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Natural killer (NK) cells are potent antitumor effectors, involved in hematological malignancies  
and solid tumor immunosurveillance. They infiltrate various solid tumors, and their 
numbers are correlated with good outcome. The function of NK cells extends their lytic 
capacities toward tumor cells expressing stress-induced ligands, through secretion of 
immunoregulatory cytokines, and interactions with other immune cells. Altered NK cell 
function due to tumor immune escape is frequent in advanced tumors; however, strat-
egies to release the function of NK infiltrating tumors are emerging. Recent therapies 
targeting specific oncogenic mutations improved the treatment of cancer patients, but 
patients often relapse. The actual development consists in combined therapeutic strat-
egies including agents targeting the proliferation of tumor cells and others restorating 
functional antitumor immune effectors for efficient and durable efficacy of anticancer 
treatment. In that context, we discuss the recent results of the literature to propose 
hypotheses concerning the potential use of NK cells, potent antitumor cytotoxic effec-
tors, to design novel antitumor strategies.

Keywords: tumour immunosurveillance, natural killer ligands, immune checkpoint inhibitors, BrAF inhibitor, 
AMLMDs, melanoma

iNtrODUctiON

Natural killer cells have been known and actively studied for more than four decades. They were first 
described as large granular lymphocytes cytotoxic for various tumor cells without prior stimulation 
(1, 2). In addition to their cytolytic activity against neoplastic and virus-infected cells, NK  cells 
also display immunomodulatory functions by their ability to release cytokines, like interferon-γ 
(IFNγ) and tumor necrosis factor-α (TNFα), and chemokines. NK cells represent 5–15% of blood 
lymphocytes. They are present in the bone marrow, liver, uterus, spleen, lungs, in mucosa-associated 
lymphoid tissues, thymus, and secondary lymphoid tissues (SLT) and are recruited in inflamed sites. 
In SLT, NK cells provide an early source of IFNγ and interact with dendritic cells to promote T helper 
cell type 1 responses (3).

Natural killer cells are now grouped in the system of innate lymphoid cells (4). These populations, 
mostly tissue resident and characterized by their capacity to produce high amounts of cytokines, 
constitute innate homologs of T helper cell (CD4) and cytotoxic T cell (CD8) subsets. ILCs are impli-
cated in tissue homeostasis and autoimmune diseases. Their distribution and capacity to produce 
cytokines suggest that they may also be involved in the development or evolution of cancer. NK cells 
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are considered as cytotoxic counterparts of ILC1, both depending 
on the T-bet transcription factor for their development.

Human NK  cells, defined as CD45+/CD3−/CD56+ cells (5), 
are classically subdivided in two subsets based on the relative 
membrane expression of CD56 and CD16, the low-affinity 
receptor for the Fc portion of IgG (FcγRIIIA): CD56dim NK cells 
that express high levels of CD16 mediate antibody dependent 
cell cytotoxicity (ADCC), whereas CD56bright NK cells express no 
or low levels of CD16. These two subsets are present in different 
proportions in the different tissues. CD56dim NK cells represent 
90% of blood and splenic NK  cells, while CD56bright NK  cells 
predominate over CD56dim in the SLT [lymph nodes (LN) and 
tonsils] representing up to 90% of NK cells and also constitute 
the major NK subset in tissues. It is accepted that CD56bright 
NK cells are less mature than CD56dim NK cells and display an 
immunoregulatory function, secreting high amounts of IFNγ 
and TNFα. CD56dim NK cells represent mature NK cells with a 
high cytotoxic activity (6).

The activation of NK  cells is tightly regulated by a balance 
between activating and inhibitory signals delivered through 
engagement of numerous activating and inhibitory receptors 
with ligands on the target cell. Natural cytotoxicity receptors 
(NCRs), such as NKp46 and NKp30, are expressed by resting 
NK cells while NKp44 is induced after activation by cytokines, 
such as IL-2 and IL-15 (7, 8). The NCRs are implicated in the lysis 
of various tumor cells (9). The activating NK group 2 member 
D (NKG2D) receptor is expressed by most circulating NK cells 
and binds the stress-induced MHC-class I polypeptide-related 
sequence (MIC)-A/B molecules and UL16-binding proteins 1–6 
(ULBP1–6) (10). DNAX accessory molecule-1 (DNAM-1) binds 
Nectin family molecules CD155 and CD112.

