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Natural killer cells are important effector lymphocytes of the innate immune system, 
playing critical roles in antitumor and anti-infection host defense. Tumor progression 
or chronic infections, however, usually leads to exhaustion of NK cells, thus limiting the 
antitumor/infection potential of NK cells. In many tumors or chronic infections, multiple 
mechanisms might contribute to the exhaustion of NK  cells, such as dysregulated 
NK cell receptors signaling, as well as suppressive effects by regulatory cells or soluble 
factors within the microenvironment. Better understanding of the characteristics, as 
well as the underlying mechanisms of NK cell exhaustion, not only should increase our 
understanding of the basic biology of NK cells but also could reveal novel NK cell-based 
antitumor/infection targets. Here, we provide an overview of our current knowledge on 
NK cell exhaustion in tumors, and in chronic infections.
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iNTRODUCTiON

Immune cell exhaustion describes the status of dysfunction of immune cells, usually under the 
settings of tumors or chronic infections (1, 2). Such status, usually associated with poor control of 
malignancies or infections, is characterized by decreased effector functions (1). For T cells, exhaus-
tion is accompanied by phenotypic changes (1), epigenetic modifications (3), and alterations in tran-
scriptional profiles (4). Multiple negative regulatory pathways (e.g., immunoregulatory cytokines 
and PD-1) have been shown to be involved in the exhaustion of T cells (1). The in-depth descriptions 
of the molecular characteristics of T cell exhaustion have not only provided a framework for better 
understanding T cell biology in these contexts but have also given rise to T cell-based antitumor or 
anti-infection immunotherapy, which includes immune checkpoint blockade (5) and adoptive T cell 
therapy (6, 7).

NK cells, as a critical part of the innate immune system, are an important effector lymphocyte 
population in antitumor and anti-infection immunity (8–10). Evidence supporting its essential roles 
includes the correlation of poor cytotoxicity of NK cells in the peripheral blood with higher risk of 
cancer (11). Also, the expression of NKp30 and NKG2D on NK cells from melanoma metastatic 
lymph node (M-LN) negatively correlated with percentages of tumor cells in M-LN (12). Not only 
the potentials of NK  cells in controlling blood cancers and tumor metastasis have already been 
widely appreciated but the tumor infiltration of NK cells was also associated with good prognosis in 
multiple solid tumors (13–17).

However, under the settings of tumors and chronic infections, NK cells exhibit an exhausted status 
similar with exhausted T cells, displaying poor effector function and altered phenotype. Although 
the exact mechanisms leading to NK cell exhaustion in tumors and chronic infections are poorly 
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defined, emerging studies to be discussed below have shown that 
multiple negative regulatory pathways in these contexts might 
contribute to such exhausted status of NK cells, such as dysregu-
lated NK cell receptors signaling, as well as suppressive effects by 
regulatory cells or soluble factors within the microenvironment. 
Here, we reviewed current understanding of the characteristics 
and the mechanisms of NK cell exhaustion, as well as ongoing 
efforts trying to reverse such state of NK cells.

NK CeLL eFFeCTOR FUNCTiONS

NK cells mediate antitumor or anti-infection immunity by pro-
duction of effector cytokines, or by direct cytotoxic activity (8). 
NK cells are an early and essential source of IFN-γ in vivo (18). 
IFN-γ either directly enhances target cell immunogenicity (19) or 
facilitates adaptive immunity (20, 21). Besides rapid production 
of IFN-γ, NK  cells also directly eliminate transformed cells or 
infected cells through cytotoxic activity dependent on perforin 
and granzyme (22–24), or inducing target cell apoptosis by  
TNF-α (25), FasL (26), and TRAIL (27). In addition to the effector 
functions, NK  cells also potentiate adaptive immune response 
through DC editing and maturation (28, 29).

Unlike cytotoxic T cells, NK cells are recombinase independ-
ent, and do not need to be primed before effector functions, which 
makes NK cells a rapid responder in host immunity. Activation 
of NK cells depends on the integration of activating signals and 
inhibitory signals from cell surface receptors (30), upon recogni-
tion of target cells (31) or interaction with accessory cells (32). 
Activating receptors include NKG2D, CD16, NCRs, CD226 
(DNAM-1), and 2B4, among which, CD16 plays a key role in 
antibody-dependent cell-mediated cytotoxicity as the Fcγ recep-
tor. Inhibitory receptors include self-MHC I-recognizing KIRs in 
human or Ly49s in mice, NKG2A, TIM-3, TIGIT, and CD96.

