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T  lymphocytes are stimulated when they recognize short peptides bound to class I 
proteins of the major histocompatibility complex (MHC) protein, as peptide–MHC com-
plexes. Due to the diversity in T-cell receptor (TCR) molecules together with both the 
peptides and MHC proteins they bind to, it has been difficult to design vaccines and 
treatments based on these interactions. Machine learning has made some progress in 
trying to predict the immunogenicity of peptide sequences in the context of specific MHC 
class I alleles but, as such approaches cannot integrate temporal information and lack 
explanatory power, their scope will always be limited. Here, we advocate a mechanistic 
description of antigen presentation and TCR activation which is explanatory, predictive, 
and quantitative, drawing on modeling approaches that collectively span several length 
and time scales, being capable of furnishing reliable biological descriptions that are 
difficult for experimentalists to provide. It is a form of multiscale systems biology. We 
propose the use of chemical rate equations to describe the time evolution of the foreign 
and host proteins to explain how the original proteins end up being presented on the cell 
surface as peptide fragments, while we invoke molecular dynamics to describe the key 
binding processes on the molecular level, including those of peptide–MHC complexes 
with TCRs which lie at the heart of the immune response. On each level, complementary 
methods based on machine learning are available, and we discuss the relationship 
between these divergent approaches. The pursuit of predictive mechanistic modeling 
approaches requires experimentalists to adapt their work so as to acquire, store, and 
expose data that can be used to verify and validate such models.

Keywords: pathway model, binding affinity, machine learning, molecular dynamics, MHc-i antigen presentation 
pathway

iNtrODUctiON

The immune system’s ability to fight against pathogens such as viruses and bacteria varies between 
individuals and is influenced by an area of the human genome known as the major histocompat-
ibility complex (MHC). MHC class I (MHCI) complexes present small fragments of proteins, 
known as peptides, on the cell surface, which allows cytotoxic T-cells to recognize intracellular 
pathogens.

The MHCI antigen presentation pathway is a multistage process, which essentially hijacks the 
waste disposal system of cells (Figure 1). The proteasomal degradation of cytoplasmic proteins 
generates peptides that bind to the transporter associated with antigen processing (TAP), thereby 
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FigUre 1 | Diagrammatic representation of the major steps in the major histocompatibility complex (MHC) antigen presentation pathway that need to be included  
in a mechanistic model of viral peptide cell surface presentation. The measurable quantities required for such a model are mentioned in italics next to each step.
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shipping them to the endoplasmic reticulum (ER). Once in the 
ER, peptides may be loaded on to MHCI molecules, which are 
then transported through the Golgi apparatus to the cell surface. 
The abundance of specific peptides on the cell surface there-
fore depends on several factors. First, 99% of all cytoplasmic 
peptides are degraded before encountering TAP (1) so a high 
cytoplasmic peptide concentration is key to eventual peptide 
presentation. The outcome depends upon a trade-off between 
protein synthesis and degradation including the probability of 
cleavage of a peptide from the protein. The rate of transport of 
a peptide to the ER depends upon the sequence-specific affinity 
of the peptide with TAP. Once in the ER, peptides will compete 
for loading onto the MHC molecules via the peptide loading 
complex. Chaperone molecules, such as tapasin, facilitate the 
formation of peptide–MHC (pMHC) complexes with high 
affinity, which then egress to the cell surface. The cell surface 
pMHC complexes bind with T-cell receptors (TCRs), initiating 
a signal cascade resulting in T-cell activation and the killing of 
target cells. pMHC affinity to TCR (2) and cell surface peptide 
abundance are correlated with T-cell immunodominance (3), 
the dominant clonal expansion of T-cells that respond to specific 
peptides, or epitopes.

Knowledge of the hierarchy and timing of presentation of 
such epitopes by MHC is key to the development of peptide 
vaccines and immunotherapy for a myriad of diseases including 

viral infections and cancer. This requires measurements of T-cell 
recognition and/or the pMHC cell surface abundance. T-cell 
epitopes can be mapped using high-throughput experimental 
methods. However, the number of proteins and MHC alleles that 
can be scanned at any given time is limited. Croft et al. (4) made 
temporal measurements of the cell surface abundance of eight 
vaccinia peptides using mass spectrometry, demonstrating how 
the abundance of viral peptides relates to the timing of T-cell 
responses. However, it is infeasible at present to perform such 
an experiment over the full potential peptidome of viral peptides 
for any MHC allele. To obtain a more comprehensive view of the 
dynamics of viral peptide presentation, quantitative models are 
required to generate predictions of cell surface presentation of 
viral or cancerous peptides.

