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At the turn of the last century, the emerging field of medical oncology chose a cytotoxic 
approach to cancer therapy over an immune-centered approach at a time when evi-
dence in support of either paradigm did not yet exist. Today, nearly 120 years of data 
have established that (a) even the best cytotoxic regimens only infrequently cure late-
stage malignancy and (b) strategies that supplement and augment existing antitumor 
immune responses offer the greatest opportunities to potentiate durable remission in 
cancer. Despite widespread acceptance of these paradigms today, the ability of the 
immune system to recognize and fight cancer was a highly controversial topic for much 
of the twentieth century. Why this modern paradigmatic mainstay should have been both 
dubious and controversial for such an extended period is a topic of considerable interest 
that merits candid discussion. Herein, we review the literature to identify and describe 
the watershed events that ultimately led to the acceptance of immunotherapy as a viable 
regimen for the treatment of neoplastic malignancy. In addition to noting important clin-
ical discoveries, we also focus on research milestones and the development of critical 
model systems in rodents and dogs including the advanced modeling techniques that 
allowed development of patient-derived xenografts. Together, their use will further our 
understanding of cancer biology and tumor immunology, allow for a speedier assess-
ment of the efficacy and safety of novel approaches, and ultimately provide a faster 
bench to beside transition.

Keywords: history of immunotherapy, canine cancer models, patient-derived xenograft models, mouse models of 
cancer, checkpoint blockade, tumor immune evasion

A BRieF HiSTORY OF CANCeR iMMUNOTHeRAPY

Perhaps no innovation has had a more meaningful impact upon modern medicine than the develop-
ment of vaccination (1), a revolutionary achievement accomplished in piecemeal fashion over the 
course of the 18th and 19th centuries. Though prevention of smallpox by purposeful inoculation 
with variola minor may have had origins as ancient as China’s third century BC Qin dynasty (2), 
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it is clear that the Ottoman Turks were commonly employing 
this practice by 1718, when the wife of the British ambassador to 
Istanbul, Lady Mary Wortley Montague, observed the local cus-
tom of variolation and popularized it upon her return to England 
(3, 4). While variolation, or infection with variola minor, was not 
a perfect vaccination strategy, its case fatality rate of 1–2% was 
far lower than that of fulminant variola major infection, a malady 
that killed up to 30% of its victims. Some years after variolation 
became entrenched among the eighteenth century European 
medical establishment, reports regarding possible protective effi-
cacy of cowpox infection began to circulate in the literature. The 
earliest known such report may be credited to British physician 
Dr. John Fewster whose paper, “Cowpox and its Ability to Prevent 
Smallpox,” was read to the London Medical Society in 1765. By 
1796, Royal Society Fellow Edward Jenner had demonstrated that 
the protective immunity of cowpox could be passed between vac-
cinees and most importantly, that 23 inoculated individuals were 
genuinely immune to smallpox as evidenced by failure to become 
symptomatic after variolation (5).

