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Cytokine-induced killer (CIK) cells are a heterogeneous population of effector 
CD3+CD56+ natural killer T cells, which can be easily expanded in vitro from peripheral 
blood mononuclear cells. CIK cells work as pharmacological tools for cancer immuno-
therapy as they exhibit MHC-unrestricted, safe, and effective antitumor activity. Much 
effort has been made to improve CIK cells cytotoxicity and treatments of CIK cells 
combined with other antitumor therapies are applied. This review summarizes some 
strategies, including the combination of CIK with additional cytokines, dendritic cells, 
check point inhibitors, antibodies, chemotherapeutic agents, nanomedicines, and 
engineering CIK cells with a chimeric antigen receptor. Furthermore, we briefly sum up 
the clinical trials on CIK cells and compare the effect of clinical CIK therapy with other 
immunotherapies. Finally, further research is needed to clarify the pharmacological 
mechanism of CIK and provide evidence to formulate uniform culturing criteria for CIK 
expansion.
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iNTRODUCTiON

Cancer is among the top killer diseases and has emerged as a major public health problem around the 
world, and it will still be the main cause of the morbidity and mortality during the next few decades 
(1). Bray et al. estimated that the incidence of all cancer cases would up to 22.2 million in 2030 
(2). In order to cure cancer, researchers have tried many antitumor strategies, but the recurrence 
and mortality rate of cancer are still high. Adoptive immunotherapy, as an adjuvant or alternative 
treatment, holds great promise in treating various malignant tumors. Cytokine-induced killer (CIK) 
cells are considered to be an ideal candidate cell type for cancer immunotherapy. A lot of basic 
researches and clinical studies show the safety and feasibility of CIK therapy in treating malignant 
tumors. Combination of CIK with either immunological or genetic engineering approaches have 
been made to improve the effects of CIK and all the key events in the history of CIK immunotherapy 
are shown in Figure 1 (3–16). In this review, the research progress and clinical application of CIK 
are summarized.
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wHAT iS CiK?

Cytokine-induced killer cells were first discovered in 1991 (5) 
and are a heterogeneous population of CD8+ T cells, which were 
generated from human peripheral blood lymphocytes (PBLs) 
and simply expanded ex vivo via incubation with an anti-CD3 
antibody, interferon-γ (IFN-γ), and interleukin (IL)-2. They can 
kill tumor cells mediated by FasL and perforin (17). According 
to the presence of cell surface molecule CD56, CIK cells are 
also divided into two main subsets: CD3+CD56+ T  cells and 
CD3+CD56− T  cells (18). CD3+CD56+ T  cells, which are also 
called the natural killer T cells, are considered to be the major 
effector cells of CIK. So, CIK cells can lyse cancer cells in a MHC-
unrestricted manner through activating NK cell receptors such 
as DNAX accessory molecule-1, NKp46, NKG2D, and NKp30 
(11, 19, 20). In addition to the direct killing effect of CIK on 
cancer cells, they can also regulate the immune function by 
secreting various cytokines. A lot of studies have indicated that 
after stimulation by tumor cells, the levels of pro-inflammatory 
cytokines such as tumor necrosis factor (TNF)-α, IFN-γ, and 
IL-2 secreted by CIK cells are significantly upregulated (21), 
and these cytokines further enhance systemic antitumor activity  
and induce a Th1 immune response.

EX VIVO eXPANSiON AND 
ALLOReACTiviTY OF CiK CeLLS

Obtaining a sufficient number of antitumor immune cells is a criti-
cal step in the successful application of CIK cell immunotherapy 
(22). Fortunately, CIK cells can be easily expanded in vitro from 
peripheral blood mononuclear cells (PBMC), and some reports 
also showed that they could be also generated from umbilical cord 
blood precursors or bone marrow (23, 24). The general culture 
protocol for the ex vivo expansion of CIK cells requires 3–4 weeks 
with the addition of IFN-γ, anti-CD3 antibody, and IL-2. And the 
detail steps are as follows: on day 0, the PBMC are separated by 
density-gradient centrifugation from the whole blood (24, 25) and 
treated with IFN-γ to activate macrophages, which further provide 

