dysfunc-
tion; there is no role for HSCT.

LCK Deficiency
LCK deficiency causes atypical EV with CD4 T  cell deficiency 
as well as recurrent pneumonia and severe warts complicated by 
non-melanoma skin cancer (45). To date, only a single patient 
with LCK deficiency has been described, leading to uncertainty in 
the full spectrum of infectious susceptibility. Therapy is not clear 
for the same reason, but HSCT would be expected to be curative.

CARMIL2/RLTPR
Three Norwegian families have been identified with increased 
viral cutaneous infections (warts and molluscum contagiosum) 
as well as dermatitis and pneumonia. The four affected family 
members were found to share a single variant in this gene, with 
some evidence for a role in T cell activation (46).

RHOH Deficiency
Mutations in the RHOH gene (an atypical Rho GTPase) cause 
susceptibility to EV-type HPV strains, due to alterations in T cell 
activation and homing (47). Naïve T cell counts are low, and there 
is poor skin homing of T cells, with an increase in effector memory 
T cells in the setting of altered T cell receptor signaling. RHOH defi-
ciency infectious susceptibility was largely limited to HPV in the two 
siblings identified. In mice, the defect was correctable by transfer of 
wild-type bone marrow, suggesting that this is a potential treatment.

IKBKG Deficiency (NEMO)
Hypomorphic mutations in the central kinase of the canonical 
NFκB pathway lead to increased susceptibility to warts (48). 
This PIDD is associated with fine sparse hair, dental defects, 
and a broad susceptibility to infections including opportunistic 
infections. The spectrum of phenotypes is among the broadest 
among PIDDs. Lymphedema, osteopetrosis, susceptibility to 
pneumocystis and other fungi, mycobacterial susceptibility, and 
viral susceptibility call all be associated with IKBKG deficiency. 
Inflammatory bowel disease is also common. Cutaneous viral 
infections are common in this population but are not usually 
the dominant feature. Among the PIDD in this section, this is 
a disorder where the benefit of HSCT is unclear because HSCT 
outcomes have been poor.

GATA2 Deficiency
GATA2 mutations yield a complex set of phenotypes. Patients 
tend to have monocytopenia and low NK and B  cell counts 
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and have susceptibility to HPV, among other infections (49). 
The  laboratory defects are progressive with age and correlate 
with increasing infection burden. Clinical features include 
lymphedema, risk of malignancy, and pulmonary alveolar 
proteinosis. Infections include fungal infections and cutane-
ous viral infections. The cutaneous viral infections can be the 
most prominent feature but there is a wide-ranging phenotypic 
heterogeneity (50, 51). The cutaneous viral infections and genital 
HPV are associated with a high rate of malignant transformation.

STAT1 GOF
Patients with STAT1 GOF mutations can present with dramatic 
autoimmunity, usually including enteropathy and endocrinopa-
thies, or they can have a picture with a pronounced infectious 
susceptibility. Susceptibility to candida is common, but cutane-
ous viral infections can also be problematic (52, 53). The viral 
infections can become more problematic as immune suppression 
is used to control the enteropathy.

Netherton Syndrome
Patients with Netherton syndrome (secondary to SPINK5 
mutations) demonstrate congenital ichthyosis and have higher 
susceptibility to EV-associated HPV strains (53, 54). Although 
Netherton syndrome can have a mild humoral immune deficiency, 
the susceptibility to warts seems to be a result of disrupted local 
response to infection (55). The warts are generally controllable 
with local measures.

MST1 Deficiency
Serine–threonine kinase 4 (STK4), encoded by a gene called 
MST1, affects the FOXO1 transcription factor and thus impacts 
T cell lifespan and has been shown to increase susceptibility to 
HPV infections (56), as well as causing B cell lymphopenia. The 
phenotype also includes susceptibility to EBV and cutaneous viral 
infections.

Warts, Hypogammaglobulinemia, Infections, and 
Myelokathexis (WHIM) Syndrome
Warts, hypogammaglobulinemia, infections, and myelokathexis 
syndrome is caused by an autosomal dominant (AD) GOF 
mutation in CXCR4, which leads to increased susceptibility to 
HPV (57, 58). Varying degrees of pancytopenia can be seen, and 
hypogammaglobulinemia occurs in many (but not all) patients. 
Warts can be the most prominent susceptibility, but neutrope-
nia and hypogammaglobulinemia can drive diverse infectious 
susceptibilities. COPD and cutaneous carcinoma have been 
observed (59). WHIM can be treated with plerixafor or topical 
control measures for the warts.