Following Jenner’s revolutionary discovery, nearly a cen-
tury elapsed before the development of a second vaccine. 
Unquestionably, Jenner had been extraordinarily lucky in his dis-
covery of a natural pre-attenuated pathogen, a vaccine strain as 
perfect as any generated by years of serial passage in a laboratory. 
Subsequent development of future vaccines would need to wait 
for Antonio Bassi to formally propose the germ theory of disease 
in 1844 (6), for Louis Pasteur (7) and Joseph Lister (8) to publish 
evidence in support of this revolutionary theory, and finally for 
Robert Koch to develop his infectious disease postulates between 
the years 1884 and 1890 (9). In the century that separated Jenner 
and Koch, medical science proved that pathogens were the 
causative agents of disease and became aware that weakened or 
killed pathogens could often provoke protective immunity in 
inoculated hosts. This highly conducive scientific environment 
ushered the development of a broad array of vaccines in the 
late 19th and early 20th centuries. Beginning with the success-
ful demonstration of the Pasteur/Roux rabies vaccine in 1885, 
eight important vaccines were introduced, providing substantial 
protection against the effects of ancient killers like plague (1897), 
cholera (1917), and typhoid (1917); as well as more the more 
contemporary scourges of diphtheria (1923), pertussis (1926), 
tuberculosis (1927), and tetanus (1927). Efforts continued into 
the twentieth century with the development of vaccines against 
viral diseases including yellow fever (1935), influenza (1945), 
polio (1955), measles (1963), mumps (1967), and rubella (1969). 
In the 1980s, advances in immunology, molecular biology, and 
medicinal chemistry led to the generation of multivalent cell-free 
polysaccharide vaccines for the prevention of meningococcal 
meningitis (Menomune, 1981) and pneumococcal pneumonia 
(PneumoVax, 1983). In late 1981, the first vaccine based upon 
a single purified surface antigen (HBsAg) became available for 
the prevention of hepatitis B (HBV) (10, 11). At this moment of 
scientific triumph, the ability of medical science to manipulate 
the human immune system appeared unparalleled, and addi-
tional contemporaneous discoveries engendered optimism that 
immune-mediated therapies might be used to treat or even to 
cure cancer (12, 13).

Though the idea of using the immune system to fight 
neoplastic disease was novel in the 1980s, its practice was not. 
William B. Coley, a nineteenth century surgeon at the Hospital 
for the Ruptured and Crippled (now the Hospital for Special 
Surgery), developed the first immune-based treatment for 
cancer at the end of the nineteenth century. Deeply affected by 
the death of his first patient from metastatic sarcoma, Dr. Coley 
ignored the siren song of complacency and instead embraced 
the stubborn recalcitrance that defines all revolutionaries. He 
delved deeply into the eighteenth century medical literature 
and unearthed 47 case reports in which concomitant infection 
seemed to have caused the remission of an otherwise incur-
able neoplastic malignancy. Most striking to Dr. Coley was an 
apparent connection between erysipelas, a streptococcal infec-
tion of the dermis, and the remission of soft tissue sarcomas. 
When Dr. Coley began injecting his cancer patients with the 
S. pyogenes causative agent of erysipelas, he encountered a 
surprising impediment. He discovered that it was very difficult 
to induce erysipelas in most patients and also exceptionally 
difficult to cure among the few in which productive infection 
was established. Two patients even died from disseminated 
septicemia rather than their underlying cancers. In response, 
Coley settled upon a non-infectious admixture of heat-killed 
S. pyogenes and heat-killed B. prodigious (now reclassified as 
S. marcecsens). This fortuitous combination of Gram-positive 
and Gram-negative bacteria possessed a wide array of immu-
nostimulatory properties that allowed Dr. Coley to achieve 
excellent long-term cure rates that in some instances remain 
unrivaled by medical science in the 81  years since his death 
(14–18). Despite impressive clinical results first published in 
1893, Dr. Coley was viewed with suspicion by the medical 
establishment of the day; and while Paul Ehrlich would propose 
the cancer immunosurveillance hypothesis only 16 years later 
(19), contemporaries didn’t make a connection between “Coley 
fluid” and the nascent science of immunology. Therefore, in his 
own time, the lack of a suitable explanation for Coley’s results 
ultimately doomed his treatment regimen, and it is the century-
long search for mechanism that has come to define William 
Coley’s legacy (20). His initial observations have in large 
part led to the discovery of the soluble signaling factors that 
modulate immune function, the pattern recognition receptors 
responsible for the detection of infectious organisms (21–24), 
and the state-of-the-art checkpoint inhibitors that have become 
the mainstay of modern immuno-oncology (25–27).