It is desirable to predict which peptides are immunogenic, 
that is those which evoke an immune response. Several epitope 
prediction algorithms have been produced using machine learn-
ing methods, such as the MHC peptide processing tool from the 
immune epitope database (IEDB) (5). This algorithm is built 
upon datasets of in vitro experiments characterizing proteasomal 
cleavage rates, TAP affinity, and MHC binding of thousands of 
different peptides, combining the three metrics to produce a total 
“score” for each possible peptide from an input protein amino 
acid sequence. The higher the score, the greater the probability of 
the peptide being presented.
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Machine learning algorithms are thought to be able to pre-
dict the efficiency of peptide processing for MHC presentation 
accurately when comparing peptides originating from a single 
protein. However, their predictions provide a static view of 
immunogenicity based upon sequence-specificity; they cannot 
account for protein abundance kinetics, which has a substantial 
impact on the hierarchy of peptide abundance at the cell surface 
(4). This is a general limitation of data-driven, as opposed to 
theory-led, approaches in biomedical research (6). Predicting the 
timing and hierarchy of peptide presentation following pathogen 
infection requires mechanistic models that integrate pathogen 
kinetics throughout infection and replication. It is, however,  
possible to include machine learning methods within mechanistic 
pathway prediction models by incorporating sequence-specific 
distinctions between peptides via their kinetic behavior.

A MOtivAtiNg eXAMPLe: Hiv iNFectiON 
AND LONg-terM cONtrOL

HIV-infected individuals usually progress to AIDS within 
10  years, with 10−15% of people progressing rapidly within 
3  years of infection, whereas 5−10% remain asymptomatic for 
over 10 years (7). These widely differing rates of progression are 
linked to the differing expression of specific MHC alleles, which 
in humans are known as human leukocyte antigen (HLA) pro-
teins, and the peptides they present. Experimental evidence sug-
gests an association between T-cell recognition of Gag epitopes 
presented by a subsection of MHC alleles known as long-term 
non-progressors (LTNPs) and control of HIV progression; how-
ever, this is far from a solved issue.

The MHC alleles HLA-B*58, -B*57, -B*27, and -B*44 are over-
represented among LTNPs and are associated with Gag-specific 
T-cell responses (8). Conversely, the alleles HLA-B*35 and -B*18 
have been found to be associated with rapid progression to AIDS 
with T-cell responses against non-Gag epitopes, such as those 
from the Nef and Env proteins (9).

The Env and Nef proteins are both highly variable, with Env 
being the most variable sequence in the HIV genome (8) and 
mutations in these epitopes are fitness neutral (10). The Gag 
protein amino acid sequence, however, is highly conserved, and 
escape mutations in its epitopes negatively impact viral fitness. For 
example, the T242N escape mutation in the HLA-B*57/B*58:01 
restricted Gag epitope TW10 (TSTLQEQIGW) leads to dimin-
ished viral replication capacity, as does the A163G mutation of 
the similarly restricted Gag KF11 (KAFSPEVIPMF) epitope (11). 
However, other highly conserved proteins, such as Pol, are not 
as strongly associated with HIV control. Therefore, sequence 
conservation may not be the only important factor in immune 
control. Gag is the most abundant protein in both the HIV virion 
and in the cytoplasm following the nuclear export of full-length 
mRNA during replication. The kinetics of the Gag protein could 
also be very important in shaping the resulting abundance of 
derived peptides. As existing analyses considering several differ-
ent factors separately have yet to elucidate a coherent picture of 
HIV control, we propose analyzing this question in an integrated 
manner. Specifically, a dynamic, mechanistic model could help 

to determine the relative importance of protein abundance 
and sequence variability, and help to explain Gag’s role in the  
control of HIV.

