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Background: Severe combined immunodeficiency (SCID) is fatal unless treated with 
hematopoietic stem cell transplant. Delay in diagnosis is common without newborn 
screening. Family history of infant death due to infection or known SCID (FH) has been 
associated with earlier diagnosis.

Objective: The aim of this study was to identify the clinical features that affect age at 
diagnosis (AD) and time to the diagnosis of SCID.

Methods: From 2005 to 2016, 147 SCID patients were referred to the Asian Primary 
Immunodeficiency Network. Patients with genetic diagnosis, age at presentation (AP), 
and AD were selected for study.
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results: A total of 88 different SCID gene mutations were identified in 94 patients, 
including 49 IL2RG mutations, 12 RAG1 mutations, 8 RAG2 mutations, 7 JAK3 muta-
tions, 4 DCLRE1C mutations, 4 IL7R mutations, 2 RFXANK mutations, and 2 ADA 
mutations. A total of 29 mutations were previously unreported. Eighty-three of the 94 
patients fulfilled the selection criteria. Their median AD was 4 months, and the time to 
diagnosis was 2 months. The commonest SCID was X-linked (n = 57). A total of 29 
patients had a positive FH. Candidiasis (n = 27) and bacillus Calmette–Guérin (BCG) 
vaccine infection (n = 19) were the commonest infections. The median age for candi-
diasis and BCG infection documented were 3 months and 4 months, respectively. The 
median absolute lymphocyte count (ALC) was 1.05  ×  109/L with over 88% patients 
below 3 × 109/L. Positive FH was associated with earlier AP by 1 month (p = 0.002) 
and diagnosis by 2 months (p = 0.008), but not shorter time to diagnosis (p = 0.494). 
Candidiasis was associated with later AD by 2 months (p = 0.008) and longer time to 
diagnosis by 0.55 months (p = 0.003). BCG infections were not associated with age or 
time to diagnosis.

conclusion: FH was useful to aid earlier diagnosis but was overlooked by clinicians 
and not by parents. Similarly, typical clinical features of SCID were not recognized by 
clinicians to shorten the time to diagnosis. We suggest that lymphocyte subset should 
be performed for any infant with one or more of the following four clinical features: FH, 
candidiasis, BCG infections, and ALC below 3 × 109/L.

Keywords: severe combined immunodeficiency, family history, candidiasis, absolute lymphocyte count, newborn 
screening

inTrODUcTiOn

Severe combined immunodeficiency (SCID) is a group of 
genetic diseases causing profound developmental and func-
tional impairment of T  cells, affecting cellular and humoral 
immunities. Currently, at least 49 genes are identified to be 
responsible for SCID and its variants (1–3). Of all the SCID 
genes, the commonest gene involved is the IL-2 receptor gamma 
chain gene (IL2RG), which accounted for 45 and 19% of SCID 
cases before and after the T-cell receptor excision circle (TREC) 
newborn screening, and was introduced in USA (3–5). Patients 
typically present with recurrent infections from opportunistic 
pathogens and live-attenuated vaccines, such as bacillus 
Calmette–Guérin (BCG) (6), chronic diarrhea, and failure to 
thrive (FTT), eventually die within the first 2 years of life if left 
untreated (7). Patients typically have low absolute lymphocyte 
count (ALC). They have been classified by the number of  

Abbreviations: ADA, adenosine deaminase gene; ALC, absolute lymphocyte 
count; AD, age at diagnosis; AP, age at presentation; APIN, Asian Primary 
Immunodeficiency Network; BCG, bacillus Calmette–Guérin; CMV, cytomeg-
alovirus; DCLRE1C, DNA cross-link repair enzyme 1C (Artemis); FH, family 
history of early infant death; FN3, fibronectin type-III; FTT, failure to thrive; 
HSCT, hematopoietic stem cell transplant; ICU, intensive care unit; IL2RG, IL-2 
receptor gamma chain; IL7R, IL-7 receptor alpha chain; JAK 3, janus kinase 3; PCP, 
Pneumocystis jiroveci; PID, primary immunodeficiency; RAG1, recombinase acti-
vating gene 1; RAG2, recombinase activating gene 2; RFXANK, regulatory factor X 
associated ankyrin containing protein; SCID, severe combined immunodeficiency; 
TREC, T-cell receptor excision circle.

B lymphocytes as B+ or B− and recently by the causative genetic 
mutation.

The definitive treatment for SCID is hematopoietic stem cell 
transplant (HSCT). In addition, gene therapy serves as an alter-
native for X-linked and adenosine deaminase (ADA)-deficient 
SCID if suitable HSC donors are not available (8). SCID patients 
have a 94% survival rate if they undergo HSCT within the first 
3.5 months of life (9). To facilitate timely HSCT, an early diagnosis 
must be made. However, delay in diagnosis is common due to the 
lack of awareness of the distinctive presenting features of SCID, 
such as recurrent and persistent opportunistic infections (2). To 
date, the only feature that is associated with an earlier diagnosis 
is a positive family history of infant death due to infection or 
known SCID in USA (10). In addition, family history of SCID 
is associated with earlier HSCT before 3.5 months (9, 11). Our 
present study aimed to identify the clinical features that could 
help clinicians diagnose SCID earlier by comparing the age and 
time to the diagnosis of patients with or without certain clinical 
features.

MaTerials anD MeThODs

Patient source and selection
The Asian Primary Immunodeficiency Network (APIN) is a 
primary immunodeficiency (PID) referral network established in 
2009 by The University of Hong Kong as a platform for consulta-
tion and offering free genetic testing for suspected PID in over 70 
centers in Asia and Africa. Its database stores clinical information 
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FigUre 1 | CD19+ cell counts of patients with B+ and B− genotypes. B+ genotypes group consisted of CD19+ cell counts of patients with mutations found in 
IL2RG (n = 43), IL7R (n = 3), and JAK3 (n = 5). B− genotypes group consisted of CD19+ cell counts of patients with mutations found in ADA (n = 1), DCLRE1C 
(n = 3), RAG1 (n = 3), and RAG2 (n = 2). The cutoff for distinguishing B+ and B− patients was 134 CD19+ cells/μL. Three patients with IL2RG mutations were 
classified as having B− SCID.
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provided by the referring doctors, laboratory results, and genetic 
test reports (12–14). From 2005 to 2016, 147 SCID patients were 
referred from 23 centers to the APIN for consultation and genetic 
testing, 42 of whom were reported in our previous study (13).  
In our study, we included patients with documented age at pres-
entation (AP) and diagnosis. Among them, we selected patients 
with genetic diagnosis for identifying factors that affected age and 
time to diagnosis of SCID.