Yet, despite the outsized role that Coley’s discoveries ulti-
mately played, little happened in the field between Coley’s death 
in 1936 and the advent of immunology’s modern era some two 
decades later. This era reasonably began in 1957 with the dis-
covery of interferon by Isaacs and Lindenmann (28, 29) as well 
as the founding of the Cancer Research Institute of New York, 
dedicated to the development of immune-based treatments 
for cancer, by William Coley’s daughter, Helen Coley Nauts. 
In 1959, the husband and wife team of Ruth and John Graham 
published the first ever cancer vaccine study, a 114 patient 
cohort of gynecologic cancer patients treated with adjuvanted 
tumor lysate (30). Despite a 22% incidence of remission or stable 
disease, the work went largely unnoticed. While the mechanism 
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by which the Graham vaccine exerted any efficacy is unknown, 
the contemporaneous assumption invoked the generation of 
tumor-specific antibody—the only known or suspected adap-
tive mechanism in the mid-1950s. The existence of T-cells and 
the critical role of the cellular immune response in adaptive 
immunity would not be fully characterized until Jacques Miller’s 
seminal publication in 1967 (31). Immediately after, a number 
of other crucial discoveries that would set the stage for the 
advent of cancer immunotherapy were made in rapid-fire suc-
cession. These included the discovery and characterization of 
dendritic cells by Ralph Steinman in 1973 (32), Zinkernagel and 
Doherty’s description of MHC restriction in 1974 (33), and Eva 
Klein’s documentation of natural killer (NK) cell activity in 1975 
(34, 35). In conjunction with the simultaneous revolution in 
molecular biology that accompanied isolation and characteriza-
tion of the first restriction endonuclease in 1970 (36), the initial 
immune-based cancer treatments began to make their way into 
clinical medicine even though, as in William Coley’s time, the 
immunologic component of these regimens was not understood. 
Bone marrow transplantation for the treatment of hematologic 
malignancies was pioneered in the mid-1970s at the University 
of Minnesota, while molecular cloning of the interferon gene 
and subsequent industrial-scale production permitted Talpaz 
and colleagues at the MD Anderson Cancer Center to begin 
treating chronic myeloid leukemia patients with recombinant 
interferon alpha (37). Nonetheless, the idea that the immune 
system could play an important role in the treatment of many 
cancers still remained a concept solidly external to the purview 
of mainstream oncology. Clinical oncologists didn’t yet buy what 
researchers were selling, and even if they had wanted to, there 
was no real product to give to their patients.

Much needed clarification came from the works of Schreiber 
and colleagues, who in 1998 and 2001, provided key evidence 
of T  cell-mediated tumor-specific immune surveillance, bona 
fide antitumor immune responses, and evidence of tumor 
immune escape. This work made clear that lymphocyte and 
IFN-γ-mediated effector functions collaborate to protect 
against the development of carcinogen-induced cancers, and 
that over time, immune pressure on tumors selects for tumor 
cells with reduced immunogenicity (38, 39). Thus, on one hand, 
the immune response is effective as a tumor-suppressor, while 
on the other, immune pressure leads to the selection of tumor 
cells that subsequently escape eradication by immune-mediated 
mechanisms and thus still survive in an immune-competent 
host. This work in part explained the apparent paradox of 
tumor formation in immunologically intact individuals and laid 
the groundwork for the discovery of tumor-induced immune 
exhaustion pathways.

It was ultimately two watershed events in 2010 and a third 
in 2011 that forced acceptance of immuno-oncology onto 
ambivalent clinical practitioners; however, these unrelated events 
were each several decades in the making. Though cytotoxic 
T-lymphocyte antigen 4 (CTLA-4) was first identified by Brunet 
and colleagues in 1987 (40), its function as a critical immune 
checkpoint remained obscure until published by Jim Allison’s 
group in 1995 (41), and the potential for treating cancer by its 
blockade unappreciated until the following year (42). Fourteen 