CHARACTeRiSTiCS OF NK CeLL 
eXHAUSTiON

exhausted effector Functions
Despite the potential cytolytic activity of NK cells against tumor 
cells or infected cells, NK cells exhibited impaired effector func-
tions in hosts with tumors or chronic infections (Figure 1). For 
example, progression of multiple myeloma in mice was associated 
with decreased percentages of NK cells (33). At single cell levels, 
tumor-infiltrating NK cells produced decreased effector cytokines 
IFN-γ and GM-CSF in mouse models (34). NK cells in cancer 
patients showed diminished cytolytic activity, as evidenced by 
lower expression of cytolytic molecules, such as granzymes, per-
forin, FasL, and TRAIL (35). Intratumoral NK cells from patients 
with various cancers produced decreased IFN-γ (36, 37), CD107a 
(36, 37), granzyme B (36), and perforin (36) and exhibited 
impaired cytolytic activity (38), compared with NK  cells from 
peritumor regions or from the peripheral blood. Such exhaustion 
of NK cell functions seems to be the result of an active process in 
tumors or chronic infections, since adoptively transferred murine 
NK cells into mice with leukemia rapidly lost IFN-γ production, 
followed by loss of cytotoxicity after homeostatic proliferation in 
the presence of tumor (39).

exhausted Phenotypes
The functional exhaustion of NK  cells in tumors and chronic 
infections is sometimes accompanied with the downregulated 
expression of certain surface activating receptors on NK  cells 
(Figure 1). NKG2D was frequently downregulated on NK cells 
in patients with various kinds of malignancies, e.g., pancreatic 
cancer, gastric cancer, colorectal cancer (35), breast cancer (38), 
and chronic lymphocytic leukemia (40), as well as in patients 
with chronic virus infection, such as HBV (41). Compromised 
NKG2D signaling in this context was also evidenced by 
downregulation of DAP10, the signaling adaptor of NKG2D 
(41). Besides NKG2D, CD16 (38), NCRs (NKp30, NKp44, and 
NKp46) (35, 38, 40–42), CD226 (33, 38, 40, 42, 43), and 2B4 (41) 
expression on NK cells also usually decreased under settings of 
tumors or chronic infections. Dysregulated expression of these 
receptors in patients could be restored in remission (38). Given 
that NK cell activation result from an integration of activating 
and inhibitory signals (30), weakened signals from activating 
receptors might result in the lost of integrated signaling balance 
toward domination by inhibitory signals, thus gradually induc-
ing NK cell exhaustion.

Another phenotypic signature of NK  cell exhaustion is the 
upregulation of inhibitory receptors (Figure  1). For example, 
PD-1, as a well-known target in immunotherapy, is a proven 
checkpoint on T cells. PD-1 overexpression in NK cell line resulted 
in decreased degranulation, indicating that PD-1 signaling is 
suppressive not only on T cells but also on NK cells (44). PD-1 
was found to be upregulated on NK cells from tumor patients, 
such as those with Kaposi sarcoma (44), renal cell carcinoma 
(45), multiple myeloma (46), and EBV-associated posttransplant 
lymphoproliferative disorders (47). Such upregulation of PD-1 on 
NK cells was found confined to a subset of CD56dimNKG2A−K
IR+CD57+ cells, as reported in HCMV, and ovarian carcinoma 
patients (48), where such subset was frequently detected (48). 
Such high PD-1 expression was found associated with reduced 
proliferative capability in response to cytokines (48), impaired 
degranulation (44, 48), and poor cytokine production (44, 47, 48) 
by NK cells. In addition, in renal cell carcinoma, increased PD-1 
expression on NK cells in the peripheral blood was correlated to 
disease stage; the expression was significantly reduced soon after 
surgical resection of the primary tumor (45). Together, these data 
indicate that PD-1 is not only associated with the exhausted status 
of NK cells but PD-1 signaling also might contribute to NK cell 
exhaustion.