Data collection
The referring doctors provided the clinical records of patients, 
together with the laboratory results. Demographic data, clinical 
presentation, and progress as well as investigation results including 
ALC and lymphocyte subsets of the patients were recorded. We 
only considered the clinical features and progression before the 
diagnosis of SCID was made. We defined AP as the age when the 
first clinical symptom was documented in the clinical record, age 
at diagnosis (AD) as the age when clinical diagnosis of SCID was 
made, and time to diagnosis as the duration between AP and AD. 
We only considered patients to have certain clinical feature if that 
feature was stated in the referral summary. We defined recurrent 
infections as more than one episode of infections affecting similar 

systems. We considered the infection to be severe if at least one 
of the following was present: life-threatening complications (such 
as acute respiratory distress syndrome and sepsis), intensive care 
unit (ICU) admission, and life support being used (intubation, 
ventilation, and resuscitation). We defined opportunistic infection 
as an infection with at least one of the following pathogens was 
involved: BCG, Candida, Pseudomonas aeruginosa, Acinetobacter 
baumannii, Pneumocystis jiroveci (PCP), Aspergillus, cytomegalo-
virus (CMV), and herpes zoster virus. We defined opportunistic 
infections by Candida if patients were documented to have invasive 
candidiasis, candidemia or persistent oral candidiasis (15). We 
presented the ALC recorded at the time of SCID diagnosis. Patients 
were said to have lymphopenia if ALC below 3 × 109/L as described 
previously (10). Since there is no universally agreed cutoff of B-cell 
number to distinguish B+ and B− SCID, we defined the cut-off 
as 134/μL based on the CD19+ B-cell counts of patients with  
B+ genotypes (IL2RG, IL7R, and JAK3) and those with B− geno-
types (ADA, DCLRE1C, RAG1, and RAG2) (Figure 1).

Genetic analysis was performed in the Department of 
Pediatrics and Adolescent Medicine of the University of 
Hong Kong using PCR and direct sequencing (Table SE1 in 
Supplementary Material) (13). Genetic and functional studies 
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FigUre 2 | Patients selection algorithm in this study. From 147 SCID entries in the Asian Primary Immunodeficiency Network (APIN) database, 131 patients were 
included in our study and 16 patients were excluded from our study. Three patients were excluded as they were diagnosed by screening either antenatally or at 
birth. Thirteen patients were excluded due to the lack of age at presentation (n = 4) or the lack of age at diagnosis (n = 9). 1Cordocentesis was performed due to 
positive family history of SCID, revealed low CD4+ count. 2Complete blood count, lymphocyte subsets, and immunoglobulins measurement were performed in one 
patient due to positive family history, revealed severe T- and B-cell lymphopenia and low serum IgA and IgM; newborn T-cell receptor excision circle (TREC) 
screening revealed 0 TREC copy in another patient.
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on PID, data archival in the APIN database, and DNA storage 
were approved by the Clinical Research Ethics Review Board 
of the University of Hong Kong and Queen Mary Hospital  
(Ref. no. UW 08-301) in accordance with the Declaration of 
Helsinki, with written informed consent obtained from parents of 
subjects. HGMD Pro version 2016.4 (16) and Immunodeficiency 
mutation databases (IDbases) (17) were used to identify unre-
ported mutations. The nomenclatures of cDNA mutations were 
based on coding region. For each unreported mutation, the popu-
lation frequency was analyzed by Exome Aggregation Consortium 
Browser (18). Effects of missense mutations on protein functions 
were predicted by PANTHER (19), PHD-SNP (20), SIFT (21), 
SNAP (22), Meta-SNP (23), and PolyPhen2 (24). The protein 
structure predicted to be involved was identified using NCBI 
Protein database (25) and UniProt Knowledgebase database (26).

statistical analysis
For descriptive statistics, all data were expressed in median and 
range (month). Univariate analysis was performed using Mann–
Whitney U test; multivariate linear regression was performed for 
all factors that were significant (p < 0.05) in univariate analysis. 
We defined statistical significance as p < 0.05, and 95% confidence 
interval did not contain 0 in multivariate analysis. We did not 
include opportunistic infection group in the multivariate linear 
regression to avoid multicollinearity.

Patients with missing categorical data such as clinical features 
were considered to be without the features. Patients with missing 
numerical data such as ALC were not analyzed when analyzing 
median and range.

resUlTs

Patients selection
From 147 SCID patients referred to the APIN, 131 of them had 
documented AP and diagnosis. Among these patients, 83 of them 

had genetic diagnosis (Figure 2). Sixteen patients were excluded 
from the study due to the lack of AP (n  =  4), the lack of AD 
(n = 9), and being diagnosed by screening (n = 3). Among the 16 
patients excluded from the study, 11 of them had genetic diagno-
sis. Altogether, molecular diagnosis of SCID was identified in 94 
patients in our cohort.

genetic Mutations in Patients
The genetic mutations of the 83 SCID patients included in our 
study and 11 SCID patients excluded from our study are shown 
in Table 1 and Table SE1 in Supplementary Material, respectively. 
The commonest gene identified was IL2RG (n = 65), followed by 
RAG1 (n = 7), RAG2 (n = 7), JAK3 (n = 5), DCLRE1C (n = 4), 
IL7R (n = 3), RFXANK (n = 2), and ADA (n = 1). Eighty-eight 
different mutations were identified in this study (49 IL2RG muta-
tions, 12 RAG1 mutations, 8 RAG2 mutations, 7 JAK3 mutations, 
4 DCLRE1C mutations, 4 IL7R mutations, 2 RFXANK mutations, 
and 2 ADA mutations). There was no difference in clinical features 
between X-linked and autosomal recessive SCID patients (Table 
SE2 in Supplementary Material).

Genetic mutations in all SCID genes were not evenly dis-
tributed, and two mutations were seen three or more times in 
unrelated patients. c.854G>A mutation was seen in six unrelated 
patients with IL2RG mutation. c.104G>T mutation was observed 
in three unrelated patients with RAG2 mutation.

Twenty-two C>T or G>A mutations within CpG dinucleo-
tides were documented (8 IL2RG mutations, 5 RAG1 mutations, 4 
RAG2 mutations, 3 JAK3 mutations, 1 IL7R mutation, and 1 ADA 
mutation). These mutations accounted for 25% of all mutations 
and were involved in 31 patients (18 in IL2RG, 5 in RAG1, 3 in 
RAG2, 2 in JAK3, 1 in IL7R, and 1 in ADA).

There were 29 unreported mutations identified in our patients, 
including 23 IL2RG mutations, 3 RAG1 mutations, 1 JAK3 muta-
tion, 1 RAG2 mutation, and 1 RFXANK mutations (Table SE3 in 
Supplementary Material). Effects of these unreported mutations 
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TaBle 1 | Genetic mutations of SCID patients (n = 83).