more years would then elapse from the time that these pre-
clinical data were published to the time that the definitive clinical 
study permitted FDA approval of the revolutionary checkpoint 
inhibitor ipilimumab for the treatment of stage IV melanoma 
(25). In that same year, 20  years of work and three phase  
III clinical trials finally resulted in FDA approval of sipuleucel-
T, a bona fide dendritic cell vaccine, for the treatment of stage 
IV metastatic but asymptomatic castrate-resistant prostate 
cancer (43). With excitement in immuno-oncology suddenly at 
a fevered pitch, the bar was improbably raised the following year 
by the unexpected and stunning success of a genetically modified 
T-cell strategy many thought would never work. First described 
experimentally in 1993 (44), the chimeric antigen receptor 
(CAR) strategy that linked a tumor antigen-specific single-chain 
immunoglobulin variable region (scFv) to CD3-ζ and/or other 
costimulatory signaling domains like CD28 seemed too clever by 
half and had performed abysmally in early clinical studies (45, 
46). Yet, replacement of the CD28 signaling domain with that 
of 4-1BB by Carl June and colleagues resulted in a complete and 
durable remission of a pediatric patient with treatment-refractory 
chronic lymphocytic leukemia following adoptive transfer of 
construct-transduced autologous T-cells (47). Over the next 
5 years, the field continued to build on these successes with fur-
ther breakthroughs in CAR T-cell therapy including application 
to additional diseases (48, 49), novel target validation, and the 
addition of suicide safety switch technologies (50). By the end 
of 2016, four different checkpoint inhibitor drugs blocking two 
different pathways (25–27, 51) had received FDA approval for the 
treatment of melanoma, renal cell carcinoma (RCC), lung cancer, 
lymphoma, and cancers of the bladder. Additional approvals for 
squamous cell head and neck cancers seem all but certain given 
the recent publication of promising data (52).

TARGeTiNG iMMUNOSUPPReSSiON

Many tumor microenvironments, such as lymphoma (53) and 
lung carcinoma (54) are enriched in immune suppressive cells, 
such as regulatory T  cells, myeloid-derived suppressor cells 
(MDSCs), or type 2 macrophages (M2), all of which contribute 
to immune exhaustion via the expression of inhibitory ligands, 
suppressive cytokines, and tumor-promoting factors (55). It is, 
therefore, not surprising that high numbers of tumor-resident 
regulatory T cells, M2 macrophages, and/or MDSC are correlated 
with poor outcomes and with advanced stages of cancer (56–58). 
Thus, therapies that reduce the induction, recruitment, or immune 
suppressive activities of these immune suppressive cells, or lead 
to their deaths, have been explored as cancer immunotherapies 
that specifically target the mechanisms of immune suppression 
that allow tumor escape. Specifically, receptor tyrosine kinase 
(RTK) inhibitors have been explored as cancer immunotherapy 
drugs, as they target growth factor-mediated signaling pathways 
and reduce angiogenesis, survival, proliferation, and metastasis 
formation of tumors (59). Two of these, sunitinib and sorafenib, 
target signaling by vascular endothelial growth factors, platelet-
derived growth factor receptor alpha/beta (PDGFRα/β), and 
stem cell growth factor receptor signaling (60). Sunitinib also 
targets the RTK Flt-3 and the serine/threonine-specific protein 
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kinase Raf, while sorafenib also targets signaling through the RTK 
c-RET. Both sunitinib and sorafenib can reduce the frequency 
of regulatory T cells in mouse models of cancer and in patients 
with metastatic renal cell carcinoma (RCC) (61). Similarly, 
sorafenib-reduced regulatory T-cell frequencies in patients with 
hepatocellular carcinoma. While the mechanisms for regulatory 
T-cell reduction are unclear, treatment did allow the develop-
ment of some host immunity against the tumor (61). MDSCs are 
also modulated by RTK, and treatment with sunitinib has been 
shown to reduce the proliferation of monocytic MDSC while 
inducing cell death by apoptosis in granular MDSC in mouse 
models of cancer, and the frequency of both subsets of MDSC 
was reduced in patients with metastatic RCC (61). Treatment 
benefits correlated with an increase in both CD4+ and CD8+ 
tumor-infiltrating T-cells even though sunitinib and sorafenib 
impact T-cell effector functions differently. While treatment with 
sunitinib enhances IFN-γ production and cytolytic antitumor 
activity of CD8+ cytotoxic T-cells, treatment with sorafenib 
reduces the expression of T-cell expressed activation markers 
(CD25 and CD69) and results in reduced IL-2 production and 
increased T-cell apoptosis upon in  vitro stimulation of T  cells 
with the lectin phytohemagglutinin (62, 63). How sunitinib and 
sorafenib modulate T-cell activity in cancer patients is currently 
not well understood and requires further investigation.

