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Interferon-lambda (IFN-λ) is a recently described cytokine found to be of critical impor-
tance in innate immune regulation of intestinal viruses. Endogenous IFN-λ has potent 
antiviral effects and has been shown to control multiple intestinal viruses and may rep-
resent a factor that contributes to human variability in response to infection. Importantly, 
recombinant IFN-λ has therapeutic potential against enteric viral infections, many of 
which lack other effective treatments. In this mini-review, we describe recent advances 
regarding IFN-λ-mediated regulation of enteric viruses with important clinical relevance 
including rotavirus, reovirus, and norovirus. We also briefly discuss IFN-λ interactions 
with other cytokines important in the intestine, and how IFN-λ may play a role in regu-
lation of intestinal viruses by the commensal microbiome. Finally, we indicate currently 
outstanding questions regarding IFN-λ control of enteric infections that remain to be 
explored to enhance our understanding of this important immune molecule.

Keywords: interferon-lambda, enteric virus, innate immunity, transkingdom interactions, norovirus, rotavirus, 
commensal bacteria

An inTRODUCTiOn TO inTeRFeROn-LAMBDA (iFn-λ)  
in THe inTeSTine

Animals can mount potent and rapid innate immune responses to invading viruses. The classic 
signaling pathway by which this response occurs is via type I interferons (IFNs), including IFN-
beta (IFN-β) and multiple IFN-alphas (IFN-α) (1). When cells sense viral products, type I IFNs are 
produced, which stimulate transcription of antiviral molecules that act in autocrine and paracrine 
fashion. However, in the past decade, an important paradigm shift has occurred in how we consider 
the compartmentalization of viral responses into systemic versus mucosal responders, driven in large 
part by the discovery of type III IFNs, or IFN-λ.

First described in 2003 (2, 3), the IFN-λ family of cytokines includes up to four members in 
humans, dependent on genetic polymorphisms (4, 5), and two functional orthologs in mice (6, 7).  
The family, likely arising from a common ancestral fish IFN gene that gave rise to both type I and 
III IFN families, is conserved to chickens (8, 9). The type III IFNs are under positive selection, 
with long-term persistence of duplicate copies suggesting a critical biological role for type III IFNs 
independent from type I IFNs (9). Pattern-recognition receptors, including RIG-I and MDA5, detect 
viruses and induce type I and III IFNs via MAVS and IRF3/IRF7 signaling (10–12) (Figure 1). IRF1 
plays a unique role in type III IFN induction, however, being specifically stimulated by peroxisome-
associated MAVS in contrast to mitochondrial-associated MAVS, which better induces type I IFNs 

http://www.frontiersin.org/Immunology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2017.00749&domain=pdf&date_stamp=2017-06-30
http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
https://doi.org/10.3389/fimmu.2017.00749
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:mbaldridge@wustl.edu
https://doi.org/10.3389/fimmu.2017.00749
http://www.frontiersin.org/Journal/10.3389/fimmu.2017.00749/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2017.00749/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2017.00749/abstract
http://loop.frontiersin.org/people/441617
http://loop.frontiersin.org/people/359162


FigURe 1 | Effects of interferon-lambda (IFN-λ) on viruses in the intestine. Upon intestinal viral infection, viral RNA is sensed by pattern-recognition receptors, RIG-I, 
MDA5, and NLRP6, which signal through mitochondria- or peroxisome-associated MAVS to stimulate transcription of type I and III IFN by IRF3/IRF7 and IRF1. IFN-λ 
is produced by intestinal epithelial cells (IECs) and possibly immune cells in the intestine. IFN-λ signaling through the IFN-λ-receptor (IFNλR) on IECs stimulates 
production of antiviral effectors, or interferon-stimulated genes (ISGs), via STAT1/STAT2/IRF9-mediated transcription. IFN-λ thus serves to regulate viral levels in the 
intestine. IFN-λ can interact with IL-22, whose receptor is expressed on IECs (IL22R), to coordinately regulate viral infection, and in some settings may also interact 
with type I IFNs, which signal through IFNαR. IFN-λ has also been shown to play a role in influencing interactions between commensal bacteria and enteric viral 
pathogens.
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(13). Intestinal epithelial cells (IECs) produce type III IFNs 
with in vivo viral infection (14–16). However, leukocytes gener-
ate IFN-λ in  vitro (10, 17), and intestinal eosinophils (18) and 
plasmacytoid dendritic cells (pDCs) (19) can produce IFN-λ 
in  vivo, suggesting the possibility of additional cellular IFN-λ 
contributors.