Inhibitory receptor NKG2A was increased on CD56dim NK cells 
from hepatocellular carcinoma (HCC) patients (36). Such high  
expression of NKG2A, suggested to be induced by IL-10, con-
tributed to NK  cell dysfunction in these patients, correlated 
with plasma IL-10 levels, and predicted a poor prognosis (36). 
NKG2A was also expressed on higher percentages of NK cells in 
active chronic hepatitis B (CHB) patients, than in inactive CHB 
patients or healthy controls (49). In consistent with this, NK cells 
from HBV-carrier mice also had higher percentages of NKG2A+ 
NK cells compared with control mice (49). NKG2A was inhibi-
tory on active-CHB patients-derived peripheral NK cell cytotox-
icity (49). Importantly, NKG2A-Qa-1 interaction in HBV-carrier 
mice contributed to HBV persistence (49). These data suggest 
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FigURe 1 | Natural killer cell exhaustion. Tumor progression or chronic infections usually leads to exhaustion of NK cells. Exhausted NK cells are characterized by 
decreased production of effector cytokines (e.g., IFN-γ), as well as by impaired cytolytic activity. Exhausted NK cells downregulated expression of certain activating 
receptors and upregulated expression of inhibitory receptors. Both suppressive cells and other suppressive factors (e.g., exosomes, suppressive cytokines, hypoxia, 
etc.) in tumors or chronic infections might contribute to such exhausted status. Emerging strategies (e.g., immune checkpoint blockade) could potentially reverse 
NK cell exhaustion to boost antitumor or anti-infection immunity.
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that inhibitory receptor NKG2A also might contribute to NK cell 
exhaustion in tumors and chronic infections.

Tim-3, a novel checkpoint on T  cells, was shown to be an 
inhibitory receptor on NK  cells (50) and was upregulated on 
NK cells from PBMCs of patients with CHB infection (51). Tim-3 
suppressed the cytotoxicity of NK cells from these patients (51), 
suggesting that Tim-3 might be involved in the exhausted cytol-
ytic function of NK cells in these patients.

exhausted Signaling/Transcriptional 
Programs
The maintenance of NK cell function relies on an active signaling/
transcriptional program, which seems to be perturbed in tumors 
or chronic infections, thus contributing to NK cell exhaustion. 
IL-15 signaling was shown to be defective in tumor-bearing 
mice, which impeded NK cell maturation and IFN-γ production 
(52). Overexpression of IL-15 reversed the maturation defects 

in NK  cells (52). Along with the exhaustion of NK  cells, the 
transcriptional factor Eomes and T-bet were downregulated in 
adoptive transferred murine NK  cells into mice with leukemia 
(39). Enforced expression of Eomes in NK cells partially reversed 
NK cell dysfunction (39), indicating that the repressed expression 
of Eomes in NK  cells in leukemia is not only an exhaustion-
associated transcriptional signature but also at least partially 
accounted for the exhaustion of NK cells.

iMMUNORegULATORY PATHwAYS 
iNvOLveD iN NK CeLL eXHAUSTiON

Detrimental Modulations of Checkpoint 
Ligands
Together with the dysregulation of NK  cell surface receptors, 
detrimental modulations of ligand expression on transformed 
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or infected cell surface for NK cell receptors lead to aggravated  
inhibitory signals, and to dampened activating signals, which might 
lean the integrated signals balance toward inhibition, and promote 
the exhaustion of NK cells in tumors or chronic infections. For 
example, HLA-E, the ligand for inhibitory receptor NKG2A, was 
more frequently expressed by tumor cells than by normal cells, 
which aggravated NKG2A-mediated inhibition of NK cell activity 
(53). CD200, a ligand of NK cell inhibitory receptor CD200R, is 
upregulated in acute myeloid leukemia and is associated with poor 
patient outcome (54). Galactin-9, the ligand for human NK cell 
inhibitory receptor Tim-3 (55), was expressed at high levels on 
acute myeloid leukemia cells (56). In these examples, upregulated 
ligand for inhibitory receptor aggravated the inhibitory signal-
ing. Whereas CD48, the ligand for activating receptor 2B4, was 
reported to be downregulated by oncogenic proteins in acute 
myeloid leukemia, thus weakening activating signaling from 2B4 
(57). Presence of soluble ligand of activating receptors could also 
weaken activating signaling. Activating receptor GITR ligand 
(sGITRL) was detected in the sera of patients with various tumors 
(58). sGITRL or patients’ sera that contained sGITRL might block 
activating receptor GITR interaction with its ligand and were sup-
pressive on NK cell cytotoxicity by negatively regulating NF-κB 
activity (58). Faq2 protein of Fusobacterium nucleatum, bacteria 
present in the tumor microenvironment, is a ligand for inhibitory 
receptor TIGIT (59–63). Faq2 was found able to bind to tumor cells 
and to mediate inhibition of NK cell activity by triggering TIGIT 
signaling (59). The abovementioned examples, either aggravating 
inhibitory signaling or dampening activating signaling, might 
promote NK cell exhaustion within tumor environment.