no gene intron (i)/exon (e) nucleotide change Predicted change

P001 IL2RG E1 c.3G>T M1I
P002 IL2RG E2 c.127delA T43fsX70
P003 IL2RG E2 c.202G>T E68X
P004a IL2RG E2 c.202G>A E68K
P004b IL2RG E2 c.202G>A E68K
P005 IL2RG E2 c.202G>A E68K
P006 IL2RG E2 c.252C>A N84K
P007 IL2RG I2 g.IVS2−15A>G Predicted aberrant splicing
P008 IL2RG I2 g.IVS2−15A>G Predicted aberrant splicing
P011e IL2RG E3 c.310_311delinsG H104fsX146
P012 IL2RG E3 c.340G>T G114C
P013e IL2RG E3 c.359dupA K120fsX167
P014 IL2RG E3 c.362delA E121fsX146
P015 IL2RG E3 c.365T>C I122T
P016 IL2RG E3 c.365T>C I122T
P017e IL2RG E3 c.371T>C L124P
P018 IL2RG E3 c.376C>T Q126X
P019e IL2RG E3 c.376C>T Q126X
P020 IL2RG E3 c.383T>C F128S
P021 IL2RG E3 c.386T>A V129D
P022 IL2RG E3 c.406_415del R136fsX143
P023e IL2RG E3 c.421delC Q141fsX146
P024 IL2RG I3/E4 junction g.IVS3−2A>T Predicted aberrant splicing
P025e IL2RG E4 c.507delG Q169fsX170
P026 IL2RG E4 c.507delG Q169fsX170
P027e IL2RG E4 c.562C>T Q188X
P028 IL2RG E4 c.562C>T Q188X
P030 IL2RG E5 c.658_659del T220fsX227
P031 IL2RG E5 c.664C>T R222C
P032e IL2RG E5 c.670C>T R224W
P033 IL2RG E5 c.670C>T R224W
P034 IL2RG E5 c.676C>T R226C
P036e IL2RG E5 c.677G>A R226H
P037 IL2RG E5 c.694G>C G232R
P038 IL2RG E5 c.709T>C W237R
P039e IL2RG E5 c.711G>A W237X
P040e IL2RG E5 c.722G>T S241I
P041 IL2RG E5 c.741delG G247fsX272
P042 IL2RG E5 c.741_742insG E248fsX302
P044 IL2RG E6 c.811G>T G271X
P045e IL2RG E6 c.835delG V279fsX293
P046 IL2RG E6/I6 junction c.854G>T R285L
P047e IL2RG E6/I6 junction c.854G>Af Predicted aberrant splicing

R285Q
P048e IL2RG E6/I6 junction c.854G>Af Predicted aberrant splicing

R285Q
P049e IL2RG E6/I6 junction c.854G>Af Predicted aberrant splicing

R285Q
P050e IL2RG E6/I6 junction c.854G>Af Predicted aberrant splicing

R285Q
P051 IL2RG E6/I6 junction c.854G>Af Predicted aberrant splicing

R285Q
P052 IL2RG E6/I6 junction c.854G>Af Predicted aberrant splicing

R285Q
P053e IL2RG I6-I7 g.IVS6-72_IVS7-11del Predicted exon 7 deletion
P055 IL2RG I6/E7 junction g.IVS6−2A>C Predicted aberrant splicing
P056 IL2RG I6 g.IVS6+3G>T Predicted aberrant splicing
P057e IL2RG I6 g.IVS6+5G>A Predicted aberrant splicing
P058e IL2RG I6 g.IVS6+5G>A Predicted aberrant splicing
P059 IL2RG E7 c.865C>T R289X
P060 IL2RG E8 c.929G>A W310X
P062 IL2RG E8 c.979_980delinsTT E327L
P063a IL2RG E8 c.982C>T R328X

(Continued)
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no gene intron (i)/exon (e) nucleotide change Predicted change

P064 ADA E7 c.646G>A G216R
E11 c.1018_1019del K340fsX348

P065b DCLRE1C E1-E3 Gross deletion Gross deletion
P066b DCLRE1C E1-E4 Gross deletion Gross deletion
P068e DCLRE1C I3/E4 junction c.IVS3−1G>T I83-G102del

Exon 4 skippeda

E8 c.632G>T G211V
P069e IL7R E1 c.65G>T S22I

E2/I2 junction g.IVS2+2T>A Predicted aberrant splicing
P070b,e IL7R E5 c.562delC L188X
P071b IL7R E5 c.616C>T R206X
P072 JAK3 E2 c.115dupC Q39fsX51

E13 c.1744C>T R582W
P073 JAK3 E3 c.307C>T R103C

E10 c.1333C>T R445X
P074e JAK3 E13 c.1763A>C H588P
P075b,e JAK3 I14 g.IVS14−11G>A 638_639insPPX

c.1914_1915insCCCCCTTAGa

P076c JAK3 E16 c.2062A>T I688F
P077 RAG1 E2 c.994C>T R332X

E2 c.3074dupT L1025fsX1064
P078e RAG1 E2 c.1178delG G393fsX402

E2 c.2095C>T R699W
P079 RAG1 E2 c.1328G>A R443K

E2 c.2486_2490del R829fsX869
P080 RAG1 E2 c.1681C>T R561C

E2 c.2561G>A G854D
P081d RAG1 E2 c.2005G>A E669K
P083 RAG1 E2 c.2324T>A L775Q

E2 c.2918G>A R973H
P084e RAG2 E1/I1 junction c.-28G>C Predicted aberrant splicing

E2 c.358delG V120fsX130
P085b RAG2 E2 c.104G>T G35V
P086b RAG2 E2 c.104G>T G35V
P087 RAG2 E2 c.104G>T G35V

E2 c.475C>T R159C
P088b RAG2 E2 c.218G>A R73H
P089 RAG2 E2 c.442C>T R148X

E2 c.685C>T R229W
P091 RFXANK E3/I3 junction g.IVS3+1delG Predicted aberrant splicing

E5 c.299_300del Q100fsX113
P092b RFXANK E5 c.299_300del Q100fsX113

ADA, adenosine deaminase; DCLRE1C, DNA cross-link repair enzyme 1C; IL2RG, interleukin-2 receptor subunit gamma; IL7R, interleukin-7 receptor subunit alpha; JAK3, Janus 
kinase 3; RAG, recombinase activating genes; RFXANK, regulatory factor X-associated ankyrin-containing protein.
aFrom RT-PCR results.
bHomozygous mutations.
cP076 was a B+NK− patient with hypogammaglobulinemia (IgG 1.45 g/L, IgA 0.23 g/L, and IgM 0.26 g/L) whose mother was a heterozygous carrier.
dOnly one mutation was found.
ePatients reported in our previous study (13).
fPrevious study reported 854G>A may cause R285Q or skipping of exon 6 (27). P004a and P004b and P063a and P063b (Table SE1 in Supplementary Material) were from the 
same kindred.
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on protein functions were predicted by multiple tools and are 
shown in Table SE3 in Supplementary Material.

characteristics of Patients That Fulfilled 
selection criteria (n = 83)
Characteristics of patients included in our study (n = 131) are 
shown in Tables 2–4. For patients that fulfilled selection criteria 
(n  =  83), 88.0% were male (n  =  73) and 75.9% were Chinese 
(n  =  63). The median AP was 2  months (0.1–6  months), AD 
4  months (0.5–18  months), and time to diagnosis 2  months 

(0–14 months). Twenty-nine patients (34.9%) had a family his-
tory of early infant death (FH), among them one patient had a 
family history of SCID and one patient had a family history of 
PID. Parental consanguinity was present in four kindreds. The 
median ALC was 1.05 × 109/L (0.134−52.2 × 109/L, n = 70) with 
88.6% below 3 × 109/L (n = 62). The major immunophenotype 
was B+ SCID (n = 51) (Tables 2 and 3).

50.6% of patients presented with chronic diarrhea (n = 42) and 
60.2% of patients recurrent infections (n = 50). The commonest 
site of infection was the respiratory system (n = 61), followed by 
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TaBle 2 | Characteristics of patients included in our study (n = 131) at SCID 
diagnosis.