While the antiviral programs induced by type I and type III 
IFNs exhibit substantial overlap (20–22) (Figure  1), a critical 
difference between the two is the cell types they affect secondary 
to receptor expression. The IFN-λ receptor consists of IFNLR1 
and IL10Rβ. While the receptor for type I IFNs, IFNAR1, is 
expressed broadly on the majority of cell types, IFNLR1 exhibits 
a much more restricted pattern of expression (23). In the intes-
tine, IFNLR1 is expressed preferentially on IECs, allowing for a 

compartmentalized response to viruses infecting at this mucosal 
surface (24, 25). While IFNLR1 expression has also been reported 
on NK cells, T cells, B cells, and pDCs (26–30), no role has been 
found for these cells in IFN-λ-mediated antiviral responses. Type 
I IFNs, on the other hand, are critical for preventing a virus from 
moving past this initial epithelial barrier into systemic tissues 
(24, 25, 31). The host may benefit by inducing specific and local 
barrier defenses at a site commonly exposed to pathogens via 
IFN-λ signaling, and thus avoid potentially detrimental systemic 
inflammatory responses by type I IFNs. Many autoimmune dis-
eases, as well as the congenital interferonopathies, are secondary 
to excessive type I IFN activity (32, 33).

There is an ever-expanding set of roles being discovered for 
IFN-λ signaling, from control of viral infections in liver (34), 
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TABLe 1 | Interferon-lambda (IFN-λ) interactions with intestinal viruses in vivo and in vitro.

virus Strain In vivo phenotypes In vitro phenotypes Reference

Rotavirus (RV) EDIM  * Mice lacking Ifnlr1 in all cells exhibit increased viral shedding,  
intestinal titers, and tissue damage

 * RV infection induces IFN-λ production in intestinal epithelial cells (IECs)
 * Treatment with exogenous IFN-λ prevents RV replication in the intestine

(16, 41)

EW  * Mice lacking Ifnlr1, Ifnar1, or Stat1 in all cells exhibit similar  
level of viral shedding, intestinal titers

(24)

Rhesus strain 
of rotavirus

 * Mice lacking Ifnlr1, Ifnar1, or Stat1 in all cells exhibit increased  
level of viral shedding, intestinal titers

(24)

Ito, Wa  * Human RV infection induces IFN-λ 
expression in human intestinal enteroids

 * Treatment with exogenous IFN-λ inhibits 
RV replication in enteroids

 * Blocking endogenous IFN-λ has no effect 
on viral production

(43)

Reovirus Type 3 
Dearing

 * Adult mice lacking Ifnlr1 in all cells exhibit higher viral  
shedding of reovirus

 * Suckling mice lacking Ifnlr1 in all cells exhibit higher viral  
shedding and tissue titers of reovirus, increased tissue  
damage and severe mortality

 * Mice lacking Ifnlr1 exhibit higher reovirus infection in IECs,  
while mice lacking Ifnar1 exhibit higher infection in lamina propria cells

(14)

Type 1 Lang  * Mice lacking Ifnlr1 in all cells or only in IECs exhibit higher  
viral shedding and intestinal titers of reovirus

(50)

Norovirus CR6  * Mice lacking Ifnlr1 in all cells or only in IECs exhibit higher  
viral shedding and intestinal titers of persistent murine NoV (MNoV)

 * Treatment with recombinant IFN-λ prevents and cures  
persistent MNoV infection, dependent on IEC expression of Ifnlr1

 * NoV dependence on the commensal microbiome for  
infection is absent in mice lacking Ifnlr1

(50, 64, 93)

 * Replication of transfected human NoV 
RNA is sensitive to IFN-λ treatment, but 
does not induce IFN-λ expression

(59)

Enterovirus EV71  * Enterovirus 71 induces IFN-λ expression in 
human IEC line

(72)

Parvovirus  * Canine parvovirus is more sensitive to  
IFN-λ than type I IFN

(73)