The effects of sunitinib and sorafenib on NK cell biology and 
antitumor responses have also been investigated. While Sunitinib 
treatments did not alter the frequency of peripheral blood NK cells 
in patients suffering from metastatic RCC, both sunitinib and 
sorafenib induced NKG2D ligand expression on nasopharyngeal 
and hepatocellular carcinoma cell lines, which correlated with 
increased triggering of NK cell-mediated lysis (64). Altogether, 
the targeting of growth factor signaling pathways has effects 
on angiogenesis, cell proliferation, survival, and host immunity 
to tumor. Combination therapies are currently being explored 
to combine the beneficial effects of RTK with other immune 
modulatory approaches including cytokine administration and 
checkpoint blockade. The combined effects of these on the host 
response to tumor remain to be evaluated.

While the targeting of immunosuppressive cell populations is 
a promising clinical strategy, antagonism of the soluble cytokines 
and other suppressive factors released by these cell types is 
also being considered as a strategy to augment potentiation of 
antitumor responses. In the development of this strategy, oncol-
ogy borrows from the rich tradition of clinical rheumatology 
that has produced dozens of clinically approved cytokine and 
cytokine receptor antagonists for the treatment of autoimmune 
conditions. These include a wide variety of TNF-α blockers (e.g., 
infliximab, etanercept, and adalimumab among others) for the 
treatment of many different autoimmune conditions including 
Crohn’s disease, ulcerative colitis, psoriasis, rheumatoid arthritis, 
and ankylosing spondylitis (65); the IL-1 receptor antagonist 
anakinra approved for the treatment of rheumatoid arthritis 
(66) and moving through late stage clinical trials for the treat-
ment of other autoimmune conditions; IL-4/IL-13 receptor 
antagonists (lebrikizumab, pitrakinra, dupilumab, tralokinumab) 
currently in clinical trials for the treatment of asthma (67, 68), 
and IL-2 receptor antagonists used to treat multiple sclerosis  

(daclizumab) (69) and prevent transplant rejection (basiliximab) 
(70). Efforts at aimed at direct blocking of IL-10 signaling, while 
promising in experimental model systems, remain in preclinical 
stages of development at present (71). In contrast, there exist an 
enormous number of peptides, anti-sense oligonucleotides, mon-
oclonal antibodies, and small molecule inhibitor drugs in various 
stages of clinical development that are designed to block TGF-β 
signaling in a variety of different ways (72, 73). Galunisertib, a 
small molecule inhibitor of the TβRI-associated kinase, is in clini-
cal trials for a number of different neoplastic indications (74–76) 
as is fresolimumab, a monoclonal antibody that blocks receptor 
ligand interaction of all TGF-β isoforms (77). Trabedersen is a 
novel TGF-β-targeting antisense oligonucleotide drug moving 
through the clinical development pipeline for the treatment of 
malignant glioma (78). In addition, immuno-oncology has bor-
rowed the IL-6 inhibitor tocilizumab, already approved for the 
treatment of rheumatoid arthritis (79) and other conditions, to 
effectively neutralize the cytokine storm invariably triggered by 
successful CAR T-cell administration (80).