With genetic 
diagnosis

Without genetic 
diagnosis

n = 83 n = 48

gender number (%) number (%)
Male 73 (88.0) 33 (68.8)

Female 10 (12.0) 15 (31.3)

ethnicity number (%) number (%)
Chinese 63 (75.9) 30 (62.5)

Southeast Asian 12 (14.5) 4 (8.3)

 Indonesian 1 (1.2) 0 (0)

 Malay 3 (3.6) 3 (6.3)

 Philippino 1 (1.2) 0 (0)

 Thai 5 (6.0) 1 (2.1)

 Vietnamese 2 (2.4) 0 (0)

Indian 2 (2.4) 9 (18.8)

Algerian 5 (6.0) 0 (0)

Arabian 1 (1.2) 3 (6.3)

Australian 0 (0) 1 (2.1)

Korean 0 (0) 1 (2.1)

Positive family history number (%) number (%)
Early infant death 29 (34.9) 13 (27.1)

Consanguinity 4 (4.8) 1 (2.1)

age in months Median (range) Median (range)
Age at presentation 2 (0.1–6) 2 (0–19)

Age at diagnosis 4 (0.5–18) 4 (0.1–27)

Time to diagnosis 2 (0–14) 2 (0–16)

sciD phenotype number (%) number (%)
B+ 51 (61.4) 18 (37.5)

B− 15 (18.1) 24 (50.0)

Others 17 (20.5)a 6 (12.5)b

Median (range) Median (range)
Absolute lymphocyte count (109/L) 1.05 (0.134–52.2)c 0.77 (0.09–13.46)d

aMaternal engraftment (n = 1), unknown (n = 16).
bUnknown (n = 6).
cIn 70 patients.
dIn 44 patients.

TaBle 3 | Lymphocyte subset for patients included in our study (n = 131).

Patient Mutation gene alc (×109/l) cD3+ cells/μl (%) cD19+ cells/μl (%) cD16/56+ cells/μl (%)

B+ sciD
P006 IL2RG 0.4 9.2 (2.3) 385.6 (96.4) 2.4 (0.6)
P008 IL2RG 0.95 0 (0) 931 (98) 9.5 (1)
P011 IL2RG 1.16 3.48 (0.3) 972 (83.8) 2.3 (0.2)
P013 IL2RG 0.31 0 (0) 270 (87) 0 (0)
P014 IL2RG 2.93 468 (16) 2,344 (80) 58.6 (2)
P015 IL2RG 0.51 0 (0) 459 (90) 10.2 (2)
P017 IL2RG 0.7 0.7 (0.1) 663 (94.7) 36.4 (5.2)
P018 IL2RG 1 20 (2) 890 (89) 0 (0)
P019 IL2RG 2.63 26.3 (1) 2,525 (96) 26.3 (1)
P020 IL2RG 0.38 22.8 (6) 345.8 (91) 0 (0)
P021b IL2RG 1.66 596 (35.9) 1,061 (63.9) 2 (0.12)
P022 IL2RG 0.33 7.59 (2.3) 313.5 (95) 6.6 (2)
P024b IL2RG 3.43 504 (14.7) 2,867 (83.6) 58.3 (1.7)
P025 IL2RG 1.4 0 (0) 1,302 (93) 42 (3)
P026 IL2RG 0.33 16.5 (5) 290.4 (88) 9.9 (3)
P027 IL2RG 1.1 5.5 (0.5) 1,022 (92.9) 14.3 (1.3)

(Continued)
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gastrointestinal system (n = 42). 47.0% of infections were severe 
(n = 39).

Fifty patients developed opportunistic infection (60.2%). The 
commonest opportunistic infection was candidiasis (n  =  27), 
followed by BCG infection (n = 19) and viral infection (n = 9). 
The median age for candidiasis documented was 3 months, the 
median age for BCG infection was 4 months, and the median age 
for CMV infection was 2.25 months.

For patients included in our study, clinical features were com-
pared between those with (n = 83) and without genetic diagnosis 
(n = 48). Patients without genetic diagnosis had higher frequency 
of FTT (33.3 versus 15.7%, p = 0.0189) and CMV infections (25.0 
versus 9.6%, p = 0.0185) (Table 4).

For patients with documented ALC (n = 114), 107 of them 
(93.9%) had at least one of the following four clinical features: 
FH, candidiasis, BCG infection, and ALC below 3 × 109/L. 65 
of them (57.0%) had at least two of the four clinical features 
mentioned.

Fh and Pneumonia Were associated  
with earlier aP
Factors that were found to significantly affect AP, AD, and time to 
diagnosis are shown in Tables 5 and 6.

In univariate analysis, FH, pneumonia, and recurrent 
infections were associated with earlier AP (FH by 1  month, 
p = 0.002; pneumonia by 1 month, p = 0.003; recurrent infec-
tions by 1  month, p  =  0.008). Upon multivariate analysis, 
only FH and pneumonia were associated with earlier AP 
(FH by 0.884 month, p = 0.005; pneumonia by 0.863 month, 
p = 0.009).

Fh Was associated with earlier aD
In univariate analysis, FH and CMV infections were associated 
with an earlier AD (FH by 2 months, p = 0.008; CMV by 1 month, 
p = 0.025). Upon multivariate analysis, only FH was associated 
with earlier AD (by 1.86 months, p = 0.007).
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Patient Mutation gene alc (×109/l) cD3+ cells/μl (%) cD19+ cells/μl (%) cD16/56+ cells/μl (%)