WILD Syndrome
WILD (warts, depressed cell-mediated immunity, primary 
lymphedema, and anogenital dysplasia) is also correlated with 
severe warts without a known genetic etiology (60). Of note, this 
diagnosis does not lead to EV-defining HPV strain infections. 
A recent study demonstrates a case of a patient whose warts 
improved after quadrivalent HPV vaccination (61).

Clouston Syndrome
An ectodermal dysplasia syndrome with alterations in hair and 
nails (not generally in teeth) which can present with eccrine 
syringofibroadenomatosis that is reminiscent of EV and is associ-
ated with HPV infection (62).

Other Settings
Idiopathic CD4 T cell lymphopenia is associated with increased 
risk of cutaneous warts (63), and SCID patients post-HSCT can 
have an increased risk of warts, especially with specific underly-
ing mutations (64, 65).

Management
Management of cutaneous warts typically progresses from low 
level removal approaches involving topical therapy (freezing, 
electrosurgery, curettage, laser, chemical softening, and cantha-
ridin) to immune stimulants (imiquimod and antigens), bleomy-
cin, and antiviral therapy including cidofovir (66). Genital warts 
are treated with conceptually the same approach. Management of 
genital warts also includes special considerations for pregnancy, 
partners, and screening for malignancy (67–69). Interferon a2 and 
GM-CSF have been used successfully for papillomavirus (70, 71). 
In severe cases, therapy can be very unsatisfying. HSCT can result 
in prompt eradication, though JAK3 mutations and common γ 
chain SCID can have significant warts post-HSCT, which may 
be in part due to poor NK cell function (64). Topical cidofovir 
has recently been shown in a case report to be effective in some 
of these patients (72). In one case, regression was observed after 
papillomavirus vaccination (61).

Herpesviridae
The Herpes family of DNA viruses includes nine viruses patho-
genic for humans; CMV, EBV, HHV6a/b, HHV7, HSV1, HSV2, 
and KSHV, not all of which have skin tropism. Almost any type 
of T cell dysfunction is associated with an increased frequency 
of cutaneous HSV. The PIDD with a high likelihood of chronic 
or disfiguring cutaneous herpes are DOCK8, GATA2, NEMO/
IKBKG, STK4, WAS, STAT1 GOF, and WHIM (CXCR4 muta-
tions) as described above in association with warts. These same 
syndromes can manifest with severe primary varicella and an 
increased frequency and severity of zoster (73). Varicella and 
zoster can also be seen in settings with altered proportions of 
T cell subsets, as in STAT3 LOF deficient patients (AD-hyper IgE 
syndrome) (74) or cytokine signaling defects as seen in IFNGR1 
mutations (75). Thus, susceptibility to herpes viruses occurs in 
a broad range of T cells defects and is often part of a complex of 
susceptibility to many cutaneous viral infections. Herpes viruses 
can be particularly persistent and cause significant morbidity 
and mortality. Carcinoma is a feared consequence of recurrent 
or persistent infection and can be difficult to distinguish from 
persistently infected skin.

Management
Management includes acyclovir, valacyclovir, or famciclovir as 
initial options. IL-2 therapy has been used successfully in WAS 
(76). In WAS, it specifically improves NK cell function (77). Type 
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I and type II interferons have been used successfully in model 
systems (78, 79). Small studies of non-PIDD populations have 
supported its use in patients (80–83). Management should focus 
on prevention of recurrences and healing of cutaneous lesions. 
Malignant transformation relates in complex ways to persistence 
of infection.

Poxviridae
Poxviridae are double stranded DNA viruses. Molluscipoxvirus 
(i.e., molluscum contagiosum virus or MCV), orthopoxvirus (i.e., 
smallpox), parapoxvirus, and yatapoxvirus are the four genera 
that can infect humans. Susceptibility to poxviridae tends to 
be associated with susceptibility to other cutaneous viral infec-
tions. Therefore, many of the disorders described above have an 
increased susceptibility to poxviridae. Molluscum contagiosum 
in the most common pox virus infection in humans and in 
the general population is a self-limited infection with minimal 
residua (84). Severe molluscum contagiosum can be seen in 
DOCK8 deficiency, STK4 deficiency (56), GATA2, NEMO, STAT1 
GOF, and WHIM syndrome. Molluscum can be a significant issue 
for patients with WAS, as described in the Herpesviridae section.  
In addition, Orf virus, found in pasture animals, was found in a 
single patient with STAT1 GOF (85). Similar to herpes virus sus-
ceptibility described above, molluscum can be seen with nearly 
any T cell defect and typically arises in that setting as part of a  
susceptibility to many cutaneous viruses.