MODeLiNG vACCiNe iMMUNOTHeRAPY: 
UNMeT NeeDS

While development of checkpoint inhibitor therapies and trans-
genic CAR strategies continues to progress, analogous progress in 
vaccine immunotherapy has lagged significantly by comparison 
despite first mover advantage in both theory and practice. The 
success of the former partially explains the failure of the latter. 
Checkpoint inhibitor drugs and CAR T-cells do not just extend 
lives by weeks or months, i.e., are not just prolonging the inevi-
table while the patient still suffers and eventually dies. Instead, in 
certain subsets of patients, the new immune-based strategies offer 
what appears to be a permanent and durable cure. A decade ago, 
stage IV melanoma was a death sentence, whereas today, up to 
half of all stage IV melanoma patients can expect to be cured of 
their disease through combination anti-CTLA-4 (ipilimumab)/
anti-PD-1 (nivolumab or pembrolizumab) checkpoint inhibition 
(Table 1) (81–83). These results stand in sharp contrast to those 
obtained following administration of the sipuleucel-T putative 
DC vaccine. Patients administered that this very expensive 
treatment regimen exhibit only an extra 4  months of OS with 
no concomitant enhancement of the long tail on the right side of 
the Kaplan–Meier survival curve. By 5 years post-administration, 
patients administered sipuleucel-T exhibit a survival probability 
identical to that of those who receive placebo (43). Sipuleucel-T 
ultimately doesn’t cure anyone, and these disappointing results 
are roughly on par with those of over 400 other dendritic cell 
vaccine trials carried out between 1995 (84) and the end of the 
last decade (85, 86), the time at which interest in such trials 
significantly waned in response to the success of checkpoint 
inhibition. Further, other high profile vaccine strategies based 
on 1990s technology also performed exceptionally poorly in the 
clinic. Two large phase III clinical trials based on the GVAX vac-
cination platform (irradiated, allogeneic cancer cell lines trans-
duced to express high levels of GM-CSF) (87) were terminated 
early when interim futility analyses indicated that patients who 
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TABLe 1 | FDA approved checkpoint inhibitors targeting the programmed death 
or cytotoxic T lymphocyte antigen-4 pathways.

Drug and trade name Target FDA approval

Prembrolizumab 
KEYTRUDA

PD-1 •	 Advanced melanoma
•	 PDL-1-positive metastatic non-small 

cell lung cancer
•	 Advanced or metastatic urothelial 

carcinoma
•	 Refractory classical Hodgkin’s 

lymphoma
•	 Recurrent or metastatic head and 

neck squamous cell carcinoma
Nivolumab OPDIVO PD-1 •	 Metastatic melanoma

•	 Locally advanced or metastatic 
urothelial carcinoma

•	 PDL-1+ non-small cell lung cancer 
(NSCLC)

Avelumab BAVENICO PDL-1 •	 Metastatic merkel cell carcinoma
Durvalumab IMFINZI PDL-1 •	 Metastatic bladder cancer
Atezolizumab 
TECENTRIQ 

PDL-1 •	 Locally advanced or metastatic 
urothelial carcinoma, 
PDL-1+ NSCLC

Ipilimumab YERVOY Cytotoxic 
T-lymphocyte 
antigen 4

•	 Metastatic melanoma
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had received the vaccine were actually dying faster than those 
in the control arms (88, 89). Several other highly touted vaccine 
strategies including Melacine, CanVaxin, OncoPhage, Theratope, 
Bec2, and TRICOM (ProstVac and PanVac) also failed in equally 
definitive fashion in phase III clinical studies of their own (90). 
Given the sheer amount of positive preclinical and early clinical 
data required to justify the expense and risk of a phase III trial, 
how could this possibly have happened? Why did immuno-
oncology vaccine therapies in particular perform favorably in 
model systems yet so poorly in real-world studies? The answers to 
these somewhat perplexing questions actually lie in the perceived 
experimental strengths of the therapeutic models systems.

MOUSe MODeLS OF CANCeR

The development of inbred animal mouse strains in the early 
twentieth century allowed researchers to perform basic experi-
mentation without the confounding influence of biologic or (in 
the case of immunology) antigenic variation. Further refinements 
in husbandry also permitted model systems to be free of many 
confounding environmental variables as well. Subsequently, 
advanced techniques in genetic engineering allowed gain- and 
loss-of-function mutations in cancer to be studied in isolated and 
controlled genomic environments.