Upregulated ligands for NK cell activating receptors by tumor 
cells, in some cases, could be paradoxically inhibitory on NK cell 
function, possibly contributing to NK  cell exhaustion as well. 
MICA/B, ligands for human NKG2D, was frequently expressed in 
both solid tumors (64) and leukemia (65). NK cells from patients 
with acute myeloid leukemia patients showed downregulated 
expression of activating receptors, NKp46, NKp30, CD226, 2B4, 
and CD94/NKG2C (65). Soluble MICA/B also downregulated 
NKG2D expression on an NK cell line in vitro (64), suggesting 
that downregulation of activating receptors on NK  cells might 
be a result of chronic exposure of NK cells to tumor cells (65). 
Similarly, CD112, the ligand for both activating receptor CD226 
and inhibitory receptor TIGIT in humans, is frequently expressed 
at high levels on tumor cells (65). Coculture with CD112-
expressing leukemic cells in  vitro was shown to downregulate 
CD226 on NK cells (43). In line with this, CD112 expression on 
leukemic blasts was negatively correlated with CD226 expression 
on NK cells (43). On the other hand, Rae-1, the murine ligand 
for NKG2D, when expressed by RMA cells, was reported to be 
acquired by NK cells, which elicited NK cell fratricide by neigh-
boring NK cells through the NKG2D-induced perforin pathway 
both in vitro and in vivo (66). In the cases demonstrated above, 
upregulated activating ligands, either downregulated expression 
of activating receptor after NK  cell chronic exposure to tumor 
cells or induced NK cell fratricide, ultimately leading to weak-
ened signaling through activating receptors, which, together with 
other negative regulatory pathways in tumor microenvironment, 
might lead to NK cell exhaustion.

Posttranslational alterations of ligands for NK  cell surface 
receptors might also be involved in NK  cell exhaustion. For 
example, posttranslational modifications reduced the affin-
ity of MICA for NKG2D, impairing activating signals from 
NKG2D (67). Diminished activating signaling might then 
gradually induce the exhausted status of NK  cells in tumor 
microenvironment.

Regulatory Cells
In addition to modulations of NK  cell surface receptor signal-
ing, suppressive immune cells and non-immune cells exist in 
the microenvironment of tumors or chronic infections, which 
rendered exhaustion of NK cells (Figure 1).

CD4+CD25+Foxp3+ regulatory T cells are a critical subset of 
T cells that maintain immune tolerance (68–70). Tumor growth 
or chronic infections promotes the expansion of Tregs (71–73). 
Treg cells are inhibitory on NKG2D expression on NK cells, and 
on NK cell cytotoxicity (74). Evidence that Treg cells are related 
to NK cell exhaustion is that absolute numbers of Treg cells in 
patients with gastrointestinal stromal tumors inversely correlated 
with NK cell induction (74).

Tumor growth also promotes the expansion of another sup-
pressive cell type, CD11b+Gr1+ myeloid-derived suppressor 
cells (MDSCs) (75). Expansion of MDSCs inversely correlated 
with activation of NK  cells in tumor patients and mice (76), 
linking MDSCs with NK  cell exhaustion. MDSCs suppressed 
IL-2-mediated NK  cell cytotoxicity by affecting the activity of 
STAT5 in a contact-dependent manner (77). HCV-induced 
MDSCs suppressed NK cell IFN-γ production via an arginase-
1-dependent inhibition of mechanistic target of rapamycin 
(mTOR) activation (78). MDSCs inhibited NKG2D expression 
on NK  cells and suppressed both cytotoxicity and IFN-γ pro-
duction, both in vitro and in vivo via membrane-bound TGF-β 
in mice (76). These data indicate that MDSCs could mediate 
NK  cell exhaustion in tumors and chronic infections through 
their suppressive functions.