cytokine-mediated (IL-12) and contact-dependent (CD58/LFA-3)  
signals to promote the cytotoxic power of CIK cells (26–28). On 
day 1, anti-CD3 antibody and IL-2 are added to the medium. 
Anti-CD3 will provide mitogenic signals for T  cells which are 
then sustained by the continuous presence of IL-2 (29, 30). Fresh 
medium with IL-2 is added every 2  days. After 3–4  weeks of 
culture, the generated CIK cells are subsequently infused back 
into patients (Figure 2). The amount of injected CIK cells varied 
in different studies, so did the cell expansion rates. In fact, the 
average final expansion rates were usually in a range of 100-fold, 
but individual expansion rate was described to be variable from 
few to more than 1,000-fold (5, 25, 31, 32). It is well known that 
the more the CIK cells are injected and expanded, the better they 
response. Hontscha et al. showed that the total number of injected 
CIK cells ranged from 21.9 × 107 to 5.2 × 1010 (14), Li et al. found 
the total number of CIK cells ranged from 6 × 106 to 1.5 × 1010 in 
Chinese clinical trials (33). Until now, the least injected number 
of CIK cells was reported to be 6  ×  106 to obtain an objective 
response. Cohen et al. considered that tumor-infiltrating lympho-
cytes (TILs) must be expanded to 1010 for a successful treatment 
(34). Therefore, ~1010 CIK cells might be a good choice and many 
studies used more than 1 × 1010 cells to transfuse into the patients. 
As mentioned above, the reason why CIK expansion rate varies 
greatly is unclear. But there are still some additional strategies 
under investigation to further improve the expansion of CIK cells 
(22), which include adding new cytokines to the culture medium, 
such as IL-1, IL-7, IL-15, or thymoglobulin (8, 35, 36).

Cytokine-induced killer immunotherapy, a personalized 
therapy that uses patients’ own PBMC to expand antitumor CIK 
cells which are then reinjected into patients themselves, rarely 
causes autoimmune response. But sometimes, it is very difficult 
to obtain a sufficient number of CIK cells due to the poor health 
situation of patients, such as elderly people and patients with 
immunodeficiency diseases (37). To solve this problem, getting 
CIK cells from donor PBMC seems to be an alternative option. 
Studies showed that CIK cells exhibited a decreased alloreactiv-
ity across HLA barriers that could further reduce the risk of 
graft-versus-host disease (GVHD). Many phase I clinical studies 
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proved that infusion of the allogeneic CIK cells in patients 
relapsing after allogeneic hematopoietic cell transplant would 
reduce the incidence of GVHD events (38–40). Another solu-
tion to obtain sufficient CIK cells is collecting from the cord 
blood. Mature protocols have already been made for generation 
of cord blood-derived CIK (CB-CIK) cells (41). The CB-CIK 
cells displayed relatively lower expression of HLA, indicating 
a weaker immunogenicity and lower risk of GVHD (42). Many 
clinical trials proved that CB-CIK cells were effective and safe to 
patients with malignancies (43, 44). All these suggest that CIK is 
a safe immune therapy with lower risk of GVHD.

iMPROveD CiK THeRAPY

In the last decade, CIK cells have begun to be used in clinical care 
with good prospects for treatment success, and a great deal of 
research has been done to improve their cytotoxicity and safety. 
Here, we have summarized the current improved CIK therapies 
(Figure 3) (45, 46).

CiK Combined with Additional Cytokines
Cytokine-induced killer cells are a heterogeneous cell population 
that can be expanded ex vivo from PBMC with the addition of 
IFN-γ, anti-CD3 antibody, and IL-2. In fact, many additional 
cytokines have been made to improve CIK antitumor activity. 
These cytokines can improve cell proliferation and cytotoxicity 
partly by suppressing the generation of regulatory T (Treg) cells 
that are known to inhibit antitumor immunity.

Lu et  al. reported a new protocol for expansion of highly 
efficient cytotoxic CIK cells by culturing PBLs with addition of 
IL-1α (23). Another research showed that addition of IL-6 could 

significantly decrease the percentage of Treg cells and simultane-
ously increase the proliferation ability and cytotoxicity of the 
CIK cells against hepatocellular carcinoma (HCC) in vitro (47). 
By transfecting IL-7 gene expression vector into CIK cells, Finke 
et al. demonstrated an improved proliferation rate and enhanced 
antitumor cytotoxicity of CIK cells (48). Further study showed 
an upregulation of LFA-1 (CD11a/CD18) and CD28 in CIK cells 
with the addition of exogenous IL-7, which were essential for 
cytotoxic activity of CIK and played an important costimulatory 
role in T cell activation, respectively (49).

As an immune stimulatory cytokine, IL-12 has the strongest 
antitumor activity that can induce a Thl type of response and 
active NK and cytotoxic T  lymphocyte (CTL) cells (50). CIK 
cells, generated with exogenous IL-12 instead of IL-2, showed 
similar cytotoxicity (8). However, due to its high toxicity, a 
lower dose of IL-12 should be used in combination with CIK in 
clinical application (50). Many studies demonstrated that CIK 
cells stimulated with IL-15 displayed improved proliferation 
capacity and cell cytotoxicity against hematologic and solid 
malignancies (36, 51–55). And a possible mechanism for its 
function might be the regulation of Treg cells and the expression 
of toll-like receptor 4, Wnt 4, PDGFD, and IL-35 (51, 56, 57).  
Application of IL-21 did not increase the proliferation rate of 
CIK cells (58, 59), but the cell cytotoxicity was significantly 
enhanced by increasing expression of IFN-γ, TNF-α, perforin, 
and granzyme B.