Lung cancer, the leading cause of cancer-related death in the 
world (91) is ideally poised for development of effective tumor 
vaccines that could significantly impact cancer survival. Lung 
cancer is divided into two major histopathological groups: 
small cell carcinoma (SCC) and non-small cell lung cancer 
(NSCLC), where the latter makes up nearly 85% of all lung can-
cer incidences. Histologically, NSCLC is further subdivided into 
adeno- (40–50%), squamous- (25–30%), and large- (10–15%) cell 
carcinomas. Notably, SCC, which comprise only 10–15% of all 

lung cancers, are highly aggressive, and have significantly reduced 
overall survival when compared to NSCLC. In addition, SCC 
arise from neuroendocrine cells within the lung, remain poorly 
studied because they are not usually amenable to surgical curative 
resection, and lack animal models that can closely recapitulate 
their characteristic. Because of their similarities in histopathol-
ogy and tumor progression stages between mouse and human 
NSCLC, several useful lung cancer models have been developed 
to evaluate potential therapies (92, 93). Initial models of lung can-
cer relied on the application of chemical carcinogens [benzo(α)
pyrene or 3-methylcholanthrene] to either directly the trachea or 
by skin painting, and it is likely that technical difficulties in these 
studies resulted in poor reproducibility of data (94–97). Further, 
success to induce mice by skin paining with another chemical 
carcinogen, N-nitroso-trischloroethylurea, was found to be strain 
dependent (98–102).

Inactivation of tumor-suppressor genes PTEN, SMAD4, and 
p53 (103) and mutations or amplifications of oncogenic genes 
Kras, EGFR, and ERBB2 (104), have been linked to human lung 
cancer. Because PTEN is often highly dysregulated, it is now 
recognized as a prognostic marker in human lung cancer (105). 
Based on these findings, several mouse models of lung cancer 
have been developed through genetic mutation of these path-
ways. For example, mice that lack Pten in airway epithelia develop 
hyperplasia, whereas concurrent ablation of transcription factor 
Smad4 results in spontaneous development of adenosquamous 
lung cancer in the proximal bronchi beginning at approximately 
7–9  months of age (106). At 12  months of age, 100% of mice 
deficient in airway epithelial Smad4 and Pten develop lung 
cancer with nearly 2/3 show distant metastasis to the stomach, 
liver, and spleen. Similarly, loss of Lkb and Pten using adenovirus-
induced cre-recombinase resulted in lung cancer with features 
of squamous lung cancer (107). Further, because airway-specific 
targeted deletion of tumor suppressor genes result in predictable 
lung tumors that spontaneously metastasize, they provide excel-
lent preclinical models to examine the role of innate and acquired 
immune responses to tumor, as well as in vivo biological studies 
to examine tumor latency.

These critical developments generated robust experimental 
systems in which basic biological questions were carefully asked 
and answered; however, it is important to also consider that 
the sterile environment of experimental rigor may prove to be 
ineffectual when tasked with duplicating the complexities of 
multifactorial neoplastic disease. Here, the lack of genetic, anti-
genic, and environmental variability can limit the usefulness of 
experimental systems co-opted by immuno-oncology for use as 
preclinical therapeutic models (108). Even further, the clean envi-
ronments in which experimental animals are housed may prove 
detrimental to modeling real-world interactions between cancer 
and the immune system as the lack of exposure to pathogens and 
normal commensals has been shown to impair natural immune 
maturation and development (109). Hence, treatments tailored to 
the activation of poorly physiologic immune systems have been 
tested in uniform and non-variant disease models that bear too 
little resemblance to human cancers, which may help explain 
why some of these cancers can overpower putative experimental 
therapies.
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CANiNe MODeLS OF CANCeR AND 
THeiR USeFULNeSS iN 
iMMUNOTHeRAPY DeveLOPMeNT

While the criticisms of rodent therapeutic models are many 
and significant, this is not to suggest that these models should 
be discarded. On the contrary, the cost, reproducibility, well-
characterized attributes, and wide biologic variation of these 
model systems still render them extremely valuable for proof-
of-concept studies. However, once such studies are completed 
and promising results obtained, validation should next proceed 
using a physiologic real-world model system before advancing to 
human clinical trials. For an increasing number of investigators, 
the companion domestic canine population is ably serving as the 
bridge between rodents and humans. Cancer is the most common 
cause of death in companion canines, impacting over four million 
animals per year in the United States (110, 111); and the aspects 
of this model that confound the basic researcher are the precise 
attributes in which the translational researcher should delight.