Coronavirus CV777 
LNCT2

 * Porcine epidemic diarrhea virus is sensitive 
to IFN-λ when cultured in a porcine IEC line

(74)
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lung (35), and brain (36), to regulation of non-infectious diseases 
like inflammatory bowel disease (37) and cancer (38). Many 
of these intriguing advances are addressed elsewhere in this 
Frontiers in Immunology topic, “Interferon-λs: New Regulators 
of Inflammatory Processes.” Here, however, we will focus exclu-
sively on the regulation of enteric viruses by IFN-λ. We review 
the current literature about IFN-λ-mediated regulation of specific 
intestinal viruses, discuss interplay of IFN-λ with other cytokines 
and its regulation of viral–bacterial interactions, and highlight 
areas ripe for future research enterprises.

RegULATiOn OF SPeCiFiC enTeRiC 
viRUSeS BY iFn-λ
Enteric viruses, including rotavirus (RV), reovirus, norovirus 
(NoV), and others, generally infect via the fecal–oral route, 

though other transmission routes have been described. As such, 
the IECs comprising the mucosal barrier of the intestine likely 
represent the first eukaryotic cells with which an enteric virus 
interacts. Here, we describe what is known about specific enteric 
viruses and their relationship with both the intestinal epithelium 
and IFN-λ (Table 1).

Rotavirus
Rotaviruses are double-stranded RNA viruses of the Reoviridae 
family and a major cause of severe diarrhea in children world-
wide (39). RV infection exhibits a preferential tropism for IECs 
of the small intestinal villi in humans and mice (40). Several 
groups have reported antiviral effects of IFN-λ against RV in 
mouse models (16, 24, 41). Infection by a murine RV, EDIM-RV, 
induces IFN-λ in the small intestine, and endogenous IFN-λ 
suppresses intestinal viral replication (16, 41). RIG-I and MDA5 
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are required for type I IFN production by IECs during RV infec-
tion (42); induction pathways for IFN-λ have not been reported. 
IECs produce the majority of IFN-λ, consistent with the viral 
IEC tropism (16). Pretreatment with exogenous IFN-λ effectively 
prevents EDIM-RV replication in the small intestine and colon 
(41). However, a recent study demonstrated that a homologous 
murine strain of RV, EW–RV, is largely IFN-λ-insensitive, even 
though EW-RV is originally derived from EDIM-RV (24). This 
study also showed that a heterologous rhesus strain of rotavirus 
(RRV) is, in contrast, highly sensitive to both IFN-α/β and IFN-λ, 
even though EW-RV and RRV infection both significantly induce  
IFN-α/β and IFN-λ production during infection (24). The rea-
son for this discrepancy between strains is still unclear, though 
recently, a human RV study using human intestinal enteroids 
provided some hints regarding the source of this strain complex-
ity (43). In this study, human RV infection in enteroids indeed 
induced IFN-λ and interferon-stimulated genes (ISGs). However, 
blocking IFN-λ signaling did not have any effect on viral growth. 
Since RV has multiple functional proteins for immune evasion 
(e.g., NSP1, NSP3, and VP3) (44), the effect of IFN-λ may be 
limited by these viral genes, and EW–RV may utilize evasion 
strategies to overcome IFN responses. Thus, interactions between 
RV and IFN-λ in the intestine are influenced by multiple host and 
viral factors.

Reovirus
Although reoviruses are also in the Reoviridae family, in contrast 
to RVs, they are not generally associated with serious human dis-
ease. Recently, however, they have been implicated in the patho-
genesis of celiac disease, suggesting the possibility of a previously 
overlooked role as an environmental inflammatory trigger (45). 
Importantly, reoviruses have been used as a tractable experimen-
tal system for studies of viral pathogenesis in newborn mice (46). 
Reoviruses induce type I and III IFNs in a MAVS-dependent fash-
ion (13, 15, 47), likely via RIG-I- and MDA5-mediated sensing 
(48, 49). Since these viruses exhibit a wide cellular tropism and a 
low degree of species specificity, reovirus infection of the mouse 
intestine is sensitive to both IFN-α/β and IFN-λ (14). In adult 
mice, endogenous IFN-λ inhibits reovirus strain Type 3 Dearing 
replication in the intestine, and reovirus replicates exclusively in 
IECs of Ifnlr1-deficient mice (14). By contrast, IFN-α/β inhibits 
reovirus replication in the intestine, but acts specifically on cells 
in the lamina propria. Another study using reovirus strain Type 1 
Lang showed that endogenous IFN-λ inhibits reovirus replication 
in the mouse small intestine and that IFN-λ-receptor expres-
sion in IECs is critical for this antiviral activity (50). Therefore, 
IFN-λ in the intestine controls reovirus replication in IECs, but  
IFN-α/β also coordinately controls reovirus infection in non-IEC 
cell types in the intestine.