Besides CD11b+Gr1+ cells, the tumor promoting roles of 
other myeloid cells (79, 80) have been well accepted, which are 
potentially suppressive on NK cell functions in tumors as well. 
For example, in human gastric cancers, tumor-infiltrating mono-
cytes/macrophages were physically close to NK cells, and their 
percentages were negatively correlated with the percentages of 
IFN-γ+ and TNF-α+ cells among NK cells (16), indicating that 
these tumor-infiltrating monocytes/macrophages are associated 
with NK  cell exhaustion. Such monocytes/macrophages could 
impair expression of IFN-γ, TNF-α, and Ki-67 in NK cells in a 
TGF-β-dependent manner in  vitro (16), suggesting that these 
monocytes/macrophages might contribute to the exhaustion of 
NK cells in tumors.

On the other hand, increasing evidence indicated the 
NK-suppressive roles of non-immune cells in tumors. Fibroblasts 
derived from metastatic melanomas mediated inhibition of IL-2-
induced upregulation of CD226 on NK cells in a contact-dependent 
manner and counteracted IL-2-induced upregulation of NKp44 
and NKp30 through releasing PGE(2) (81). Fibroblasts from 
HCC were significantly superior to foreskin-derived fibroblasts  
at impairing NK cell activation, which was mediated by PGE(2) 
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and IDO (82). However, the contribution of tumor-derived 
fibroblasts to NK  cell exhaustion in physiological conditions  
still needs further investigations.

exosomes
Tumor-associated exosomes are immunoregulatory microvesi-
cles secreted from tumor cells (Figure  1). Breast tumor cell-
derived exosomes inhibited perforin expression and cytolytic 
activity ex vivo and in vitro and reduced NK cell percentages in 
both the lung and spleen of naive mice (83). Tumor cell-derived 
exosomes suppressed NK cell function by expressing TGF-β, and 
by expressing ligands for NKG2D to downregulating NKG2D  
expressed by NK cells (84). Exosomes from the sera of acute 
myeloid leukemia patients also showed NK-suppressive effects 
by similar mechanisms (85). Moreover, exosomes from hypoxic 
tumors showed TGF-β1 and miR-210- and miR-23a-dependent 
suppression on NK cell function, as compared with exosomes 
from normoxic tumor cells, in multiple tumor models (86). 
These studies demonstrated the inhibitory effects of tumor-
associated exosomes on NK cells and suggest that they might 
be involved in the exhausted status of NK  cells in these  
contexts.

Suppressive Cytokines
Suppressive cytokines are important factors that might pro-
mote NK  cell exhaustion in tumors and in chronic infections 
(Figure  1). TGF-β was usually detected at high levels in the 
settings of tumors (87) or chronic infections (41), indicating that 
TGF-β is highly associated with tumors and chronic infections. 
Besides, inhibitory effects of TGF-β on NK cells are well docu-
mented. Expression of NKG2D was shown to be downregulated 
by TGF-β (88). TGF-β also induced miR-183 to repress DAP12 
transcription, thus suppressing signaling of activating NK  cell 
receptors (89). TGF-β-treated human NK  cells exhibited 
decreased cytolytic activity, with abrogated perforin polariza-
tion to the immune synapse (89). Breast tumor cell-secreted  
TGF-β suppressed NK cell expression of activation marker CD69, 
degranulation marker CD107a, effector cytokines IFN-γ and 
TNF-α, and cytotoxicity against target cells (38). Despite these 
in vitro studies and correlation analyses, the exact contributions 
of TGF-β to NK cell exhaustion in physiological conditions have 
yet to be revealed.

Hypoxia
Other characteristics of tumor microenvironment might con-
tribute to NK  cell exhaustion, e.g., hypoxia (Figure  1). Within 
tumor microenvironment, oxygen is usually less available than 
in normal tissues, which has been long associated with the 
immune suppressive characteristics of tumors (90). Hypoxia has 
been shown to induce NK  cell suppression. Hypoxia induced 
hypoxia-inducible factor 1α in NK  cells, decreased expression 
of NKG2D expression (91), and abrogated the upregulation of 
NKp46, NKp30, NKp44, and NKG2D in response to activating 
cytokines (92), thus impairing the capacity of killing target cells 
(92). Future studies are required to elucidate the role of hypoxia 
in NK cell exhaustion in vivo.