Natural killer cell activation is efficiently controlled by spe-
cific inhibitory NK receptors binding human leukocyte antigen 
of class I (HLA-class I) molecules. The C-type lectin CD94/
NKG2A receptor binds HLA-E molecules (11) sensing the global 
HLA-class I molecules on the target while killer Ig-like receptors 
(KIRs) bind classical HLA-class I molecules, including HLA-C, 
HLA-Bw4, and some HLA-A alleles.

NK ceLLs iN tUMOr 
iMMUNOsUrveiLLANce

A link between NK  cell function and cancer development was 
reported in a Japanese 11-year follow-up study including 3,625 
patients in which cancer incidence was negatively correlated 
with blood NK-mediated cytotoxicity (12). Authors further 
showed that individuals with particular NKG2D haplotypes, 
HNK1/HNK1 haplotype (correlated with high NK activity) had a 
decreased risk of cancer compared to those with an LNK1/LNK1 
haplotype (correlated with low NK activity) (13).

Additional results including ours showed the impact of NCR 
transcripts in the evolution of melanoma, lung cancers, and 
gastrointestinal stromal tumors (GIST) patients (14–16). High 
NKp46 correlated with better survival in metastatic melanoma 
patients and particular profiles of NKp30 isoforms was associated 
with better outcome and response to treatment in GIST patients.

The cancer immunoediting process (17) resumes cancer 
progression in three phases. In the elimination phase, immune 
cells and among them NK cells eradicate developing tumor cells. 
During the equilibrium phase, the immune system may select 
tumor variants with less immunogenicity gradually leading to 
the tumor escape phase and tumor progression. It is considered 
that most tumors at diagnosis are in the phase of immune escape 
associated with functionally altered tumor infiltrating NK cells 
(18). Tumor immunoediting selecting variants with decreased 
expression of stress-induced ligands provide tumor escape to 
NK cell-mediated lysis through activating receptors NKG2D or 
NKp46 (19, 20).

The challenge is thus to overcome tumor immunosuppres-
sion and restore NK  cell activities. To this aim, understand-
ing the mechanisms that lead to NK  cell defects in tumor is 
required.

NK ceLLs iN HeMAtOLOGicAL 
MALiGNANcies

Numerous studies showed that severe quantitative and 
qualitative alterations of NK cells are associated with different 
hematological malignancies, particularly in myeloid disorders. 
In chronic myelogenous leukemia patients, low numbers of 
NK cells are associated with defects in their proliferation, and 
weak NK  cell cytolytic functions in comparison with healthy 
donor blood NK cells (21). Furthermore, profound alterations in 
the activating receptors profile have also been reported including 
downregulation of NKp30 and NKp46 as well as DNAM-1, 2B4, 
and NKG2C on NK cells from acute myeloid leukemia (AML) 
patients. Decreased NKp30 and NKp46 expression was corre-
lated with reduced NK cell killing and poor leukemia prognosis 
(22–25). Recently, Khaznadar et  al. analyzed by cell imaging 
the lytic NK immunological synapse following interaction with 
AML cells and showed defective lytic granule polarization in 
NK cell-AML conjugates leading to impaired NK cell cytotoxic 
function (26).

Importantly, the intimate relationship between immune 
pressure and leukemogenesis has been suggested in two recent 
studies. Stringaris et  al. described an immunoediting process 
induced by AML blasts that limits NK cell control of leukemia. 
They showed that abnormal NKG2A expression and TNFα 
production predict a poor response to chemotherapy in AML 
patients (27). Conversely, Khaznadar et al. showed that NK cell 
defects in AML patients at diagnosis could be associated with a 
specific transcriptional program in AML blasts and with patient’s 
outcome including relapse occurrence (28).