norovirus
Noroviruses are positive sense non-enveloped RNA viruses in the 
Caliciviridae family (51). In humans, they are the most common 
cause of epidemic gastroenteritis and are a significant contributor 
to childhood mortality worldwide (52, 53). In addition to caus-
ing acute symptomatic infections characterized by vomiting and 
diarrhea, they can persist in both immunocompetent (54) and 

immunocompromised individuals (55), who can potentially seed 
future epidemics (56). Until quite recently, human NoV has been 
impractical to culture in vitro (57, 58) and lacked a robust small 
animal model. Secondary to these challenges, the role of IFN-λ 
in control of human NoV in vivo is unknown. In vitro, human 
NoV RNA replication and virus production, after transfection of 
stool-isolated RNA into mammalian cells, is sensitive to treatment 
with type I and III IFNs (59). However, in this system, NoV RNA 
replication does not induce IFNs or respond to neutralization of 
type I or III IFNs (59). Whether this reflects the in vivo effects of 
NoV infection remains to be seen.

The discovery of murine NoV (MNoV) (60), which is readily 
culturable (61) and can be studied in vivo, facilitated exploration 
of the interactions between NoV and the host immune system 
(62). IFNs have long been known to be important in MNoV regu-
lation, as the virus was originally isolated from and causes severe 
disease and death in Stat1-deficient mice (60, 63). Type I and II 
IFNs both control acute, systemically spreading strains of MNoV 
[recently reviewed in Ref. (62)]. By contrast, type I and II IFNs 
are dispensable for intestinal regulation of persistent strains of 
MNoV (64), which replicate robustly in the colon and are shed at 
high levels in the stool (65). Instead, for persistent MNoV, IFN-λ 
plays a critical regulatory role. Endogenous IFN-λ controls intes-
tinal viral replication and shedding, demonstrated by increased 
shedding in Ifnlr1-deficient mice. In addition, exogenous IFN-λ 
prevents and cures persistent MNoV infection in wild-type and 
Rag1-deficient mice (64). Thus, IFN-λ represents an example of 
sterilizing innate immunity. Because myeloid and B cells, which 
support MNoV replication in vitro (57, 61), and IECs, the target 
cells of IFN-λ for MNoV clearance (50), are distinct, it remains 
to be determined whether in vivo IFN-λ stimulates an antiviral 
program in a cell-intrinsic fashion to clear infected IECs, or 
instead drives production of secondary factors to target infected 
myeloid or B cells.

Induction of IFN-λ is also important for control of intestinal 
MNoV. MDA5 is critical for type I IFN responses to MNoV (66); 
type III IFN responses may be similarly regulated. Nod-like 
receptor Nlrp6 is another viral RNA sensor that regulates intes-
tinal MNoV levels and plays a role in induction of type I and III 
IFNs and ISGs in response to infection (67). Activated intestinal 
intraepithelial lymphocytes have been shown to rapidly stimulate 
type I and III IFN receptor-dependent upregulation of ISGs in 
IECs, which correspondingly limits MNoV infection in vivo (68). 
Persistent strains of MNoV may induce lower levels of type I and 
III IFNs than acute systemic strains, such that avoidance of IFN 
upregulation may contribute to persistence of some strains (64).