P028 IL2RG 5 4,600 (92) 300 (6) 100 (2)
P030 IL2RG 0.94 16 (1.7) 620.4 (66) 192.7 (20.5)
P031 IL2RG 5.1 948 (18.6) 3,042 (59.7) 928.7 (18.2)
P032 IL2RG 1.1 11 (1) 979 (89) 110 (10)
P033 IL2RG 0.99 5 (0.5) 585.1 (59.1) 17.8 (1.8)
P034 IL2RG 1.34 0 (0) 1,112 (83) 160.8 (12)
P036 IL2RG 1.11 11.1 (1) 455.1 (41) 577 (52)
P038 IL2RG 0.6 240 (40) 324 (54) 33 (5.5)
P039 IL2RG 1.72 0 (0) 1,170 (68) 498.8 (29)
P041 IL2RG 0.62 12.4 (2) 545.6 (88) 37.2 (6)
P044 IL2RG 0.9 0 (0) 846 (94) 18 (2)
P045 IL2RG 1.84 0 (0) 1,748 (95) 73.6 (4)
P047 IL2RG 1.41 155.1 (11) 1,197 (84.9) 18.3 (1.3)
P048 IL2RG 4.94 0 (0) 4,841 (98) 98.8 (2)
P049 IL2RG 2.1 0 (0) 2,079 (99) 0 (0)
P050 IL2RG 0.53 5.3 (1) 424 (80) 21.2 (4)
P051 IL2RG 1.1 0 (0) 1,067 (97) 11 (1)
P052 IL2RG 1.86 223.2 (12) 1,600 (86) 0 (0)
P053 IL2RG 1 52 (5.2) 892 (89.2) N/A (N/A)
P055 IL2RG 0.9 9 (1) 828 (92) 9 (1)
P056 IL2RG 1.3 1 (0.08) 1,282 (98.6) 9.6 (0.74)
P058 IL2RG 1.3 0 (0) 611 (47) 18.2 (1.4)
P059 IL2RG 1.18 0 (0) 1,133 (96) 35.4 (3)
P060 IL2RG 1.5 45 (3) 1,350 (90) 30 (2)
P063a IL2RG 0.62 61.4 (9.9) 484.2 (78.1) 46.5 (7.5)
P069 IL7R 1.89 183.3 (9.7) 1,111 (58.8) 565.1 (29.9)
P070 IL7R 1.21 147.6 (12.2) 756.3 (62.5) 410.2 (33.9)
P071 IL7R 0.785 1.6 (0.2) 148.4 (18.9) 433.3 (55.2)
P072 JAK3 2.52 1,738 (69) 730.8 (29) 0 (0)
P073 JAK3 0.47 4.7 (1) 437.1 (93) N/A (N/A)
P074 JAK3 0.35 91 (26) 196 (56) N/A (N/A)
P075 JAK3 0.49 6.4 (1.3) 266.1 (54.3) 19.6 (4)
P076 JAK3 1.5 12.6 (0.84) 1,377 (91.77) 54.5 (3.63)
P078 RAG1 7.64 3,965 (51.9) 267.4 (3.5) 3,705 (48.5)
P091 RFXANK 1.59 624.9 (39.3) 936.5 (58.9) 47.7 (3)
P094 N/A 2.06 195.7 (9.5) 1,788 (86.8) 76.2 (3.7)
P098 N/A 1.23 764.2 (62.13) 156.9 (12.76) 263.1 (21.39)
P099 N/A 13.46 9,826 (73) 1,346 (10) 1,750 (13)
P109 N/A 0.88 295.7 (33.6) 460.2 (52.3) 89.5 (10.2)
P110 N/A 2.06 68 (3.3) 1,593 (77.3) 345.7 (16.8)
P111 N/A 1.46 18.3 (1.25) 1,387 (95) 6.6 (0.45)
P112 N/A 2.42 217.8 (9) 1,500 (62) 532.4 (22)
P115 N/A 1.84 18.4 (1) 1,472 (80) 294.4 (16)
P116 N/A 1.3 26 (2) 1,040 (80) 130 (10)
P117 N/A 2.1 396.9 (18.9) 573.3 (27.3) 136.5 (6.5)
P120 N/A 1.09 21.8 (2) 1,030 (94.5) 3.3 (0.3)
P121 N/A 0.5 20 (4) 245 (49) 205 (41)
P122 N/A 0.41 32.8 (8) 278.8 (68) 86.1 (21)
P123b N/A 1.28 65.3 (5.1) 833.3 (65.1) 381.4 (29.8)
P124 N/A 0.8 15.2 (1.9) 724 (90.5) 43.2 (5.4)
P126 N/A 0.84 342.7 (40.8) 207.5 (24.7) 197.4 (23.5)
P128 N/A 3.5 2,485 (71) 455 (13) 455 (13)
P137 N/A 0.9 9.9 (1.1) 136.8 (15.2) 419.4 (46.6)

B− sciD
P001 IL2RG 0.14 0 (0) 70 (50) 1.4 (1)
P002 IL2RG 0.67 636.5 (95) 13.4 (2) 0 (0)
P003 IL2RG 3.6 3,456 (96) 0 (0) N/A (N/A)
P005 IL2RG 0.18 7.2 (4) 3.6 (2) 145.8 (81)
P064 ADA 0.21 4 (1.9) 1 (0.48) 16.8 (8)
P065 DCLRE1C 0.65 110.5 (17) 26 (4) 78 (12)
P066 DCLRE1C 1.2 36 (3) 24 (2) 1,080 (90)
P068 DCLRE1C 0.72 7.2 (1) 0.72 (0.1) 672.5 (93.4)
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Patient Mutation gene alc (×109/l) cD3+ cells/μl (%) cD19+ cells/μl (%) cD16/56+ cells/μl (%)

P079 RAG1 0.96 144 (15) 1.9 (0.2) 796.8 (83)
P080 RAG1 0.134 132 (98.6) 0.04 (0.03) 1.5 (1.1)
P083 RAG1 0.34 80.6 (23.7) 3.1 (0.9) 190.1 (55.9)
P084 RAG2 0.74 7.4 (1) 7.4 (1) 666 (90)
P087 RAG2 2.55 2.6 (0.1) 132.6 (5.2) 2,020 (79.2)
P088 RAG2 28.36 26,772 (94.4) 0 (0) 623.9 (2.2)
P092 RFXANK 1.019 276.1 (27.1) 19.4 (1.9) 25.5 (2.5)
P093 N/A 0.31 N/A (N/A) 2 (0.65) 120.9 (39)
P095 N/A 3.38 3,191 (94.4) 33.8 (1) 33.8 (1)
P097 N/A 2.49 2,366 (95) 18.9 (0.76) 49.8 (2)
P100 N/A 0.489 477.8 (97.7) 2.9 (0.6) 4.9 (1)
P101 N/A 0.242 15 (6.19) 2.9 (1.2) 206.4 (85.3)
P102 N/A 0.09 41.1 (45.7) 1.4 (1.6) 19.5 (21.7)
P103 N/A 1.8 1,499 (83.3) 3.6 (0.2) 257.4 (14.3)
P104 N/A 0.138 26.2 (19) 1.4 (1) 93.8 (68)
P105 N/A 0.72 144 (20) 0.72 (0.1) 537.1 (74.6)
P106 N/A 0.42 408.2 (97.2) 1.3 (0.3) 4.6 (1.1)
P107 N/A 0.65 76.7 (11.8) 29.3 (4.5) 490.8 (75.5)
P108 N/A 0.8 40 (5) 14.4 (1.8) 656 (82)
P114 N/A 0.59 11.8 (2) 15.9 (2.7) 472 (80)
P118 N/A 0.19 0 (0) 39.9 (21) 0.38 (0.2)
P125 N/A 0.84 579.6 (69) 100.8 (12) 134.4 (16)
P127 N/A 0.53 312.2 (58.9) 73.1 (13.8) 19.6 (3.7)
P130 N/A 0.29 70.8 (24.4) 45.8 (15.8) 150.8 (52)
P131 N/A 0.8 16 (2) 0 (0) 768 (96)
P132 N/A 0.74 583.1 (78.8) 17.8 (2.4) 96.2 (13)
P134 N/A 0.7 539 (77) 0 (0) 1.1 (0.16)
P135 N/A 1.03 20.6 (2) 30.9 (3) 875.5 (85)
P136 N/A 0.28 254.8 (91) 2.8 (1) 19.6 (7)
P138 N/A 0.22 72.6 (33) 2.2 (1) 129.8 (59)
P139 N/A 0.1 42.8 (42.8) 4.1 (4.1) 50 (50)

Others

Maternal engraftment
P077 RAG1 52.23 49,619 (95) 0 (0) 2,089 (4)