Dendritic Cell (DC)–CiK
Dendritic cells are professional antigen-presenting cells (APCs) 
that can capture and process tumor-associated antigens (TAAs) 
(60). Given their particular ability to stimulate both adaptive 
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and innate antitumor immune responses, DCs have been used 
as a powerful pharmacological tool for cancer immunotherapy 
(61). Many researches showed that DCs could promote NK cell-
dependent antitumor effects through a cell-to-cell contact (62, 63).  
In recent years, studies have focused on the combinational treat-
ment of DCs and CIK cells and proved a relative more safe and 
effective therapeutic effect on advanced solid carcinoma, which 
provide a new and efficacious immunity therapeutic strategy for 
cancer treatment. Cao et al. showed that coculture of CIK cells 
with DCs in vitro could improve the proliferation rate and anti-
tumor activity of CIK cells (64). Further studies showed that the 
cellular interactions between CIK cells and DCs led to changes 
in the surface molecule expression of both populations and a 
sig nificant increase of IL-12 secretion, and finally resulted in a 
higher cytotoxic activity of CIK cells (10). Pan et al. reported that 
DCs decreased the concomitant expanded Tregs in CIK cells and 
enhanced the cytotoxicity of CIK cells against leukemia cells (65). 
As we all know, delivering TAAs to DCs as vaccines have been 
reported to be an effective strategy for the treatment of various 
advanced malignancies. The combination of DCs vaccination 
with CIK cells is considered to be more prospected, and studies 
showed a significantly stronger antitumor activity and fewer side 

effects (17, 66–69). Jung et al. showed that in an in vivo animal 
model, the CIK + DC vaccination therapy was more effective than 
CIK or DC vaccination alone therapy for the treatment of hepato-
carcinoma tumor cells (70). More recently, Lin et al. reported that 
DC–CIK therapy could improve survival by reducing the risk of 
disease progression in stage IV breast cancer patients (71).

CiK Combined with immune Checkpoint 
inhibitors
Immune checkpoints are molecules that can either turn up or 
turn down signals in immune system. When CTLs recognize and 
trigger tumor cell death by inducing apoptosis, various checkpoint 
pathways between APCs/tumor cells and T cells are activated to 
provide signals for T  cell activation (72, 73). There are at least 
two signaling pathways regulating the activation or inhibition 
of the CTLs: the primary signal is the binding occurred between 
peptide–MHC which is presented by APCs and T cell receptors. 
The secondary signal is the costimulatory/coinhibitory signal 
that regulates T cell activation (74, 75). The CD28, OX40, CD58, 
CD40L, CD80, CD86, and CD137 are stimulators that can pro-
mote immune activation, whereas programmed death 1 (PD-1), 
cytotoxic lymphocyte-associated antigen 4 (CTLA-4), lymphocyte 
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activation gene 3 (LAG-3), T  cell immunoreceptor with Ig and 
ITIM domains, and T-cell immunoglobulin and mucin-domain 
containing-3 (TIM-3) are inhibitors that suppress immune activa-
tion. CTLA-4 and PD-1 involved in the T-cell immune evasion in 
many malignancies, thus they are always designed as targets for 
cancer immune therapies (16, 76). It has been demonstrated that 
the blockade of inhibitory receptors such as PD-1, KIR, TIM-3, 
and LAG-3 but not CTLA-4 on CIK cells can significantly increase 
their antitumor potency against hematological malignancies. 
However, the combination of inhibitors against two receptors 
showed no increased cytotoxicity compared to that of one alone 
(77). Dai et  al. reported that the blockade of PD-L1/PD-1 aug-
mented CIK cytotoxicity against gastric and colorectal cancer cells. 
Additionally, combined therapy of CIK with checkpoint inhibitors 
(PD-L1/PD-1 blockade) could inhibit tumor growth and prolong 
the survival in the murine model of gastric cancer compared to 
untreated mice (16). All these suggest that combination of CIK 
cells with checkpoint inhibitors will be a novel immunotherapy 
for cancer treatment.