Management
Initial management of molluscum in a PIDD patient is control of 
spread through curettage, topical therapy such as salicylate, can-
tharidin, or immune stimulation with imiquimod (86, 87). Other 
topical approaches have also been used successfully. Retreatment 
2–4 weeks later is often required. If addressed early, spread may 
be controlled and the outbreak contained. For diffuse disease or 
disease that spreads despite all attempts at control, type I inter-
feron (interferon a2) has been suggested (88, 89). Intralesional 
immunotherapy with live antigen has been promoted but is 
contraindicated in PIDD patients with T cell defects (90, 91).

Persistent vaccine-Stain Rubella infection
Three studies have identified persistent vaccine-strain rubella 
in patients with moderate T  cell defects (91–93). Most of the 
patients have had ataxia telangiectasia but a wide range of PIDD 
diagnoses have been seen. Generally, the patients have had suf-
ficient T cell function to be leading relatively normal lives and the 
immune deficiency might not even be recognized at the time of 
the MMR vaccine administration. The manifestations have been 
largely cutaneous granulomas although chronic inflammation at 
other sites has been observed (91). Persistence of virus due to 
compromised T  cell control and acquisition of mutations that 
may further impact clearance is the proposed mechanism.

Diagnostic Considerations for Patients 
with Cutaneous viral infections
The above conditions are derived from defects in T cell, NK cell, 
and local tissue immunity. It is therefore nearly impossible to 

systematically screen for gene defects related to cutaneous viral 
infection susceptibility. A reasonable start is to define T  cells 
both quantitatively and functionally. If that is unrevealing and 
the phenotype suggests a PIDD, then whole exome sequencing 
may be appropriate.

GASTROiNTeSTiNAL (Gi) viRAL 
iNFeCTiONS

Chronic diarrhea (>6  weeks) is a frequent finding in PIDD 
patients. Given that the etiologies of chronic diarrhea in immuno-
deficient patients can be diverse, it is important to first distinguish 
if the diarrhea is infectious, malabsorptive, or inflammatory in 
nature as there are multiple types of PIDD that can present with 
autoimmune enteropathy or inflammatory bowel disease (94–96). 
PIDD patients are susceptible to multiple types of GI pathogens, 
and this section will focus on GI viruses. The concerted action of 
both the innate and adaptive immune system is necessary for viral 
clearance (97, 98). Therefore, there are a number of combined 
immunodeficiency phenotypes that result in susceptibility to GI 
viral pathogens, which manifest as prolonged illness as well as 
prolonged asymptomatic viral shedding.

Norovirus
Persistent infection with norovirus resulting in prolonged viral 
shedding and symptomatic disease has been noted in patients 
with SCID and various secondary immunodeficiency states 
(99). In a series of pediatric PIDD patients, it was the most fre-
quently isolated virus at 20.6%, with patients with SCID, major 
histocompatibility complex II deficiency, CD40L deficiency, and 
agammaglobulinemia represented in this series (100). Norovirus 
shedding can be prolonged in the stool of patients who were 
immunosuppressed following infection and norovirus can be part 
of multiple infections in the GI tract (101). In CVID, norovirus 
infection has been linked to development of severe enteropathy 
with prolonged viral carriage over the course of years (102). In 
several patients in this series, clearance of norovirus resulted in 
normalization of the GI enteropathy.

A concern about norovirus is the great difficulty in public 
health containment. A patient with PIDD who is shedding for a 
prolonged period of time is not only themselves at risk but also 
places those around at risk. Norovirus is a common pathogen 
in the general population, and exposures are therefore common. 
Norovirus is spread from the moment of illness to several days 
after clinical recovery. Both vomit and feces can spread virus. The 
virus lives on surfaces for up to 20 days, and alcohol-based clean-
ers are not completely effective. Patients with chronic norovirus 
should use bleach to clean surfaces. Vigorous hand washing with 
soap and water is also effective.