ReveRSiON OF eXHAUSTiON

Blockade of immune checkpoints, as an important part of immu-
notherapy, proved effective in reversing the exhaustion of T cells 
to boost antitumor immunity. However, in immunotherapy 
for tumors and chronic infections, treatment with anti-PD-1 
monoclonal antibody alone or with an additional anti-CTLA-4 
monoclonal antibody has exhibited clinical benefits only for some 
patients, suggesting the need for combining extra therapeutics 
that further counteract the immuno-suppresive mechanisms by 
tumors or infected cells. In this context, mechanisms that mediate 
NK cell exhaustion in chronic disorders, as well as pathways for 
maintaining NK cell self-tolerance, may be targeted to reinvigorate 
NK cells and provide additionally enhanced immunity (Figure 1).

Checkpoint Blockades/Agonisms
First of all, emerging checkpoint blockade strategies are being 
tested for the potential in reversing NK cell exhaustion in tumors 
and chronic infections. While blocking KIR, in combination 
with CTLA-4 blockade, is still under clinical trials for treatment 
of advanced tumors (NCT01750580), preclinical studies have 
shown that KIR (or Ly49I/C in mice) blockade boosted NK cell 
activity in tumor models. Treatment of leukemia-bearing mice 
with F(ab')2 of a blocking antibody against mouse Ly49I/C 
or adoptive transfer of NK  cells treated ex vivo with F(ab')2 
increased the survival rate (93). F(ab')2 of anti-Ly49I/C also 
enhanced the antileukemia activity of anti-huCD20 mono-
clonal antibody in an EL4-huCD20 leukemia mouse model in 
an NK-dependent manner (94). A fully human monoclonal 
antibody, lirilumab, reacts with KIR2DL1/2/3, preventing their 
binding to HLA-C (95). Administration of lirilumab enhanced 
the beneficial effect of anti-huCD20 monoclonal antibody, 
rituximab, on mouse survival in the EL4-huCD20 leukemia 
model in Rag1KO-KIR Tg mice, whose effect was abrogated 
when NK  cells were depleted (94). Anti-KIR monoclonal 
antibody and lenalidomide also combined to enhance NK cell 
versus multiple myeloma effect (96).

Besides KIR, preclinical studies have been revealing more 
potential NK cell checkpoints. Therapeutic CD94/NKG2A block-
ade with an anti-NKG2A monoclonal blocking antibody, monali-
zumab, restored direct cytotoxicity of NK  cells against chronic 
lymphoid leukemia cells in  vitro (97). Blocking NKG2A-Qa-1 
interaction in vivo in HBV-carrier mice promoted viral clearance 
in an NK cell-dependent manner (49). CD96, together with acti-
vating receptor CD226 and inhibitory receptor TIGIT, constitutes 
a receptor family that bind nectins and nectin-like family proteins 
(e.g., CD155 and CD112) and regulates NK cell functions (98). 
CD96, previously shown to promote human NK  cell–target 
cell adhesion (99), was later revealed to compete with CD226 
for CD155 binding and directly inhibits IFN-γ production by 
NK  cells in mice (100). CD96−/− mice displayed resistance to 
carcinogenesis and experimental lung metastasis (100). Blocking 
CD96 with a monoclonal antibody inhibited experimental metas-
tases in multiple mouse models (101).

Agonist antibody to augment activating signaling for NK cells is 
another potent strategy to boost NK cell activity. Administration of 
anti-4-1BB agonist monoclonal antibody enhanced the expression  
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of CD69 activation marker on NK  cells and improved disease 
control in an NK cell-dependent manner in mice with established 
multiple myeloma (33).

Checkpoint Modulations
Besides checkpoint inhibitors and agonists, emerging agents 
potentially reverse NK  cell exhaustion by counteracting the 
detrimental regulation of NK cell receptors or their ligands in the 
microenvironment of tumors or chronic infections. For example, 
tumor cell surface expression of NKG2D ligands, either in human 
or in mice, could be therapeutically upregulated to enhance 
NK cell activation, by treating tumor cells with alkylating agent 
(102), proteasome inhibitors (103), hyperploidy-inducing agents 
(104), histone deacetylation inhibitors (105), or inhibitors for 
glycogen synthase kinase-3 (106). On the other hand, tumor 
surface expression of MHC class I might also be downmodulated 
to increase miss-self recognition-mediated activation of NK cells, 
e.g., by proteasome inhibitors (107) or PI3K inhibitors (108).