CiK Combined with Antibodies
Immunotherapy of tumors with specific antibodies has been 
established as one of the most successful therapeutic strategies 
in the last 20 years. The mechanisms of antibody-based tumor 
cell killing are as follows: (1) antibody can directly bind to the 
cell surface receptor, deliver drug or toxin to target tumor cells, 
induce cell apoptosis, and reduce proliferation; (2) antibody 
can kill tumor cells by immune-mediated killing mechanisms 
such as activating complement, antibody-dependent cellular 
cytotoxicity, and regulating T  cell function; (3) antibody can 
regulate tumor angiogenesis by vasculature receptor antagonism 
or ligand trapping (78, 79). Many studies showed that CIK cells 
combined with antibody could improve their cytolytic activity. 
Pievani et al. reported that addition of anti-CD20 mAb rituximab 
or GA101 could significantly enhance cytotoxicity of CIK cells 
to B-cell lymphoma in  vitro (20). Deng et  al. further proved 
that the enhanced CIK cytotoxicity induced by anti-CD20 mAb 
was partly related to the increased expression of components of 
the MAPK/ERK and STAT signaling pathways (80). Esser et al. 
reported that the combinational treatment of CIK cells with 
anti-CD30 mAb Brentuximab Vedotin (SGN-35) achieved bet-
ter efficacy in CD30+ lymphoma, and SGN-35 did not affect the 
function of CIK cells (81). Besides, bispecific antibodies (BsAbs) 
that have two different antigen-binding sites could improve 
adoptive immunotherapy effect by cross-linking CIK cells with 
malignant tumor cells (82). BsAb CD19 × CD5 (HD37 × T5.16) 
has been reported to increase the cytolytic activity of CIK cells 
against B-lymphoma cells (83). BsAbs against cancer antigen-125 
and Her2 significantly enhanced the cytotoxicity of CIK cells 
in primary ovarian cancer in both in  vitro and in  vivo models 
(84). BsAb EGFR/CD3 could improve the cytotoxic activity of 
CIK cells toward gastric cancer cells (85). When combined with 
anti-CD3/anti-CD133 BsAb, CIK cells showed significantly 
stronger cytotoxicity to CD133high pancreatic and hepatic cancer 
cells than that of CIK, CD3-CIK, or BsAb alone (86). Recently, 
Ma et al. reported that CIK cells armed with BsAb CD3 × EGFR 
(EGFRBi-Ab) to target EGFR-positive glioblastoma significantly 

increased CIK cells cytotoxic activity in vitro and inhibited the 
growth of glioblastoma tumors in glioblastoma xenograft mice 
(87). All these data suggest a better in vitro and in vivo antitumor 
effect of CIK cells combined with antibodies, which will definitely 
provide a novel useful method for the CIK cells.

CiK Combined with Chimeric Antigen 
Receptor (CAR)
To promote target cell recognition and improve specific cytotox-
icity of CIK, CIK cells are always engineered with a CAR that is 
targeted to specific antigen. CIK cells engineered with a CAR that 
was directly targeted against carcino-embryonic antigen (CEA) 
showed improved activation toward CEA+ colon carcinoma cells, 
compared to that of CEA− cells (15). Oelsner et al. proved that CD19 
CAR-engineered CIK cells could dramatically enhance their anti-
leukemic activity (88). Remarkably, Marin et al. found that CIK 
cells combined with CD19-target CARs containing a costimula-
tory CD28 or 4-1BB domain together with CD3ζ exhibited better 
antitumor effect than CARs based on DAP10 or CD3ζ alone  
(89, 90). Likewise, Hombach et al. reported that CIK cells arming 
with CD28-CD3ζ CAR showed stronger cytotoxicity; however, 
CIK cells arming with the third-generation CD28-CD3ζ-OX40 
CAR that provided a super costimulation signal exhibited less 
antitumor efficacy due to increased activation-induced cell death 
(91). All these data indicate that CIK cells modified by CAR have 
stronger tumor cell killing activity, and the appropriate design for 
CAR is crucial for the successful application of CAR-mediated 
CIK response.

CiK Combined with Chemotherapy
Many studies have shown that CIK/DC–CIK combined with 
different chemotherapy regimens for cancer treatment exhibited 
better efficacy than chemotherapy alone. Wu et al. showed that 
CIK cells plus chemotherapy (docetaxel and cisplatin) could sig-
nificantly prolong the progression-free survival (PFS) and overall 
survival (OS) in advanced non-small-cell lung cancer (NSCLC) 
patients (92). Niu et al. proved that CB-CIK cells combined with 
second-line chemotherapy drug (dexamethasone) could improve 
PFS and OS in patients with advanced solid malignancies after 
first-line chemotherapy failure (44). As we all know, chemoresist-
ance is a major problem to be solved in the treatment of cancers. 
Interestingly, many studies showed that the combination of CIK 
with chemotherapy could overcome chemotherapy resistance by 
activating the immune system (93, 94). Zheng and Han analyzed 
the efficiency and safety of chemotherapy combined DC with CIK 
cells in the treatment of NSCLC using meta-analysis. They found 
that chemotherapy combined with DC–CIK immunotherapy 
was superior in 1-year OS, disease control rate (DCR), and 
disease-free survival (DFS). Meanwhile, no more adverse events 
(AEs) appeared. However, there was no obvious improvement 
in objective response rate (ORR), partial response, 2-year PFS, 
and OS. All these suggested the combination therapy was mod-
est in efficacy and safer for advanced NSCLC patients (95, 96).  
Similar results, with significantly prolonged 1–5 year OS, DFS, 
and improved DFS, ORR, and DCR with the infusion of CIK/
DC–CIK combined with chemotherapy was reported by Mu 
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et  al. in patients with gastric cancer. Moreover, the levels of 
IFN-γ and IL-12, except IL-2, significantly increased after CIK/
DC–CIK therapy, proving that the immune function of gastric 
cancer patients also significantly improved (97). Another meta-
analysis proved that DC–CIK combined with chemotherapy 
could prolong 1-year OS, 2-year OS, and 3-year OS on colon 
cancer (98). All these data indicate an antitumor effect of CIK 
and chemotherapy in comparison with the use of chemodrugs 
or CIK cells alone.