Hepatitis C
In the early 1990s, the United States FDA recommended that 
hepatitis C positive donors be excluded from the plasma donor 
pool resulting in loss of neutralizing hepatitis C viral antibodies 
from IVIG (103). Hepatitis C virus (HCV) infection was subse-
quently reported from several countries, which was due to the 
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presence of contaminating HCV virus from the small numbers 
of seronegative HCV positive donors (103–106). The severity 
of hepatitis seen in immunodeficient patients was variable, but 
subsets of patients with primary hypogammaglobulinemia were 
observed to have a more severe course of hepatitis, which in some 
cases was rapidly fatal (103, 105, 106). Younger age and early 
treatment with IFN were associated with better overall outcomes 
(103, 106). Following adoption of PCR screening for HCV and 
viral inactivation processes with solvent–detergent or pasteuriza-
tion there have been no subsequent reports of IVIG-associated 
HCV since 1996 (107). This cautionary tale supports surveillance 
of PIDD patients who have risk factors for HCV: blood product 
exposure, including IV drug use, infants born to HCV positive 
mothers, high-risk sexual behavior, shared personal items with 
potential blood exposure among HCV positive individuals. 
Today, therapy for HCV should improve outcomes compared to 
the cohort in the early 1990s.

Other Gi viruses
Adenovirus, enterovirus, and rotavirus have been isolated 
from single PIDD patients with chronic diarrhea, and the true 
incidence is not known (100). Chronic rotavirus infection has 
been described in patients with SCID and agammaglobulinemia 
(108). In patients with immunodeficiency, rotavirus can be 
poorly contained within the GI tract. On investigation at autopsy, 
active rotavirus replication has been identified in the liver and 
kidney of patients with SCID, complete DiGeorge syndrome, and 
acquired-immunodeficiency syndrome, illustrating poor control 
of viral replication in the setting of profound immunodeficiency 
(109). An important consideration is that SCID has been associ-
ated with susceptibility to the live rotavirus vaccine (110). Indeed, 
vaccine-strain illness is cleared only after immune reconstitution 
(110, 111).

CVID and agammaglobulinemia can rarely have prolonged 
asymptomatic shedding of vaccine-strain polio following immu-
nization with live-attenuated oral polio vaccine, which can pose 
risk to other immunocompromised members of the community 
(112–114). Additionally, central nervous system (CNS) infec-
tion can occur in agammaglobulinemia (see below). These are 
the main reasons that live polio vaccination is no longer used 
in the USA.

Management
Care for chronic GI viral infections in PIDD is primarily sup-
portive: optimizing hydration and nutrition. Orally administered 
immunoglobulin G (IgG) has been demonstrated to be effective 
as a therapy for chronic infectious diarrhea in antibody deficient 
patients (115, 116). Oral IgG survives passage through the stom-
ach and is bioavailable (116). Antiviral therapies are untested; 
however, they could be considered in severe disease.

viRAL iNFeCTiONS OF THe CNS iN PiDD

Viral infections of the CNS confer significant morbidity and mor-
tality in the general population (117–119). Therefore, they are not 
often considered to be indicators of primary immunodeficiency. 
There are two circumstances where an infection of the CNS is 

often associated with a primary immunodeficiency: atypical 
herpes simplex encephalitis and CNS enteroviral disease.

Herpes Simplex encephalitis
Herpes simplex encephalitis in the general population is most 
typically seen in newborns and is typically caused by herpes 
simplex type 2. Infection occurs at the time of delivery and infants 
present in the second week of life with agitation, obtundation, 
or seizures. Adults can develop herpes simplex encephalitis 
(120). Underlying immune compromise can be a risk factor for 
adult-onset herpes simplex encephalitis, and today HIV is the 
most common associated condition in adults. Herpes simplex 
encephalitis outside of the neonatal period may therefore sug-
gest an immunodeficiency. Among PIDD, defects in the toll-like 
receptor pathway are most strongly associated with this infection 
(Table 3) (121). Approximately 5% of children with herpes sim-
plex encephalitis have defects in the toll-like receptor pathway 
(122). Patients with these defects may present in childhood 
or adulthood, and some patients with just keratitis have been 
described (123). Recognition is important because therapy can 
be tailored if the defect is known. Surveillance and prevention of 
relapses is important. Several of these defects are inherited in an 
AD fashion, and therefore recognition of these PIDD is critical 
not only for management of the patient but also surveillance for 
other family members. A population study suggested that there 
may be additional defects inherited in an AR fashion yet to be 
defined (123). A key consideration is that the described toll-like 
receptor pathway defects are due to loss of local control in the 
CNS. Antibody and T cell responses are normal, and indeed, local 
mucosal recurrences are uncommon. As a consequence, testing 
of the hematopoietic cells is not revealing typically.