Unknown
P004a IL2RG 0.64 0 (0) N/Aa N/Aa

P004b IL2RG N/A N/A (2) N/A (85) N/A (10)
P007 IL2RG N/A N/A (0.2) N/A (86.7) N/A (6.7)
P012 IL2RG N/A N/A (2) N/A (95) N/A (0)
P016 IL2RG N/A N/A (N/A) N/A (N/A) N/A (N/A)
P023 IL2RG 0.5 N/A (N/A) N/A (N/A) N/A (N/A)
P037 IL2RG 1.6 N/A (N/A) N/A (N/A) N/A (N/A)
P040 IL2RG N/A N/A (16) N/A (82) N/A (0)
P042 IL2RG N/A N/A (2) N/A (95) N/A (1)
P046 IL2RG N/A N/A (0) N/A (93) N/A (2)
P057 IL2RG N/A N/A (0) N/A (89) N/A (0)
P062 IL2RG 5.4 N/A (N/A) N/A (N/A) N/A (N/A)
P081 RAG1 N/A N/A (1.5) N/A (0.52) N/A (74.1)
P085 RAG2 N/A N/A (13) N/A (0.1) N/A (24)
P086 RAG2 N/A N/A (0.67) N/A (0) N/A (76)
P089 RAG2 N/A N/A (N/A) N/A (N/A) N/A (N/A)
P096 N/A 0.26 N/A (N/A) N/A (N/A) N/A (N/A)
P113 N/A N/A N/A (1) N/A (87) N/A (4)
P119 N/A N/A N/A (3) N/A (67.5) N/A (25.4)
P129 N/A 0.22 N/A (N/A) N/A (N/A) N/A (N/A)
P133 N/A 0.6 N/A (N/A) N/A (N/A) N/A (N/A)
P140 N/A N/A N/A (2.8) N/A (0.6) N/A (90)

B+ SCID was defined as having ≥134 CD19+ cells/μL and B− SCID was defined as having <134 CD19+ cells/μL. ALC, absolute lymphocyte count; N/A, not available.
aMedical record documented as “raised”.
bALC was not provided, derived by summation of CD3+ cells, CD19+ cells, and CD16/56+ cells, in P024 the ALC was documented as 2.7 × 109/L in separate test.
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TaBle 4 | Clinical features of patients included in our study (n = 131).

With genetic 
diagnosis

Without genetic 
diagnosis

n = 83 n = 48

number (%) number (%)

classical sciD triad
Failure to thrive 13 (15.7) 16 (33.3)a

Chronic diarrhea 42 (50.6) 27 (56.3)
Recurrent infections 50 (60.2) 28 (58.3)

infection by systems
Respiratory infection 61 (73.5)c 34 (70.8)d

Non-bacillus Calmette–Guérin (BCG) skin 
and soft tissue infection

7 (8.4) 11 (22.9)

Gastrointestinal infection 42 (50.6) 23 (48.9)
Urogenital infection 2 (2.4) 1 (2.1)
Musculoskeletal infection 3 (3.6) 1 (2.1)
Central nervous system infection 1 (1.2) 1 (2.1)
Sepsis 18 (21.7) 8 (16.7)
severe infections 39 (47.0) 26 (54.2)
Intensive care unit admission 24 (28.9) 14 (29.2)
Life support 26 (31.3) 14 (29.2)

Intubation and ventilation 21 (25.3) 8 (16.7)
Resuscitation and/or inotrope support 5 (6.0) 9 (18.8)

Life-threatening complication 40 (48.2) 18 (37.5)
Sepsis 18 (21.7) 8 (16.7)
Respiratory distress/failure 26 (31.3) 13 (27.1)
Acute heart failure 2 (2.4) 1 (1.2)

Opportunistic infections 50 (60.2) 28 (58.3)
Bacterial 8 (9.6) 1 (2.1)

Pseudomonas aeruginosa 6 (7.2) 0 (0)
Acinetobacter baumanii 4 (4.8) 1 (2.1)

Viral 9 (10.8) 12 (25.0)
Cytomegalovirus (CMV) 8 (9.6)e 12 (25.0)b

Herpes zoster 1 (1.2) 0 (0)
Bacillus Calmette–Guérin (BCG) infection 19 (22.9)f 8 (16.7)

Local 8 (9.6) 2 (4.2)
Regional 2 (2.4) 1 (2.1)
Disseminated 9 (10.8) 5 (10.4)

Candidiasis 27 (32.5)g 16 (33.3)
Persistent oral thrush 22 (26.5) 10 (20.8)
Gastrointestinal tract infection 3 (3.6) 2 (4.2)
Candidemia 2 (2.4) 4 (8.3)

Fungal 3 (3.6) 2 (4.2)
Pneumocystis jiroveci 2 (2.4) 1 (2.1)
Aspergillosis 1 (1.2) 1 (2.1)

hepatosplenomegaly 12 (14.5) 9 (18.8)

ap = 0.0189.
bp = 0.0185.
cA total of 53 patients with genetic diagnosis had pneumonia (63.9%).
dA total of 32 patients without genetic diagnosis had pneumonia (66.7%).
eThe median age for CMV infection documented was 2.25 months (n = 8).
fThe median age for BCG infection documented was 4 months (n = 14).
gThe median age for candidiasis documented was 3 months (n = 25).
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TaBle 5 | Univariate analysis of features that affect age at presentation (AP), age 
at diagnosis, and time to diagnosis in patients fulfilled selection criteria (n = 83).

Features Median aP (months) 
when

Difference in 
months
(group  

a–group B)

p-Value

Feature 
present

(group a)

Feature 
absent

(group B)

FH 1 2  −1 0.002
Candidiasis 2 2 0 0.664

Bacillus Calmette–Guérin 
(BCG)

2 2 0 0.291

CMV 1 2 −1 0.280

FTT 2 2 0 0.954

Chronic diarrhea 2 2 0 0.778

Recurrent infections 2 3 −1 0.008

Severe infections 2 2 0 0.813

Pneumonia 2 3 −1 0.003

Hepatosplenomegaly 2.25 2 0.25 0.347

X-linked SCID 2 2 0 0.057

Low ALCa 2 2.25 −0.25 0.771

Features Median age at 
diagnosis (months) 

when

Difference in 
months
(group  

c–group D)

p-Value

Feature 
present

(group c)

Feature 
absent

(group D)

FH 3 5 −2 0.008
Candidiasis 6 4 2 0.008

BCG 6 4 2 0.005

CMV 3 4 −1 0.025

FTT 7 4 3 0.038

Chronic diarrhea 4 4.5 −0.5 0.949

Recurrent infections 5 4 1 0.241

Severe infections 4 5 −1 0.476

Pneumonia 4 5 −1 0.111

Hepatosplenomegaly 4 4 0 0.544

X-linked SCID 4 3.5 0.5 0.689

Low ALCa 4 6.5 −2.5 0.086

Features Median time to 
diagnosis (months) 

when

Difference in 
months
(group  

e–group F)

p-Value

Feature 
present

(group e)

Feature 
absent

(group F)

FH 2 2 0 0.494
Candidiasis 2.5 1.95 0.55 0.003

BCG 3 2 1 0.052

CMV 1.25 2 −0.75 0.155

FTT 4 2 2 0.104

Chronic diarrhea 1.15 2 −0.85 0.617

Recurrent infections 2.5 1 1.5 <0.001

Severe infections 2 2 0 0.565

Pneumonia 2 1.75 0.25 0.382

Hepatosplenomegaly 1.5 2 −0.5 0.217

X-linked SCID 2 2 0 0.569

Low ALCa 2 4.5 −2.5 0.124

aDefined as ALC below 3 × 109/L.
FH, family history of early infant death; CMV, cytomegalovirus infection; FTT, failure to 
thrive, ALC, absolute lymphocyte count.