CiK Combined with Nanomedicine
With the rapid development of nanotechnology and nanomedi-
cine, nanomaterials have been applied in various fields, espe-
cially in human health care. In recent years, nanotechnology 
has brought many new methods for cancer treatment (99–103). 
Nanometer-sized particles (1–100  nm) are in the same range 
of dimension as biomacromolecules including antibodies and 
membrane receptors (104). Their inherent physical/chemical 
properties or being loaded with different imaging/therapeutic 
agents in their surface, all of which make nanoparticles become 
a powerful tool for diagnosis, imaging, and therapy (105–107). 
Importantly, nanomaterials with low toxicity can be used as vac-
cine carrier/adjuvant to improve the immunogenicity of antigens 
by enhancing their cellular uptake, preventing enzyme degra-
dation, and regulating the immune cells function (108, 109).  
Many researchers explored the potential applications of nano-
materials in monitoring the trafficking of DCs and enhancing 
the efficacy of DC-based cancer vaccines, such as quantum dots 
(110), magnetic nanoparticles (111–114), and upconversion 
nanoparticles (115). Furthermore, it has been reported that 
nanoparticles could also work as cancer vaccines (116), and 
these cancer nanovaccines could be envisioned as nanocar-
riers codelivering antigens and adjuvants (117–119). As we 
discussed, the efficacy of DC–CIK is better than DC or CIK 
alone, so we propose that the combination of CIK/DC–CIK 
cells with nanomaterials may have a great potential in cancer 
immunotherapy.

CLiNiCAL TRiALS ON CiK CeLLS

At present, CIK as a pharmacological tool for cancer therapy 
has been tested in clinical trials of various tumors. 90 registered 
clinical trials have been found on the website ClinicalTrials.
gov (http://www.clinicaltrials.gov) (Table  1) by searching the 
keywords: cytokine-induced killer cells or CIK. One trial is 
working on psoriasis (Table 1). The majority of these are con-
centrated in China (58 studies), followed by 6 studies in U.S., 3 
studies in Singapore, and 3 studies in Korea. Besides, two trials 
(NCT01533727, NCT02539017) have been withdrawn, 1 trial ter-
minated (NCT01871480), 22 trials have been completed. Below, 
we will summarize these clinical trials on CIK cells.

In a first Phase I study, Schmidt-Wolf et  al. demonstrated 
the safety and initial activity of CIK in therapeutic trials (9). In 
addition, CIK cells could be successfully expanded from patients 
treated with or without chemotherapy (120), so CIK cells were 
widely applied to treat various types of tumors including HCC, 
lung cancer, and gastrointestinal tumors (Table 1).

Lee et  al. reported that patients who received CIK immu-
notherapy after curative treatment for HCC had a 14-month 
median recurrence-free survival (RFS) benefit (121). The OS 
and cancer-specific survival were longer in the immunotherapy 
group compared to the control group. The ratio of AEs was sig-
nificantly higher in the immunotherapy group (P = 0.002), but 
there was not a significant difference in the proportion of patients 
with serious AEs between groups (P =  0.15) (NCT00699816). 
It is worth noting that previous studies about CIK therapy for 
HCC showed significant benefits in preventing recurrence, 
but no significant survival gains (122–124). The difference of 
these results may be due to several aspects, such as the differ-
ent intensified schedule of CIK, different cancer clinical stage 
or the non-standard quality of CIK cells (commercialized CIK 
cell compared to uncommercialized CIK cells). Lee et al. proved 
that adjuvant immunotherapy with activated CIK cells could 
increase the RFS and OS of patients who suffered with HCC 
(125) (NCT00699816). Furthermore, adjuvant CIK cells treat-
ments were proved to be safe and effective for HCC treatment by 
several meta-analyses (126–129).

In 2012, a phase II clinical study showed that CIK immuno-
therapy could enhance the efficacy of conventional chemotherapy 
in patients with NSCLC (130). Furthermore, Chen et al. proved 
the MHC class I-related chain A (MICA) status was also associ-
ated with the outcome measures in CIK therapy for patients with 
gastric cancer, for the patients with high expression of MICA were 
more likely to benefit from CIK therapy (131, 132). In a phase II/
III study, combined radiofrequency ablation with CIK has been 
reported to be a safe and effective treatment for CRLMs patients 
(133). Hereafter, many clinical studies were conducted to evaluate 
the efficacy of CIK/DC–CIK cell therapy for lung cancer, and all 
the results showed that CIK/DC–CIK was an effective therapy for 
lung cancer (134–139).