Furthermore, the beneficial role in the graft-versus-leukemia 
(GvL) of allogeneic NK  cells for leukemic patients receiving 
allogeneic hematopoietic stem cell transplantation (HSCT) is 
well documented (29). Several studies showed that NK cells have 
a potent GvL effect in both KIR/HLA-class I-mismatched and 
-matched donor–recipient combinations after allogenic HSCT in 
AML patients (30–32). Moreover, rapid NK recovery after HSCT 
is also associated with a greater GvL effect and improved outcome 
in AML patients (33).
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NK ceLLs iN sOLiD tUMOrs

In situ detection of NK cells infiltrating various human tumors/
tissues was carried out, leading sometimes to divergent results due 
to the disparity of NK cell markers used (CD57, CD56, NKp46, 
double CD3/CD56 staining). However, several reports showed 
that NK  cells can infiltrate clear-cell renal cell carcinoma (34), 
melanoma (35), non-small cell lung cancer (NSCLC) (36), breast 
cancer (BC) (37), GIST (38), and colorectal carcinoma (CRC) (39) 
although NK cells were mainly localized at the tumor’s periphery. 
In several tumors, infiltrations by NK cells were reported to have 
a prognostic value. Increased overall survival was associated with 
a high NK  cell infiltrate within the tumor or tumor stroma in 
lung adenocarcinoma (40), metastatic renal carcinoma (41), and 
lung metastasis of renal cancer (42). Elevated number of NK cells 
was associated with reduced risk of cancer progression in prostate 
cancer (43), with a reduced risk of death in squamous cell lung 
cancer (44), and a better prognosis in gastric carcinoma (45) and 
CRC (46). In addition, the number of NKp46+ NK cells was found 
inversely correlated with metastasis occurrence in patients with 
GIST (47). Furthermore, a positive association between a high 
numbers of tumor infiltrating CD56+ NK cells with a regression 
of melanocytic lesions was observed (48).

In most tumor types studied, ex vivo tumor-infiltrating NK cells 
displayed severe phenotypic and functional alterations compared 
to blood NK cells and more interestingly compared to NK cells 
present in adjacent normal tissues. Those alterations affected 
the expression of activating receptors including NKp30, CD16, 
DNAM-1, and ILT2 on NK cells from patients with non-invasive 
and invasive BC (49) or NSCLC (36). A concomitant-increased 
expression of the inhibitory molecule NKG2A was also observed 
in BC (49). This deficient phenotype was associated with impaired 
functions including decreased cytotoxicity against tumor cells 
(36, 49) and reduced IFNγ production (36). Recently, Carrega 
et al. reported that lung and BC tissues were highly enriched in 
CD56brightperforinlow NK  cell subset compared to matched nor-
mal tissues (37). It is of note that comparison between NK cells 
from tumor and normal adjacent tissue is required for better 
understanding of the effect of the tumor environment on their 
activation.

Interestingly, our team recently identified in tumor draining LN 
from melanoma and BC patients, the presence of a CD56brightCD16+ 
NK-cell subset that displays higher expression of activating 
receptors, perforin molecules, and performs ADCC (50). We 
found that different NK receptors regulate the two LN-NK cell 
subsets in melanoma and BC (personal communication)  
and that NK-infiltrating LN recapitulate the alterations reported 
in the primary tumors. The presence of CD16+ NK cells in certain 
tumors (51) and metastatic LN emphasizes the interest for ADCC 
function of such NK cells.

Alterations in Blood NK cells  
from Patients with solid tumors
Alterations in blood NK  cells from patients with solid tumors 
were also reported, but in a lesser extent than in tumor infiltrat-
ing NK  cells. Compared to healthy donors, a downregulation 

of NKG2D and an increase of the inhibitory receptor CD158b 
expression were correlated with impaired NK  cell function 
(52–54) in metastatic melanoma patients. Our group showed 
a progressive decrease of NKp46 expression on blood NK cells 
with the disease progression in melanoma patients (55). In BC 
patients with invasive tumor, blood NK  cells display altered 
expression of activating receptors NKp30, NKG2D, DNAM-1, 
2B4, and CD16 and an upregulation of the inhibitory receptors 
NKG2A and CD85j. This phenotypic change was correlated with 
decreased NK cell cytotoxicity function and cytokine production 
(IFNγ and TNFα) (49). Blood NK cells from soft-tissue sarcoma 
patients displayed reduced proportions of CD56dim NK cells. Low 
percentages of blood NK cells associated with a reduced NKp30, 
NKp46, and NKG2D expression were reported in patients with 
invasive squamous cervical cancer (56).

NK ceLLs: A POteNtiAL PArtNer  
FOr tArGeteD tHerAPies

The advent of targeted therapies that counteract a vital cellular 
process within the tumor cell greatly improved cancer treatment 
strategies. Thus, mitogen-activated protein kinase (MAPK) 
inhibitors that control the mutation-driven oncogenic pathway 
present in most cancers are new efficient players in the arsenal of 
therapies for cancer patients. In addition, monoclonal antibod-
ies (mAbs) that recognize tumor-associated antigens have been 
established as one of the most successful therapeutic strategies 
for both hematologic malignancies and solid tumors. These mAbs 
may activate antibody-dependent cell-mediated cytotoxicity 
involving NK cells.