enteroviral Meningoencephalitis
Viral meningoencephalitis due to a prolonged infection with 
enterovirus is strongly suggestive of a specific class of PIDD. 
Enteroviruses are the most common cause of viral meningitis 
in the general population manifesting as acute onset headache 
with gradual resolution over days to a few weeks. In patients with 
agammaglobulinemia, manifestations are quite different (124). 
These children typically present with regression of developmental 
milestones. Ataxia or clumsiness may be noted by parents or on 
examination. Features early on are subtle, and the slow progres-
sion can lead to efforts at mitigation with physical therapy or 
behavioral strategies. In a patient with a known humoral immune 
deficiency, the index of suspicion should be high and a workup 
should not be delayed if there are clear neurologic signs or symp-
toms. CNS infection in patients with agammaglobulinemia has a 
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very poor prognosis. There can be other phenotypes associated 
with enteroviral disease in patients with agammaglobulinemia; 
however, CNS infection is the most common. Dermatomyositis 
and hepatitis have been described and have progressed in some 
cases to CNS infection. Treatment for enteroviral disease includes 
high dose immunoglobulin and when available, drugs directed at 
enterovirus.

A unique subset of CNS enteroviral infections occurs in 
either SCID or agammaglobulinemia with live-attenuated polio 
vaccine. Wild-type polio, occurring in three serotypes, has been 
nearly eradicated. Even early on, it was recognized that the live-
attenuated vaccine could cause disease (125) and that patients 
with hypogammaglobulinemia could excrete virus for years 
(126, 127). Currently, circulating wild-type polio is seen only in 
Afghanistan and Pakistan although virus can be isolated in sew-
age from other countries supporting ongoing risk for immuno-
deficient individuals (128). Vaccine-associated poliomyelitis can 
be due to infection of an immune deficient individual and spread 
to the CNS or to revertants of vaccine-strain virus (129, 130).  
In the latter case, even normal hosts can have overt paralytic 
disease. Vaccine-associated poliomyelitis can appear as acute flac-
cid paralysis or with a meningoencephalitis in immunodeficient 
individuals. The prognosis has generally been poor (131).

Diagnostic Approaches
Testing for defects related to herpes simplex encephalitis often 
involves genetic sequencing although functional analyses are 
available on a research basis. Table 3 lists the currently recognized 
genetic causes of susceptibility to herpes simplex encephalitis.

The diagnosis of enteroviral meningoencephalitis in PIDD 
patients requires a specific description. In a patient with agam-
maglobulinemia detection of enterovirus is surprisingly difficult. 
PCR analysis of cerebrospinal fluid or stool (less specific) should 
be performed. However, it is not unusual for children with 
agammaglobulinemia and suggestive clinical features to require 
a brain biopsy for diagnosis. The biopsy tissue can be tested for 
enterovirus by PCR. In a patient who presents with CNS entero-
viral disease, identification of an immune deficiency is critical 
because of the prognostic implications. The strong association 
of CNS enteroviral disease with agammaglobulinemia supports 
a strategy that begins with enumeration of peripheral blood 

B cells by flow cytometry. Only if that is negative and there are 
no other secondary immune deficiencies should alternatives such 
as CD40L or CVID be sought. A reasonable secondary screen 
would be to measure immunoglobulin levels and responses to 
vaccines.

Management
Management of herpes simplex encephalitis requires specific 
antiviral approaches as well as attention to seizures, increased 
intracranial pressure, and a comprehensive intensive care 
approach. Acyclovir delivered intravenously is the cornerstone 
of management. One should consider a prolonged course of oral 
therapy after initial management that could include oral acyclovir 
or valacyclovir because the relapse rate is high in these toll-like 
receptor pathway defects. The role of steroids is controversial. 
One small study of immune competent children supported the 
use of beta-interferon (132), and it could be argued that inter-
ferons specifically mitigate the underlying defect in the toll-like 
receptor pathway disorders.

Management of CNS enteroviral disease in agammaglobuline-
mia has recently been reviewed (124). In the USA, antiviral drugs 
are not available, but pocapavir is under study and may become 
available. High dose IVIG has been proposed as therapeutic, but 
survival rates remain dismal and functional outcomes are poor.

SUMMARY

Viral infections are a common cause of morbidity in patients 
with PIDDs. They can be a clue to the diagnosis when persistent 
or unusually severe and can represent a significant management 
challenge.
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