MecHANistic PAtHWAY MODeLs,  
tHeir cONstrUctiON, AND tHe DAtA 
reQUireD

To create a mechanistic model to predict peptide cell surface 
presentation following viral infection, each step in the pathway 
from viral protein synthesis to pMHC binding and presenta-
tion (Figure 1) can be represented in the form of an ordinary 
differential equation based on the law of mass action. The rate 
coefficients in such equations require collection of experimental 
data pertaining to the viral intracellular dynamics. When a virion 
enters a cell, viral proteins and the viral genome are dumped into 
the cytoplasm. The viral proteins are degraded into peptides that 
can potentially lead to host recognition of the infected cell soon 
after infection. Therefore, determining the copy number of the 
viral proteins contained within a virion and their cytoplasmic 
half-lives are required to predict the production of virion-derived 
peptides prior to the onset of viral replication. Detecting infected 
cells before viral replication begins would prevent the spread of 
the virus to other cells in the body.

As mentioned above, an ideal candidate pathogen to test this 
method is HIV-1, as there is a wealth of experimental data avail-
able characterizing many of the important steps in viral replica-
tion within a single infected cell. Furthermore, several models 
of HIV-1 intracellular kinetics exist describing the dynamics of 
viral mRNA production together with synthesis and degradation 
of many of the important HIV-1 proteins, as well as steps in 
assembly of virion particles.

Reddy and Yin (12) modeled HIV-1 intracellular kinetics 
from reverse transcription and integration of the viral genome 
into the host genome, transcription of full-length viral mRNA, 
subsequent splicing, and export into the cytoplasm, followed by 
the translation of the proteins Gag, GagPol, and Env. Several steps 
in the creation of new virions are also modeled, including post-
translation protein modifications, transport to the cell membrane, 
and the budding and assembly of viral particles. The majority of 
the kinetic rate parameters used in this model have been experi-
mentally measured, and its predictions agree well with available 
experimental measurements of HIV DNA, mRNA, protein, and 
virion concentrations.

Kim and Yin (13) also described the translation and splicing 
of HIV mRNA, and nuclear export; furthermore, their model 
includes the translation of the regulatory proteins Tat and Rev 
as well as their regulation of transcription and export of viral 
mRNA. Wang and Lai (14) modeled the transcription of viral 
mRNA, translation of Gag, Tat, and the accessory protein Vif, the 
creation of Vif-Gag, Vif-APO, and Gag-APO complexes, where 
APO is a cellular antiviral protein, together with incorporation 
of these complexes into budding virions. The model was verified 
using several experimental data sets. The combination of these 
models may be expected to result in a quantitative description 
of intracellular HIV-1 kinetics from viral genome integration 
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to budding of new virions. Missing parameters could be taken 
from publications where available, or otherwise chosen to have 
plausible values.

The steps of the peptide processing pathway would also need 
to be converted to a kinetic pathway model. Dalchau et al. (15) 
presented such a model of peptide–MHC binding in the ER and 
subsequent egression to the cell surface while also accounting 
for the effect of the chaperone molecule tapasin, which enhances 
the preferential selection of peptides that form stable complexes 
with MHC. In this model, a peptide Pi is supplied to the ER with 
rate coefficient gi where it can bind to empty MHC with rate 
coefficient b or to tapasin-bound MHC with a higher value c. 
The values for b and c are assumed to be similar for all peptides 
binding to the same MHC allele. The peptide can unbind from 
the MHC or MHC–tapasin complexes with rate coefficient ui or 
ui⋅q respectively, where q is the increase in the peptide–MHC 
unbinding rate coefficient ui in the presence of tapasin.

To combine a model of viral intracellular kinetics with a 
peptide processing model and simulate such a model for a large 
set of possible peptides requires sequence-specific parameters 
describing the rate of proteasomal cleavage, TAP transport and 
peptide–MHC binding and unbinding. The IEDB MHC process-
ing tool (5) may be used to infer relative parameters for each pep-
tide sequence in the model. The proteasomal cleavage prediction 
is a relative score proportional to the logarithm of the amount of 
peptide generated from the cleavage of the peptides C-terminal. 
The TAP transport prediction is given in terms of the IC50 of 
the interaction between TAP and a peptide. Similarly, the MHC  
binding prediction is given as an IC50 value. The proteasomal 
cleavage score from the IEDB machine learning tool can be con-
verted to a relative probability of peptide production each time 
a protein degrades by scaling the scores so that they lie within a 
reasonable range of probabilities.