candidiasis and Opportunistic infections 
Were associated with later aD
In univariate analysis, candidiasis, FTT, opportunistic infections, 
and BCG infection were associated with a later AD (candidiasis 
by 2 months, p = 0.008; FTT by 3 months, p = 0.038; opportunistic 
infections by 1 month, p = 0.018; BCG by 2 months, p = 0.005). 
Upon multivariate analysis, only candidiasis was associated with 
later AD (by 2.21 months, p = 0.002).
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candidiasis, Opportunistic infections, and 
recurrent infections Were associated with 
longer Time to Diagnosis
Candidiasis, opportunistic infections, and recurrent infections 
were shown to be associated with longer time to diagnosis 
(candidiasis by 0.55 month, p = 0.003; opportunistic infections 
by 1  month, p  =  0.005; recurrent infections by 1.5  months, 
p  <  0.001). Upon multivariate analysis, both candidiasis and 
recurrent infections were associated with longer time to diagnosis 
(candidiasis by 1.51 months, p = 0.018; recurrent infections by 
1.85 months, p = 0.003).

Other Features Were not significantly 
associated with aD and Time to Diagnosis
Analysis of chronic diarrhea, pneumonia, hepatosplenomegaly, 
severe infections, and lymphopenia revealed no association with 
AD and time to diagnosis. There was no difference between 
X-linked and autosomal recessive forms of SCID in AP, AD, and 
time to diagnosis.

DiscUssiOn

We found family history of early infant death was associated 
with earlier AP and earlier AD but not shorter time to diagnosis. 
Therefore, the earlier AD could be due to the heightened alertness 
of family with such history so that medical attention was sought 
earlier, rather than prompting clinicians in making quicker SCID 
diagnosis. The association between positive family histories and 
earlier AD was reported by studies in USA and France (10, 28), 
but they did not investigate whether the positive family history 
shortened the time to diagnosis. Moreover, they did not inves-
tigate whether presence of family history of early infant death 
alone is associated with an earlier AD. Previous studies reported 
16–60% of patients with positive family histories compared to 
that of 32% in our study; however, the definition of family history 

TaBle 6 | Multivariate linear regression of features that affect age at presentation 
(AP), age at diagnosis (AD), and time to diagnosis in patients fulfilled selection 
criteria (n = 83).

Features regression 
coefficient 
(months)

p-Value 95% ci

aP
FH  −0.884 0.005 −1.499 to −0.269
Recurrent infections −0.541 0.086 −1.161 to 0.078
Pneumonia −0.863 0.009 −1.504 to −0.221

aD
FH −1.86 0.007 −3.189 to −0.529
Candidiasis 2.21 0.002 0.858 to 3.555
Bacillus Calmette–Guérin 1.11 0.141 −0.375 to 2.595
CMV −1.58 0.147 −3.727 to 0.569
FTT 1.15 0.190 −0.584 to 2.886

Time to diagnosis
Candidiasis 1.511 0.018 0.267 to 2.754
Recurrent infections 1.845 0.003 0.655 to 3.036

FH, family history of early infant death; CMV, cytomegalovirus infection; FTT, failure to 
thrive; 95% CI, 95% confidence interval.

differs between studies (Table  7). Our findings suggested that 
the family history of early infant death was valuable in alerting 
families but not clinicians who failed to recognize this clue as the 
time to diagnosis remained the same regardless of the presence of 
family history of early infant death.

We found candidiasis was associated with later AD and longer 
time to diagnosis. The median age of candidiasis documented was 
3  months, and the median AD of SCID for patients with can-
didiasis was 6 months. Therefore, clinicians required 3 months 
to diagnose SCID after candidiasis was first documented. This 
suggested that candidiasis was an overlooked feature by clinicians 
in Asia. Other studies reported similar percentage at candidiasis 
in SCID patients but no report of association between candidiasis 
and AD (Table 7). Although oral candidiasis is relatively common 
in infants under 6 months old; however, persistent, recurrent, or 
invasive candidiasis warrants investigation for underlying immu-
nodeficiencies in particular SCID (15). Our finding suggested 
that candidiasis may be useful as a clue for earlier diagnosis since 
the median age of candidiasis documented was 3 months, which 
was earlier than the optimal time for HSCT at 3.5 months (9, 11).

We were surprised to find that BCG infection was not associ-
ated with AD and time to diagnosis. This could be due to the 
relatively low frequency of patients with BCG infections (21%) 
identified in our study, which was at a lower frequency when 
compared to that of 45–57% reported previously (6, 29, 30). The 
population coverage, immunization schedules, and virulence of 
BCG in countries and regions included in our study were com-
parable to that in Brazil and Iran (Table SE5 in Supplementary 
Material) (29, 34–39); therefore, the above factors of BCG policies 
could not account for the discrepancy in the frequency of BCG 
complications between our study and that from Brazil and Iran. In 
addition, the onset of BCG complication in our study at 4 months 
old was comparable to that in Brazil at 3.7 months old (29). The 
median AD of SCID in our study was 4 months, which was earlier 
than the 8 months in Brazil and 5 months in Iran, suggesting that 
the lower frequency of BCG infections in our study (21%) than 
that in Brazil (57%) and Iran (45%) (Table 7) could be due to 
earlier diagnosis of SCID in our study.

The median age for BCG infection documented in our 
patients was 4 months, which was beyond the optimal time for 
HSCT. Our findings were in line with a previous report in which 
74% of 349 BCG-vaccinated SCID patients developed BCG 
infection at or after 4 months of age (6). Therefore, despite BCG 
infections being useful clinical features of SCID as SCID patients 
have approximately 400-fold increase in risk of having localized 
BCG complication and 33,000-fold increase in risk of having dis-
seminated complications (6), noticing BCG infection had little 
value in alerting clinicians to make a timely diagnosis of SCID for 
optimal HSCT, which should be before 3.5 months (9, 11).

We found that opportunistic infections were associated with 
later AD, while recurrent infections and opportunistic infections 
were associated with longer time to diagnosis. Therefore, such 
clinical features were likely the consequences of delay in the 
diagnosis of SCID, reflecting that clinicians in Asia were unable 
to recognize these as SCID features.

We found that pneumonia was associated with an earlier AP 
but did not affect AD and time to diagnosis. Therefore, parents 
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may perceive pneumonia as a severe medical condition and then 
brought their children to seek medical care earlier. However, 
pneumonia also commonly affects children without SCID in Asia 
(40–42), and clinicians are not alerted to the possible diagnosis 
of SCID.

Chronic diarrhea, severe infections, and ALC below 3 × 109/L 
were not associated with AD and time to diagnosis, likely due 
to the distributions of the AD and the time to diagnosis that 
were quite wide in patients with these features (Figure S1 in 
Supplementary Material). In addition, chronic diarrhea is com-
mon in Southeast Asia and Western Pacific region (40); thus, it 
may not be a useful differentiating feature for patients with SCID 
as compared to those without. CMV infections did not affect AD 
and time to diagnosis as they were documented in small number 
of patients in our study (n = 8). The low rate of documented CMV 
infections may be due to the lack of diagnostic capacity (43, 44).