Many researches proved that CIK therapy was therapeutic for 
treatment of gastrointestinal tumors such as colorectal cancer and 
gastric cancer. In 2014, a meta-analysis in China showed that the 
combination of DC–CIK with chemotherapy could significantly 
improve the survival benefit, DFS rate, and overall response rate 
in patients with colon cancer. Furthermore, the number of CD4+ 
T cells was significantly increased in the DC–CIK + chemotherapy 
group (98). Zhao et al. reported that CIK cells could improve OS 
of metastatic colorectal cancer patients in a phase II clinical trial 
(140). Lin et  al. showed that DC–CIK combined with chemo-
therapy could prolong PFS and OS in colorectal cancer patients 
compared to chemotherapy alone (141). Mu et al. summarized 17 
eligible trials including 1,735 patients with gastric cancer in a meta-
analysis, and they found that the combination of chemotherapy 
with CIK/DC–CIK significantly increased the OS rate and DFS 
rate, enhanced immune function, and reduced the AEs caused by 
chemotherapy (97). Kong et al. showed that the addition of CIK 
cells immunotherapy to standard chemoradiotherapy with temo-
zolomide improved PFS but not OS in a phase III randomized trial 
of newly diagnosed glioblastoma in Korea (142) (NCT00807027).

The clinical outcome of cancer with different pathologic stages 
is different, but little is known about the achievable outcome of 
CIK cells in patients with different pathological stages of the 
tumor. Recently, Li et  al. reported that combined CIK with 
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TABLe 1 | Clinical studies on cytokine-induced killer (CIK) cells.

Trial Phases experimental design Target disease Recruitment enrollment

NCT01533727 II CIK + chemotherapy Non-small-cell lung cancer (NSCLC) Withdrawn 0
NCT02539017 II Dendritic cell (DC)/CIK + chemotherapy Triple-negative breast neoplasms Withdrawn 0
NCT01871480 II CIK + gefitinib NSCLC Terminated 50
NCT01655628 II CIK + chemotherapy Nasopharyngeal carcinoma Recruiting 40
NCT01902875 Undefined CIK + chemotherapy NSCLC Recruiting 100
NCT01914263 I CIK Solid tumor Recruiting 40
NCT01868490 I/II CIK Cholangiocarcinoma Recruiting 13
NCT01186809 II CIK Hematologic malignancies Recruiting 50
NCT01839539 II DC–CIK Colorectal cancer Recruiting 60
NCT01799083 I/II Decitabine + CIK Solid tumors/B cell lymphoma Recruiting 100
NCT00862303 I/II DC–CIK Renal cell carcinoma Recruiting 100
NCT02621333 II CIK + chemotherapy Lung adenocarcinoma Recruiting 280
NCT02280278 III Radical surgery/adjuvant chemotherapy + CIK Colon cancer Recruiting 550
NCT01592422 II CIK Small-cell lung cancer Recruiting 60
NCT01498055 II/III CIK Lung cancer Recruiting 120
NCT01481259 II/III CIK NSCLC Recruiting 120
NCT02752243 I/II CIK Myelodysplastic syndromes (MDSs)/acute 