The predicted peptide–MHC IC50 can be used to approximate 
the dissociation constant KD=ui/b of the peptide when bound to 
MHC. As peptide off-rates are known to vary more than peptide 
on-rates (16), we suggest making the assumption that the varia-
tion in predicted IC50 values is accounted for purely in terms of 
variation in the peptide off-rates. Accordingly, the on-rate would 
be non-peptide-specific and can be assigned a value in the 
middle of what has been measured experimentally. In this way, 
peptide off-rates can be calculated from predicted IC50 values as 
koff = kon × IC50. For example, by using kon = 104 M−1 s−1 [in the 
middle of values measured for peptides at 26°C and 32°C in the 
study by Garstka et al. (16)], a tight binding peptide with affinity 
1 nM would translate into an off-rate of koff = 10−5 s−1.

However, not all presented peptides will become T-cell 
epitopes. Calis et  al. (17) used a large dataset of immunogenic 
and non-immunogenic pMHC complexes to determine the 
important amino acid properties associated with immunogenic 
pMHCs, and trained a predictive model to classify new pMHCs 
as either immunogenic or non-immunogenic. Therefore, a final 
step in the large mechanistic predictive model would be to use 
predictions of pMHC immunogenicity to filter for those peptides 
that are predicted to be presented that will actually result in a 
T-cell response. A further step involves combining existing mod-
els of T-cell signaling in response to pMHC complexes—the most 

recent being Lever et al. (2)—to further investigate the differences 
in predicted T-cell response to different pMHC complexes.

MOLecULAr DYNAMics stUDies  
OF tcr–pMHc iNterActiONs

A signal cascade involves a series of communications among a 
number of proteins and small molecules which establish many 
interactions within and between signaling networks. The inter-
actions induce conformational changes that are important to 
many aspects of protein function. TCR interacting with antigenic 
peptides bound to MHC molecules, for example, changes the 
conformations of both pMHC and TCR, and initiates a signal 
cascade. There is a huge gap between the atomic-resolution 
molecule–molecule interactions and the cellular or intercellular 
level of signaling, which is both spatial and temporal (18). A large 
number of parameters are required in the pathway models (these 
are primarily rate coefficients) and for the most part they are dif-
ficult, if not impossible, to measure, or infer from data. Molecular 
dynamics (MD) simulations (19), along with multiscale modeling, 
provide a way to estimate the kinetic parameters for the pathway 
modeling (18, 20).

T-cell receptor–pMHC recognition involves two steps: a 
peptide binds to an MHC molecule to create a peptide–MHC 
complex, the complex being presented to TCRs. X-ray crystallo-
graphic structures provide detailed insights into the TCR–pMHC 
interactions, the number of structures having increased signifi-
cantly in recent years. However, there are two major limitations: 
(i) they provide static pictures of “snapshots” from a vast ensemble 
of dynamic conformations; (ii) they reveal a partial representa-
tion of a full complex, usually its extracellular domain, due to 
the problem of crystallizing the membrane-associated proteins. 
Experimental methods have been used to characterize TCR–
pMHC interactions, including surface plasmon resonance, IC50, 
micropipette adhesion frequency, and atomic force microscopy.

A range of immunoinformatics (i.e., machine learning)-based 
binding affinity prediction methods have also been developed, 
of which sequence-based and structure-based methods are two 
main classes with variable accuracies, usually depending on the 
size and quality of training sets (5, 6, 21, 22). As in the context 
of pathway modeling, a mechanistic, and quantitative approach 
exists for obtaining predictions of pMHC or TCR–pMHC binding 
affinities, based on MD simulation (23–25). It has the advantage 
that it provides de novo prediction of all relevant properties based 
on certain prior information.