Identifying viral antagonists of host pathways can highlight 
critical antiviral host pathways. MNoV antagonizes IFNs via a 
protein expressed from ORF4, VF1, which in vitro delays upregu-
lation of innate genes including type I IFNs (69). MNoV has also 
been shown to diminish the host response to infection via its 
protease NS6, which specifically suppresses host ISG transla-
tion (70). However, the interactions of these genes with IFN-λ 
signaling in the intestine have not yet been explored. A final 
potential viral player of interest is MNoV NS1/2. A single amino 
acid difference in this gene confers the ability of the virus to 
persist in the intestine and stool (65). It is a tempting speculation 
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that intestinal viral persistence requires antagonism of IFN-λ, 
but further studies are needed to determine whether NoV has 
evolved to avoid the antiviral effects of this signaling pathway.

Other enteric viruses
A limited number of studies have explored the role of IFN-λ in 
regulation of other enteric viruses. Infection of human enteroids 
by echovirus 11, but not coxsackievirus B, was shown to induce 
expression of antiviral ISGs (71), and enterovirus 71 potently 
induces type I and III IFNs in a human IEC line (72). However, 
further studies are needed to determine the specific role of type 
III IFNs in control of enteroviruses. Canine parvovirus, which 
causes gastrointestinal disease in dogs, is more sensitive to IFN-λ 
than a type I IFN in vitro (73), but it is unknown whether this 
applies to human parvoviruses. Porcine epidemic diarrhea virus 
is an enteropathogenic coronavirus that is sensitive to both type 
I and III IFN treatment in a porcine IEC line (74). Finally, avian 
influenza virus and Newcastle disease virus induce much more 
robust type III than type I IFN in a primary chicken IEC culture 
model, suggesting a possible role for IFN-λ in prevention of 
intestinal infection by these viruses normally associated with 
respiratory infections (75). These initial findings point to the 
potential for a broad role for IFN-λ in control of many differ-
ent enteric viruses, but additional studies are clearly needed to 
determine the breadth and depth of IFN-λ-mediated regulation 
of viral infection in the intestine.

iFn-λ inTeRACTiOnS wiTH OTHeR 
SignALing PATHwAYS

Interferon-lambda-mediated antiviral immunity in the intestine 
against rotavirus (EDIM-RV) and MNoV does not redundantly 
overlap with type I IFNs, while there is redundancy between 
type I and III IFNs to control influenza, SARS coronavirus, 
and respiratory syncytial virus in the lung, and herpes simplex 
virus-2 in the genital tract [reviewed in Ref. (76)]. There are 
two potential reasons for a non-redundant role for IFN-λ in the 
intestine. First, the IFN-λ receptor is highly expressed in IECs 
but is minimally detectable in other intestinal cell types such as 
lamina propria cells (50). Second, expression of IFN-α receptor 
subunits (i.e., IFNAR1 and IFNAR2) is less abundant in IECs 
than in lamina propria cells (14), and surface expression of the 
IFN-α receptor is polarized to the apical side (41). Interestingly, 
in neonatal mice, IECs are sensitive to both IFN-α/β and IFN-λ, 
and both IFN-α/β and IFN-λ can control RV (RRV strain) infec-
tion in suckling mice (24). It has not been explored whether this 
IFN-α/β-sensitivity in neonatal IECs is from altered trafficking of 
the IFN-α receptor to the basolateral side. Further work is needed 
to explore the consequences of age-related IFN-α/β sensitivity in 
IECs and the pathogenesis of enteric virus infection (Figure 1).

Another cytokine important for mucosal immunity, IL-22, 
has a synergistic relationship with IFN-λ. Similar to IFNLR1, 
the IL-22 receptor subunit, IL22Rα, associates with IL10Rβ and 
is expressed preferentially by IECs (77). During RV infection, 
IL-22 acts coordinately with IFN-λ to control virus replication 
and prevent tissue damage in mice (16). This antiviral activity 
of IL-22 is Ifnlr1 and Stat1 dependent but not Stat3 dependent. 

IL-22 also restricts porcine enteric coronavirus infection in the 
intestine, for which antiviral activity is largely Stat3 dependent 
(78). Since IL-22 also induces IFN-λ expression in the intestine, a 
Stat3-independent/IFN-λ-dependent role for IL-22 in control of 
porcine enteric coronavirus cannot be ruled out (78).