leukemia
Recruiting 40

NCT02651441 I/II DC–CIK + chemotherapy NSCLC Recruiting 60
NCT02568748 III CIK Advanced HCC Recruiting 20
NCT02487017 II DC–CIK + TACE Hepatocellular carcinoma (HCC) Recruiting 60
NCT02644863 II DC–CIK + chemotherapy Esophageal cancer Recruiting 60
NCT01691625 Undefined DC–CIK Esophageal cancer Recruiting 50
NCT01758679 IV Licartin + CIK HCC Recruiting 120
NCT01783951 I/II S-1 + DC–CIK Gastric cancer Recruiting 30
NCT01781520 I/II S-1 + DC–CIK Pancreatic cancer Recruiting 30
NCT02504229 II DC–CIK + chemotherapy Gastric cancer Recruiting 80
NCT01691664 Undefined Radiation therapy + DC–CIK Esophageal cancer Recruiting 40
NCT01884168 Undefined DC–CIK Malignant tumor Recruiting 30
NCT01898793 I Chemotherapy + CIK Leukemia, myeloid, acute Recruiting 24
NCT01906632 Undefined DC–CIK Malignant tumor Recruiting 50
NCT02851784 II/III Microwave ablation + CIK HCC Recruiting 50
NCT01929499 II CIK Colonic neoplasms Not yet recruiting 210
NCT01821495 II DC–CIK to treat NPC Nasopharyngeal carcinoma Not yet recruiting 100
NCT02496988 IV Temozolomide + CIK Advanced milignant gliomas Not yet recruiting 120
NCT02494804 I/II Temozolomide + CIK Milignant gliomas Not yet recruiting 80
NCT02490735 II CIK Esophageal squamous cell carcinoma Not yet recruiting 2,000
NCT01631357 II/III CIK + chemotherapy Lung cancer Not yet recruiting 200
NCT01821482 II DC–CIK HCC Not yet recruiting 100
NCT02497898 II CIK Lymphoma, non-Hodgkin Not yet recruiting 1,000
NCT02487550 II DC–CIK Renal neoplasma Not yet recruiting 1,200
NCT01235845 I/II DC-activated CIK + DC Malignant glioma Not yet recruiting 30
NCT02415699 II/III DC–CIK + chemotherapy Colorectal cancer Not yet recruiting 100
NCT01240005 I/II DC–CIK Renal cell carcinoma Not yet recruiting 30
NCT01828008 Undefined CD20 antibody + CIK Lymphomas Not yet recruiting 20
NCT02688686 I/II Genetically modified DC + CIK NSCLC with bone metastases Not yet recruiting 30
NCT02498756 II CIK + ipilimumab Melanoma Not yet recruiting 300
NCT02585908 I/II CIK + γδ T Gastric cancer Not yet recruiting 120
NCT02856815 II CIK Hepatocellular Not yet recruiting 78
NCT02782546 II CIML NK cell Acute myeloid leukemia Not yet recruiting 60
NCT00769106 III CIK HCC Completed 200
NCT02419677 II/III Radiofrequency ablation + CIK Colorectal cancer Completed 60
NCT00815321 II CIK Chronic myeloid leukemia Completed 11
NCT00394381 I/II CIK Acute myeloid leukemia/MDS Completed 17
NCT01749865 III CIK Carcinoma, hepatocellular Completed 200
NCT00460694 I/II CIK Hematological malignancies Completed 24
NCT00477035 I/II CIK Hematologic malignancies Completed 22
NCT01232062 Undefined DC–CIK + chemotherapy Triple-negative breast cancer Completed 46
NCT02406846 Undefined DC–CIK + cryosurgery Neoplastic cells, circulating Completed 80
NCT02412384 Undefined DC–CIK + cryosurgery Neoplastic cells, circulating Completed 120
NCT02450448 Undefined DC–CIK + cryosurgery Neoplastic cells, circulating Completed 60
NCT02416635 Undefined DC–CIK + cryosurgery Neoplastic cells, circulating Completed 60
NCT02450357 Undefined DC–CIK + cryosurgery Neoplastic cells, circulating Completed 60

(Continued )
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Trial Phases experimental design Target disease Recruitment enrollment

NCT02450435 Undefined DC–CIK + cryosurgery Neoplastic cells, circulating Completed 60
NCT02450422 Undefined DC–CIK + cryosurgery Neoplastic cells, circulating Completed 60
NCT02425735 I/II DC–CIK + γδ T Liver cancer Completed 40
NCT00807027 III CIK + chemotherapy Glioblastoma Completed 180
NCT01395056 Undefined DC–CIK + chemotherapy Triple-negative breast cancer Completed 23
NCT02425748 I/II DC–CIK + γδ T Lung cancer Completed 40
NCT02418481 I/II DC–CIK + γδ T Breast cancer Completed 40
NCT00699816 III CIK Hepatocelluar carcinoma Completed 230
NCT00186342 Undefined CIK Hematologic malignancies Completed 120
NCT02482454 II/III Radiofrequency ablation + CIK Cholangiocarcinoma Active, not recruiting 50
NCT01392989 II CIK + chemotherapy MDSs Active, not recruiting 44
NCT02489890 II CIK Urinary bladder neoplasms Active, not recruiting 1,500
NCT00185757 I CIK Multiple myeloma Active, not recruiting 20
NCT02485015 II CIK + apatinib Stomach neoplasms Active, not recruiting 80
NCT02490748 II Radiofrequency ablation + CIK Cervical cancer Active, not recruiting 10
NCT02493582 II CIK + apatinib Adenocarcinoma of lung Active, not recruiting 400
NCT02215837 II Chemotherapy + DC–CIK Gastric cancer Active, not recruiting 40
NCT01924156 I/II adenovirus-transfected DC + CIK Renal cell carcinoma Active, not recruiting 30
NCT01898663 I/II Adenovirus-transfected DC + CIK High-risk soft tissue sarcoma Active, not recruiting 30
NCT02491697 II DC–CIK + capecitabine monotherapy Breast cancer Active, not recruiting 400
NCT02487693 II Radiofrequency ablation + CIK Ovarian carcinoma Active, not recruiting 50
NCT02487992 II CIK Colorectal neoplasms Active, not recruiting 1,200
NCT02693236 I/II adenovirus-transfected autologous DC + CIK Esophagus cancer Active, not recruiting 30
NCT02202928 II DC–CIK + chemotherapy Colorectal cancer Active, not recruiting 60
NCT01956630 I/II DC–CIK Acute leukemia Active, not recruiting 25
NCT02688673 I/II DC–CIK Small-cell lung cancer Active, not recruiting 30
NCT02678013 III RFA + highly purified cytotoxic T lymphocytes HCC Active, not recruiting 210

These data were searched on 11 August, 2016 from the ClinicalTrials.gov (http://www.clinicaltrials.gov) using the word “cytokine-induced killer cells OR CIK.”