The MD approach (19), and molecular modeling in general, 
is valuable to elucidate the molecular structures, dynamics, and 
function of biological molecules. Indeed, the Nobel Prize for 
Chemistry was awarded to Karplus, Levitt, and Warshel in 2013 
for their work on multiscale modeling of biological systems (26). 
MD is a computer simulation technique wherein the time evolu-
tion of a set of interacting atoms is followed by integrating their 
Newtonian equations of motion. MD simulations can, in princi-
ple, provide “an unsurpassed and unsurpassable level of detail” 
(23) of dynamic phenomena, one that can greatly enhance our 
understanding of biological function. Today, MD is feasible for 
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molecules and 3D periodic boundary conditions. Water molecules are omitted for clarity.
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very complex macromolecules, such as multi-protein complexes 
in a heterogeneous environment which can consist of water 
molecules, ions, lipid bilayers, etc.

Since the first simulation of a protein was published in 1977 
(27), the MD methodology and its applications have progressed 
substantially. Applications in immunology have been summa-
rized in a few review papers (23–25). Here, we mention some 
of our studies in the area, in the order of publication and the 
complexity of the systems investigated: (i) truncated pMHC 
(α1–α2 domains of MHC) (28); (ii) pMHC with entire extracel-
lular domain of MHC (α1, α2, α3, and β2m domains of MHC) 
(28, 29) (Figure  2A); (iii) TCR–pMHC (entire extracellular 
domains of TCR and MHC) (30, 31) (Figure 2B); and (iv) TCR–
pMHC–CD4 (cluster of differentiation 4) embedded in a lipid 
bilayer (32) (Figure 2C). These studies demonstrate that struc-
tural and energetic properties can be accurately predicted using 
molecular systems in realistic settings through the introduction 
of physiological details. In the TCR–pMHC–CD4 study (32), the 
tri-molecular system was constructed based on available X-ray 
structures with missing regions modeled by homology, includ-
ing transmembrane domains, adjoining regions, and loops. The 
entire model was embedded in a membrane environment likely to 
influence the interactions of these membrane-associated proteins 
with each other. The computed structural and thermodynamic 
properties from the simulation are in good agreement with limited 
experimental data, including the binding free energies of CD4 to 
pMHC and pMHC to TCR. As we have demonstrated recently in 
small molecule–protein systems (33, 34), the simulations could 
provide insight into the interactions of individual molecule– 
molecule complexes. The overall free energy change upon binding, 

along with the kinetic properties such as the on- and off-rates, is 
critical for the recognition and discrimination process. The bind-
ing of pMHC to TCR is, in terms of underlying physico-chemical 
principles, identical to binding of small molecule inhibitors to 
protein receptors, although the models and simulations need to 
be carefully designed because of the complexity of the protein–
protein complexes.

It should be noted that while the current paper focuses on 
MHC I-based recognition, the model of the TCR–pMHC–CD4 
(32) is a CD4 T cell that interacts with peptides on MHC class 
II. There are no crystallographic structures reported for a TCR–
pMHC–CD8 ternary complex. A hypothetical model of TCR–
pMHC–CD8 was assembled based on the available structures 
of the components, which demonstrated remarkable similarities  
in the overall topology with the TCR–pMHC–CD4 complex 
(35). The TCR–pMHC–CD4 or TCR–pMHC–CD8 tri-molecular 
complex, which is a key unit for the immune synapse, provides 
the minimum complexity needed to trigger transient calcium 
signaling. The simulation of the TCR–pMHC–CD4 model (32) 
therefore provided a basis for understanding how the CD4 and 
CD8 act as co-receptors during the process of T lymphocyte rec-
ognition. The immune synapse involves the formation of a highly 
organized pattern of proteins in the intercellular junction, of 
which the pattern is spontaneous evolving. This is another aspect 
in the multiscale process, resulting from self-assembly processes 
and active feedback mechanisms. Coarse-grained descriptions, 
such as a mathematical representation using reaction–diffusion 
equations (36), can be used to model the synapse formation.