Combining targeted therapies and methods to stimulate 
patient’s immune players is actively evaluated and represents a 
promising and natural evolution in cancer treatment as this could 
ally immediate efficiency, specificity, and long-term antitumor 
efficacy.

It is of note that targeted therapies also display off-target 
effects, connecting oncogenesis to immunosurveillance. We dis-
cuss below the interest of NK cell-based therapies in the context 
of such tumor-targeted therapies (Figure 1).

effect of cancer treatment on NK cells
Most melanoma patients (65%) bear a BRAF-mutated tumor 
and receive specific inhibitors targeting mutated BRAFV600E 
alone or in combination with MEK inhibitors, upstream of ERK 
(57). These inhibitors may exert bystander effects on certain 
immune cells that depend on MAPK for their activation and/or 
proliferation. BRAF inhibitors do not affect NK cell phenotype 
in vivo and in vitro, but blood NK cell numbers were increased 
in vemurafenib-treated patients (58, 59). MEK inhibition alters 
the expression of the main NK receptors and the function of 
cytokine-activated NK cells, but the combined BRAF and MEK 
inhibitors did not (60).

In addition, targeted therapies may interfere with the NK/
target interactions through modulation of NK ligands on cancer  
cells. We have shown that a BRAF inhibitor modulates the 
expression of MICA and ULBP2 (ligands of NKG2D), changing 
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the ratio between membrane expression and soluble form, and 
increases B7H6 (ligand of NKp30) expression and HLA-A,B,C 
and HLA-E molecules expression that engage inhibitory recep-
tors (KIRs, NKG2A), thus interfering with NK cell-mediated lysis 
(in revision). Resistance to a BRAF inhibitor is accompanied by 
higher NK ligands expression (personal communications).

Our findings and recent results from the literature emphasize 
that therapeutics designed to limit cancer cell growth by acting 
through kinase inhibitors should also be considered in terms of 
their impact on immunosurveillance (61). In a murine model 
of BRAF-mutated melanoma, host NK  cells and perforin were 
required for the effect of a BRAF inhibitor (62) and correlated 
with the reduction of tumor growth, and an increased NK and 
T cell infiltration of the tumors (63).

Combining specific MAPK inhibitors with immunotherapies 
to increase response rates is evaluated leading to yet discordant 
results. BRAF inhibition augments melanoma antigen expression 
and maintains T cell function (64). However, inhibition of BRAF 
in a murine model of human melanoma was associated with 
decreased tumor-resident lymphocytes and resistance to CTLA-4 
mAb (65). MEK inhibitors increased antigen-specific T  cell 

within the tumor sparing their cytotoxicity and combined with 
anti-PD-L1 mAb they exerted a synergic effect of tumor growth 
inhibition (66). Other kinase inhibitors such as those targeting 
Jak involved in the signaling cascade of cytokine receptors may 
influence NK (67).

A better understanding of off-target efficacy of MAPK inhibition 
affecting tumor–host interactions is required to develop strategies 
aimed at facilitating antitumor immune responses. The emerging 
findings indicate a potential synergy between targeted therapies, 
which change the balance between ligands of activating and inhibi-
tory NK receptors, and NK-based immunotherapies, opening new 
interesting opportunities for the design of clinical trials.

Anti-Kir/Anti-NKG2A mAbs: increasing 
NK Function by Blocking Negative 
signaling
One promising approach is to release NK  cell function with 
anti-KIR or anti-NKG2A mAbs as NK cells are strictly controlled 
by receptors specific for HLA-class I molecules. Fully human 
anti-KIR mAbs, 1-7F9 mAb, and then lirilumab (recombinant 
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version with a stabilized hinge) were generated (68). They prevent 
the binding of KIR2DL1, KIR2DL2, and KIR2DL3 receptors to 
their HLA-C ligands and blocking their inhibitory signaling.  
In vitro and in vivo studies showed that anti-KIR mAbs augmented 
NK cell-mediated lysis of HLA-C+ tumor cells, including autolo-
gous AML blasts and autologous CD138+ multiple myeloma cells 
(68–71). In addition, transient increases of TNFα and MIP-1β 
serum concentrations and CD69 expression on NK  cells were 
observed from treated patients (72). In a clinical trial, Benson 
et  al. showed that 1-7F9 mAb is safe in patients with multiple 
myeloma and enhances ex vivo patient-derived NK cell cytotoxic-
ity against tumor cells (73).