Cytokines
In addition to NK cell surface receptor signaling–targeting/mod-
ulating agents, treatment with activating cytokines or blocking  
the signaling of suppressive cytokines might reverse the 
NK-disfavoring cytokine milieu that might promote NK  cell 
exhaustion in tumors and chronic infections. Treatment with 
NK-activating cytokines, IL-12 and IL-18, or with an IL-2 mutant 
(H9 “superkine”) increased survival of MHC-I-deficient tumor-
bearing mice, accompanied by restoration of effector functions of 
MHC-I-deficient tumor-infiltrating NK cells (109). Alternatively, 
another NK-activating cytokine, IL-15 was under clinical trials 
for treatment of various tumors. In addition, IL-15 fused with the 
extracellular domain of NKG2D was shown to exhibit enhanced 
NK  cell tumor infiltration and increased suppression of xeno-
grafted tumors growth in nude mice infused with human PBMC 
(110). On the other hand, blockade of TGFβR1 with a small 
molecule Galunisertib restored TGF-β-induced downregulation 
of NK cell activating receptors, CD226, NKp30, and NKG2D, and 
cytolytic molecules, TRAIL, perforin, and granzyme A, increas-
ing direct cytotoxicity and ADCC of ex vivo activated NK cells 
against neuroblastoma cells in vitro (111).

ReMAiNiNg QUeSTiONS AND FUTURe 
DiReCTiONS

In many tumors and chronic infections, the potential of NK cells 
to produce cytotoxic molecules and effector cytokines is 
restricted, accompanied with detrimentally modulated expres-
sion of surface receptors/ligands, indicating that, similar with 
T cells, NK cells are also exhausted in these settings. Based on 
our limited knowledge about NK  cell exhaustion, there have 
been attempts trying to reverse NK  cell exhaustion to boost 
antitumor or anti-infection immunity. However, current barriers 
in reversing NK cell exhaustion lie beyond the lack of in-depth 
understanding of such status.

Recent studies suggest that exhausted CD8+ T cells in many 
tumors and chronic infections may represent a distinct lineage, 

in that exhausted T cells display multiple signatures distinct with 
effector T cells and memory T cells (1, 3). On the other hand, 
the molecular basis of exhausted NK cell in tumors and chronic 
infections remains largely unexplored.

One feature of exhausted CD8+ T cells in tumors and chronic 
infections is that transcriptional pathways are used differently 
by exhausted CD8+ T cells than by effector and memory CD8+ 
T  cells. For example, Blimp-1 is expressed at aberrantly high 
levels by exhausted CD8+ T cells during chronic infections, which 
promotes the expression of inhibitory receptors and exhaustion 
(112). Although the transcriptional factors specific for exhausted 
NK cells are yet to be defined, Eomes and T-bet, essential for the 
effector function of NK cells (113), were shown to be downregu-
lated in exhausted NK cells in leukemia (39). Overexpression of 
Eomes restored the exhausted function of NK  cells, indicating 
that downregulated Eomes accounted for the exhausted pheno-
type of NK cells in this context (39).

Besides transcriptional regulations, cellular metabolism 
is also important for lymphocyte development and effector 
function (114–116). Through comparing CD8+ T cells in either 
chronic or acute infections, the exhaustion of CD8+ T cells in 
chronic infections was linked to suppressed bioenergetics, 
despite persistent signaling of mechanistic target of rapamycin 
(mTOR) pathway (117). Since activation of mTOR pathway is 
critical for the effector function of NK cells (118), the exhausted 
function of NK cells suggests that this pathway in NK cells might 
be altered in tumors and chronic infections, which remains to be 
determined.

Emerging evidence appreciates the role of epigenetic regula-
tion in immune cell differentiation and function (119). Exhausted 
CD8+ T cells exhibited stable and state-specific epigenetic modi-
fications distinct from functional memory CD8+ T  cells (120, 
121). The histone-lysine N-methyltransferase, enhancer of zeste 
homolog 2 (EZH2), was shown to regulate NK cell differentiation 
and function (122), indicating that epigenetic regulation plays a 
critical role in shaping NK cell response. However, the epigenetic 
signature of exhausted NK cells in tumors and chronic infections 
has not been revealed.

Taken together, the molecular basis, such as transcriptional 
profiles, epigenetic state, and metabolic regulation, of exhausted 
NK cells in tumors and chronic infections, as well as the clinical 
relevance, is still elusive. Future studies are required to reveal novel 
mechanisms/pathways, e.g., in the aspects mentioned above, 
hopefully leading to novel targets for NK-based immunotherapy.
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