TABLe 1 | Continued
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conventional treatments could increase the survival rate of early-
stage melanoma patients (143). So, whether the outcome of CIK 
is better in early-stage patient needs to be further studied.

As we have seen, most of the CIK registered clinical trials 
are restricted to Asian countries (64 trials), so it is difficult to 
completely evaluate the effects of CIK therapy over the world. 
Besides, the number of patients included in some clinical trials is 
also inadequate. So, more large-scale, grouped, controlled, multi-
center, non-commercial clinical trials are required to confirm the 
immunotherapeutic effects of CIK in cancer treatment.

CONCLUSiON AND PROSPeCTS

In recent years, immunotherapy is considered to be a powerful 
pharmacological tool for the treatment of many malignancies 
(144). It is known that the expression of tumor antigens and 
MHC-I molecules are often downregulated or completely lost on 
tumor cells. Although the TILs could recognize specific antigens 
expressed by autologous tumor cells, this specific antigenicity is 
too low to achieve a high degree of antigenicity in therapeutic 
use (120, 145). What is more, the extremely low numbers of TIL 
cells and lymphokine-activated killer (LAK) cells also restrict 
their application. Compared to LAK cells, the CIK cells exhibit 
a relative higher proliferation rate and stronger antitumor activ-
ity. Especially for their non-MHC-restricted characteristic, CIK 
cells have a much broader antitumor spectrum. Antibody-based 
therapy and CAR-T  cell therapy for cancer have been demon-
strated to be one of the most successful and important treatment 

strategies, but there are still some details to be improved. One of 
the key challenges is to identify suitable antigens of tumors with 
explicit target genes. Unfortunately, the presence of intrinsic or 
acquired resistance has blunted the advantages of targeted thera-
pies, the reason is partially due to the mutation or downregula-
tion of specific antigen (79). The immune checkpoint blockade 
shows impressive clinical results, but the majority of patients are 
either resistant or relapse after therapy (146). Based on these data, 
optimal adoptive cellular immunotherapy (ACI) may require a 
portfolio of different treatment strategies.

As mentioned earlier, CIK cells are a heterogeneous popula-
tion of CD3+ T lymphocytes, which maybe not only the biggest 
drawback but also the biggest advantage of this method. As a 
heterogeneous cell population, CIK cells are proved to contain 
different subpopulations and present a mixed T–NK phenotype. 
Until now, the precise subpopulation that is the most crucial and 
relevant to the clinical outcome and the exact pharmacological 
mechanism of how CIK kill tumor cells are still not completely 
understood. So, it is hard to precisely evaluate the effect of the 
CIK cell on immune response in cancer patients and hard to know 
why some clinical trials with CIK failed. Clearly, this uncertainty 
limits the clinical application of CIK. In contrast, as a heteroge-
neous cell population, CIK cells are able to kill heterogeneous 
tumor cells despite the tumor heterogeneity and antigen escape, 
which are major setbacks for the antibody-based and CART 
immunotherapy (147). And this may be the biggest advantage 
of CIK therapy. CIK cells therapy can improve the prognosis 
of cancer patients for its safety and decreased recurrence, so it 
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would be the most effective treatment on residual cancer cells 
after conventional therapy.

Recently, much effort has been made to improve the anti-
tumor activity of CIK cells and the recent findings of clinical 
applicability are reviewed in the paper. The promising outcomes 
have been made by CIK cells therapy combined with other 
therapies. But further research is still needed to optimize the 
procedure of CIK therapy. First, uniform culturing criteria 
should be formulated for CIK expansion. Second, more clinical 
trials need to be conducted with large-scale, controlled, grouped 
patients, including patients with different tumor stages and dif-
ferent cancer biomarkers. Only by doing these, can we figure out 
the tumor-killing mechanism of CIK cells and better evaluate 
their clinical efficacy.

More and more people realize that it is hard to cure cancer 
with only one drug or one therapeutic strategy. The combina-
tion of different drugs or therapies has already become a trend 
in treating heterogeneous tumors. As an effective ACI, CIK cells 
therapy provide a chance to prolong survival of cancer patients in 
clinical practice, and it is definitely worthy to spend more effort 
on it.
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