Other immune receptors highly expressed by NK cells are in 
development, such as anti-NKG2A (monalizumab).

Targeting inhibitory pathways in NK cell/tumor interactions 
may be complementary to small-molecule inhibitors for the 
treatment of advanced tumors such as melanoma. The prospect 
of combining NK  cell-based immunotherapy with approaches 
to target the immunosuppressive tumor microenvironment or 
immune checkpoints, such as KIR blockade, is especially relevant 
to the treatment of solid tumors (74, 75) and particularly for 
tumors refractory to targeted therapies.

NK cell-Mediated ADcc Using  
tumor-specific mAb
Natural killer cells express activating low-affinity FcgRIIIa 
(CD16) and are key mediators of antibody-dependent cellular 
cytotoxicity. The relevance of ADCC in tumor control using 
therapeutic mAbs was evaluated in several cancers. The contri-
bution of ADCC to the clinical efficacy of a therapeutic mAb 
has been observed in non-Hodgkin’s lymphoma patients treated 
by anti-CD20 (rituximab) (76). Other therapeutic mAbs likely 
inducing NK  cell-mediated ADCC are anti-CD19 in patients 
with B malignancies, anti-GD2 in neuroblastoma patients, and 
anti-HER2 mAbs (trastuzumab) in metastatic breast and gastric 
cancer patients (76–78). Anti-EGFR mAb (cetuximab) was 
shown to increase ADCC-mediated lysis of colon tumor cells by 
blood NK cells from colorectal cancer patients that display altered 
natural cytotoxic activity (51).

Several modifications of the antibody structure, such as class 
switching, humanization, and point mutations to reduce comple-
ment interaction/activation, are developed to engineer mAbs 
with increased NK cell ADCC function and limit their toxicity. 
Thus, humanized anti-GD2 mAb (hu3F8-IgG1) exerts reduced 
toxicity compared to other anti-GD2 mAbs, by leveraging ADCC 
over complement-mediated cytotoxicity (79). Higher FcγRIIIA-
binding affinity of anti-CD19 antibody significantly increased 
NK  cell-mediated ADCC, leading to malignant B-cell clearing 
in non-human primates (78, 80). Other strategies to enhance the 

effect of ADCC include the coadministration of cytokines, IL-12 
with anti-HER2/neu (trastuzumab) (81) to stimulate IFNγ pro-
duction by NK cells and T cells and promote the CD56dimCD16+ 
NK  cell differentiation to mediate ADCC (82). Co-infusion of 
anti-CD20 (rituximab) and TLR9 agonist (CpG) that is known 
to raise the membrane expression of CD20 on malignant B cells 
enhances ADCC (83). The infusion of immunocytokines, 
cytokines linked to the Fc terminus of humanized Abs, is also 
evaluated to potentiate ADCC. In preclinical study, Buhtoiarov 
et  al. demonstrated that the humanized anti-GD2 immuno-
cytokine hu14.18-IL-2 exerts higher antitumor effect than the 
reagents given separately (84).

Combining tumor-specific mAbs and mAbs targeting NK 
receptors (NKG2D, costimulatory molecule CD137) is another 
option. Anti-CD137 coadministred with rituximab led to a 
subsequent stimulation of these NK cells and enhanced rituxi-
mab-dependent cytotoxicity against the lymphoma cells (85). 
Furthermore, combination of rituximab with antibodies that 
block KIR2DL1 significantly improved NK cell-mediated lysis of 
tumor targets (86).

cONcLUsiON

Restoring NK  cell functions in addition to administration of 
tumor-specific therapies with kinase inhibitors or tumor-specific 
mAbs may benefit patients. It would increase the control of 
residual tumor cells, enhance mAbs efficiency, and promote the 
adaptive immune response necessary for long-lasting protective 
immunity. In that context, cytokines, blockade of inhibitory  
NK receptors (KIRs, NKG2A), or transfer of alloreactive NK cells 
are promising NK-based therapies.
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