Finally, lactoferrin, a member of the transferrin family and a 
component of milk, potentiates IFN-λ production in a human 
IEC line (79), and in vitro lactoferrin has antiviral activity against 
RV (80) and MNoV (81). Thus, it would be interesting to study 
whether milk-derived components exhibit cross talk with IFN-λ-
mediated immunity for enteric viral infections in neonatal hosts.

iFn-λ AnD TRAnSKingDOM 
inTeRACTiOnS

A final critical factor for discussion of enteric viral infections and 
IFN-λ is the role of the commensal bacterial microbiome. For 
these viruses, infection occurs amidst the complex milieu of the 
oral and intestinal microbiome, which plays important roles in 
regulation of viral infectivity. Poliovirus, reovirus, and murine 
mammary tumor virus depend upon the presence of commensal 
bacteria for infection (82, 83), with direct viral binding to bacte-
rial products like lipopolysacchide implicated as the mechanism 
of facilitation (84, 85). Depletion of the commensal microbiota 
also impairs RV infection and results in enhancement of both 
mucosal and systemic antibody responses against the virus (86). 
Human NoV binds directly to bacterial products that mimic the 
histo-blood group antigens (HBGAs) known to be attachment 
factors for NoV (87–89), and indeed culture of human NoV 
in B  cells depends on the presence of these HBGA-expressing 
bacteria (57, 90). Hence, there is a common theme for enteric 
viruses in interacting with and depending on intestinal bacteria 
for infectivity, though the specific mechanisms may be virus 
dependent (91, 92).

The link between viral dependence on the microbiome 
and sensitivity to IFN-λ comes from work done with MNoV.  
Depletion of the commensal microbiota in wild-type mice 
prevents persistent intestinal MNoV infection (93), similar to 
what has been observed with other enteric viruses. Interestingly, 
in mice lacking Ifnlr1, Stat1, or Irf3, all important molecules for 
IFN-λ induction or signaling, MNoV establishes infection even 
in the absence of commensal microbes, implicating IFN-λ in 
regulation of these transkingdom viral–bacterial interactions 
(93) (Figure 1). Other enteric viruses share both a dependence 
on the microbiome and a sensitivity to IFN-λ; whether interplay 
between the microbiome and IFN-λ signaling also regulates other 
intestinal viruses such as RV and reovirus remains to be seen.

gUT inSTinCT ABOUT THe FUTURe  
OF iFn-λ
While the past decade yielded many exciting insights into 
regulation of enteric viruses by IFN-λ, many important questions 
remain. Type I and III IFNs share significant overlap in induction 
and signaling pathways, though there are distinctions in promoter 
sequences, upstream regulatory elements, and kinetics of down-
stream gene stimulation [reviewed in Ref. (76)]. However, most 
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previous studies were performed in vitro outside of the complex 
environment of the gut. How is IFN-λ production regulated in the 
intestine, and by what pathways is it induced in vivo by viral infec-
tion? Are specific ISGs induced by IFN-λ necessary for antiviral 
activity against enteric infections? Conversely, viruses rapidly 
evolve mechanisms to evade the host immune system. Are there 
viral factors that specifically target IFN-λ induction or signaling 
pathways for evasion or suppression?

In addition to important mechanistic questions for enteric 
viruses already known to be IFN-λ regulated, there are a num-
ber of intestinal viruses for which sensitivity to IFN-λ has not 
yet been explored. Astroviruses, parvoviruses, enteroviruses, 
and adenoviruses are among the enteric viruses for which data 
on IFN-λ-sensitivity in both cell culture and animal models is 
currently lacking. Finally, of great interest is the in vivo effect of 
IFN-λ regulation on enteric viruses in humans. Single-nucleotide 
polymorphisms (SNPs) in human IFN-λ genes are associated 
with differential responses to hepatitis B and C, human cytomeg-
alovirus, herpes simplex virus 1, and influenza virus vaccination 
[reviewed in Ref. (76, 94)]. Enteric infections cause a spectrum 

of disease in different individuals, including variable severity  
and duration of infection, which may correlate with host genetic 
variation. Do these same SNPs correlate with differential responses 
to enteric viruses or to vaccination? IFN-λ is clearly an important 
innate immune regulator for many gut viruses, and defining the 
breadth of its effects and the mechanisms underlying its enteric 
activity represent exciting areas for future research endeavors.
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