Molecular dynamics methods have been developed for 
the improvement of configurational sampling, of which 
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replica-exchange (37) and biased potential (38) methods are 
among the more promising. Our recent work shows that ensemble-
based methods are capable of producing rapid, accurate, precise, 
and reliable binding free energies (33, 34, 39, 40). In these studies, 
we have used these approaches, termed “enhanced sampling of 
molecular dynamics with approximation of continuum solvent” 
(ESMACS) (40) and “thermodynamic integration with enhanced 
sampling” (TIES) (39). Even for peptide–MHC molecular sys-
tems where peptides are much larger, more flexible, and diverse 
than most small molecules used in drug discovery, ESMACS 
produces precise and reproducible free energy estimates, which 
correlate well with experimental data (40). Using standard proto-
cols as established in our publications (33, 34, 39, 40), reproduc-
ible results can be generated with MD for molecular systems as 
complicated as the multi-protein complexes implicated in the 
immune response.

Recent models of MHCI presentation have predicted a bene-
ficial role for conformational flexibility in shaping the dynamics 
of peptide loading (29). This work demonstrated that pathway 
models explicitly describing an encounter complex during 
peptide–MHC loading were most predictive of experimental 
observations. In the same study, MD analysis showed evidence 
of multiple conformations in some but not all MHC alleles. The 
hierarchy of conformational flexibility observed by MD was the 
same as the ordering of rate constants in the pathway model, 
demonstrating consistency in the two modeling approaches, 
despite the analyses being aimed at timescales differing by many 
orders of magnitude. Moreover, there is scope to use MD to 
generate estimates for key missing parameters, most notably 
peptide–MHCI off-rates, as experimental measurements are 
only available for a very small subset of the peptidome, to com-
plement or extend immunoinformatics methods.

AgeNt-BAseD MODeLs cAN iNtegrAte 
iNtrAceLLULAr AND iNterceLLULAr 
iNterActiONs

For a long time now, there have been attempts to model and 
simulate the interactions of the multiple cell types that contribute 
to immune responses (41). However, only more recently have 
truly multiscale models emerged, where both the intracellular 
biochemistry and cell–cell interactions can be analyzed simulta-
neously (42). This is due, in part, to advances in computer hard-
ware. However, simulation of such models remains cumbersome, 
as each cell requires a set of sizeable differential equations to be 
numerically integrated, leading to a very large number of such 
equations overall. Accordingly, parameter inference of agent-
based models is normally impractical. Instead, the intracellular 
biochemistry can be modeled in isolation first, and calibrated 
against data from isogenic cultures. Furthermore, such isolation 
would enable the intracellular models to be simplified, making 
their embedding in agent-based simulations less computationally 
demanding.

Applied to HIV, agent-based modeling could be instru-
mental in understanding the contributions of direct- and cross- 
presentation to T-cells, which has been the subject of much 

debate (43). Many of the components required to build such a 
model already exist, but would need to be adapted and calibrated 
to experimental data. In Section “A Motivating Example: HIV 
Infection and Long-term Control,” we described how direct-
presentation in HIV-infected cells can be modeled at the cellular 
level. Adapting the model of MHCI presentation to dendritic 
cells could be achieved by redefining the peptide supply terms 
(gi) to reflect internalization and processing of extracellular 
antigen. How the new values of gi are to be specified would 
require further work, but relevant data are already available 
[e.g., Ref. (44)]. Finally, interactions between dendritic cells and 
T-cells have already been modeled in multicellular simulations 
(45), offering a starting point for creating an integrated model of 
direct- and cross-presentation.

cONcLUDiNg reMArKs

As we have discussed elsewhere, biology and medicine are 
dominated by the primacy of experimental observations, where 
theory is essentially a form of rationalization invoked to explain 
observations post hoc (6). Scientific progress, based in part on the 
increasing acquisition of all forms of data, and the pressing need 
to make sense of it, has now reached a stage wherein predictive, 
mechanistic, and quantitative modeling methods are emerging 
and could transform the future of these disciplines. The acces-
sibility and accuracy of the theoretical predictions, for example, 
in clinically relevant HIV drug ranking (46, 47) and in pharma-
ceutical compound evaluation (33, 34), support our perspective 
about predictive computational modeling in pharmaceutical 
drug discovery and personalized medicine. In order that these 
methods realize their full potential, especially for personalized 
medicine, it is imperative that biologists design their experiments 
to facilitate the construction and exploitation of quantitative 
models (48). Immunology, with its intrinsically multiscale nature, 
is a field which stands to benefit greatly from this new approach.
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