This study presented the largest collection of SCID patients 
in China and Southeast Asia with 147 patients, including 94 
SCID patients with genetic diagnosis. The median AD was 
4 months, which was comparable to other cohorts in the world, 
given no newborn screening of TREC was performed (Table 7)  
(10, 28–33); however, it was later than the optimal time for HSCT.

The commonest SCID gene found to be mutated in our patients 
was IL2RG because of the low consanguinity rate in our popula-
tion (45) as well as near absence of newborn screening in Asia. 
Mutations in IL2RG were unevenly distributed. Exons 3 and 5 
of IL2RG were common sites for mutation, accounting for 45% 
of all IL2RG mutations (Table  1; Table SE1 in Supplementary 
Material) and 48% of all unreported IL2RG mutations (Table SE3 
in Supplementary Material), which was comparable with previous 
study (46). Five mutation hotspots, namely cDNA 670, 676, 677, 
854, and 865, were identified previously and accounted for 29%  
of all IL2RG mutations in one study (46). Mutations in these 
hotspots collectively accounted for 27% of IL2RG mutations in 
our study. Majority of the mutations in these hotspots involved 
either C>T or G>A mutations in CpG dinucleotides. The muta-
tion frequency of the C nucleotides in CpGs is 10–50 times higher 
compared to any other bases (47). This is commonly thought to be 
due to the methylation and subsequently deamination of cytosine 
to form thymidine in CpG (48, 49). Apart from the mentioned 
hotspots, we identified 16 additional point mutations in all SCID 
genes involving such mechanism, suggesting that cytosine meth-
ylation and deamination to thymidine in CpG dinucleotide is a 
relatively common mechanism causing mutations in SCID genes.

Four patients with mutations in IL2RG were classified as 
having B− SCID with CD19+ B  cells ranging from 0 to 70/μL 
(Table 3). The four patients had typical SCID presentations (Table 
SE4 in Supplementary Material). One patient was screened for 
DCLRE1C, RAG1, and RAG2 due to his B− phenotype, but no 
mutation found. Patients suffering from X-linked SCID but with 
T-B− phenotype have been described previously (28). Patients 
with documented IL2RG mutations but with T-B+NK+ phe-
notype were also described previously (50–52). Many possible 
mechanisms can lead to atypical SCID immunophenotypes, 
including concurrent mutations in other SCID genes, modi-
fier gene(s), and mutations, that lead to sparing or disrupting 
developments of other lineages of lymphocytes. In addition, one 
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patient with mutations in RAG1 was classified as having B+ SCID 
with 267.4 CD19+ B cell/μL (Table 3). He likely had either Omenn 
syndrome or maternal engraftment due to his T+B+NK+ 
immunophenotype as well as his clinical presentation of severe 
eczema and eosinophilia (Table 3; Table SE4 in Supplementary 
Material). The T+B+NK+ immunophenotype of this patient may 
be explained by his missense mutation (c.2095C>T; p.R699W). 
This hypomorphic mutation results in a mutant RAG1 enzyme 
with 19.3% residual recombinase activity (53), thus allowing the 
generation of B cells in this patient. These cases in our study as 
well as previous reports demonstrated the imperfect correlation 
of genotype–immunophenotype in SCID patients.

We reported two patients (P091 and P092) with RFXANK 
mutations, with one (P092) reported previously in Chinese 
literature (54). These patients were the only two with confirmed 
RFXANK mutations reported in Asia. RFXANK mutation causes 
bare lymphocyte syndrome type 2B (55), commonly observed in 
North Africa (56) and sometimes in other places such as France 
and Spain (57). MHC class II deficiency accounted for 32% of all 
forms of SCID and their variants in North Africa (58–62), while 
it accounted for 1.4% of all SCID in Asia. Such discrepancy could 
be explained by the higher consanguinity rate of 50% in North 
Africa (63) compared to that of less than 10% in Asia (45), as well 
as presence of founder mutations in North Africa (56, 64). These 
patients present with features of typical SCID and frequently with 
sclerosing cholangitis (56, 65). However, they have normal TREC 
level and cannot be identified by newborn screening (5, 66).

The care of patients with SCID in Asia is still at an early phase 
of development, as reflected by delay in diagnosis and suboptimal 
management with no easy access to HSCT (12, 14). Eighty-one of 
the 83 patients were the first member of their respective families 
to be diagnosed genetically with SCID, thus explaining the rela-
tive lack of family history of SCID in our study. For genetic coun-
seling, we offered testing for family members of SCID patients 
including prenatal and newborn screening on siblings of six index 
patients as well as carrier screening for parents, siblings, and 
maternal aunts of 56 index patients (Table SE6 in Supplementary 
Material). Unfortunately, there is still a relative lack of clinical 
genetic service in Asia.

The median ALC in all studies including ours was below 
3 × 109/L, and reaffirming lymphopenia is a feature commonly 
seen in SCID patients (Table  7). However, clinicians failed to 
act on this critical clue as lymphopenia did not affect the AD or 
time to diagnosis. Since 1994, many reports have emphasized the 
importance of low ALC in alerting clinicians regarding SCID 
(67–70), but sadly clinicians to this date still failed to appreciate 
the value of low ALC for the diagnosis of SCID.

In this study, we identified that FH, candidiasis, and ALC below 
3 × 109/L were overlooked clinical features prompting the diagnosis 
of SCID. In addition, BCG infections were useful clinical features 
as they were the second most common opportunistic infections 
in our SCID patients. Ninety-four percent of patients in our study 
had at least one of the following four features: FH, candidiasis, BCG 
infections, and ALC below 3 × 109/L. Therefore, we suggest a simple 
guideline mandating that clinicians should order lymphocyte sub-
set analysis for infants with any one of the following four features: 
FH, candidiasis, BCG infections, and ALC below 3 × 109/L.

Failure to diagnose SCID in time will lead to delay in HSCT, 
leading to economic losses in addition to poor outcome. Study has 
shown that the mean total hospital charges in patients who had 
HSCT after 3.5 months were four times greater than those before 
3.5 months (71). Since all the clinical features we analyzed failed 
to help clinicians in making earlier SCID diagnosis, newborn 
screening is the only solution for making early enough diagnosis 
of SCID for timely HSCT in Asia.

Our retrospective case-series relied on reports made by 
referring doctors instead of analyzing original charts and results; 
therefore, underreport of clinical features was possible. In addi-
tion, our handling of missing data tends to underestimate the 
strength of association of clinical features with AD and time to 
diagnosis.

In conclusion, clinicians failed to recognize typical clinical fea-
tures of SCID to shorten the time to diagnosis. There is an urgent 
unmet need to educate clinicians in Asia on SCID. Ultimately, the 
only solution for early diagnosis of and timely HSCT for patients 
with SCID is newborn screening.
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FigUre s1 | Distribution of age at diagnosis and time to diagnosis of patients 
with genetic diagnosis (n = 83). Distribution of age at diagnosis of patients with 
chronic diarrhea (a), severe infections (B), and lymphopenia (c) and distribution 
of time to diagnosis of patients with chronic diarrhea (D) and lymphopenia (e).
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