 1. The model is spontaneous. Canine cancers develop in 
response to real-world environmental and genetic stimuli, 
and subsequently evolve in response to real-world immuno-
logic selection pressure. Unlike spontaneous rodent models 
in which an investigator might wait months or years for the 
development of disease, brand new canine cases are available 
weekly or even daily at veterinary oncology clinics serving the 
largest metropolitan areas.

 2. The model is outbred. Treatments may be modeled in a back-
ground of high genetic variability that mimics that of human 
populations.

 3. Canine immune systems are physiologically similar to those 
of humans. Companion canines have been raised in the same 
environments as their human masters, sharing a broad array of 
pathogens and commensals as well as typical regulatory T-cell 
responses that accompany mature immune development in 
response to a lifetime of unpredictable and variegated stimuli 
(112–114).

 4. Even the treatment environments are heterogeneous. 
Companion animals are cared for in the clinic by real-world 
veterinarians who consider factors such as convenience, cost, 
and feasibility. Animals are cared for holistically so that the 
disease is not treated at the expense of all other considera-
tions. Rarely are such realities taken into account by graduate 
and postdoctoral researchers caring for rodents. Even more 
importantly, canine patients come with owners, some accom-
modating and some cantankerous, tasked with continuing 
important aspects of treatment on an outpatient basis. In this 
regard, domestic canines also permit modeling of real-world 
compliance issues that can doom any therapeutic regimen if 
the treatment becomes too inconvenient or onerous.

Given these advantages, it is unsurprising that the only USDA 
or FDA approved cancer vaccine in the United States, Oncept 
(xenogenic tyrosinase DNA for the treatment of oral melanoma), 
is licensed for use in dogs (110, 115–117). Additionally, compan-
ion dog models have been used for the development of successful 

cancer drugs including sunitinib (cKit inhibitor) for the treatment 
of renal cell carcinoma and gastrointestinal stromal tumors (110, 
118–120) and ibrutinib (BTK inhibitor) for the treatment of 
B-CLL and mantle cell lymphomas (110, 121–123). The clini-
cal stage drugs selinexor (exportin-1 inhibitor) (110, 124) and 
ganetespib (inhibitor of HSP90 chaperone activity) (110, 125, 
126) are currently proceeding through human clinical trials 
based largely upon successful results observed in outbred dogs.

TRANSLATiONAL MODeLS OF CANCeR: 
PATieNT-DeRiveD XeNOGRAFTS

Tumors are heterogeneous in their cellular composition, cellular 
morphology, gene expression, metabolism, cell motility, prolif-
eration, and metastatic potential (127). The tumor microenviron-
ment is complex, and clinically relevant information on tissue 
context, including cell–cell interactions, or in situ variations are 
lost in in vitro studies based on single cell suspensions or tumor 
cell lines. This critical lack of knowledge is a major obstacle to our 
understanding of how malignant cells interact with or manipulate 
the functions of non-malignant surrounding tissue or immune 
cells, and to the successful development of novel therapies, 
including immunotherapies (128). However, tumor environ-
ments, especially for solid tumors, can largely be preserved 
in patient-derived xenograft (PDX) models (129). PDX mice 
(130) are generated by surgical transplantation of small, non-
disrupted pieces of primary human lung tumor under the skin of  
lymphocyte-deficient NOD/SCID/IL2Rγc-KO (NSG) mice.

Athymic (nude) mice, which lack T  cells, were first used to 
generate PDX mice using hematological neoplasms, followed 
by CB17-scid mice, which lack T and B  cells. However, it was 
discovered that NK  cells, a cytotoxic immune cell capable of 
vigorous antitumor responses, are still present in these mouse 
strains, and that the presence of murine NK successfully restricts 
tumor growth (131). Thus, current PDX models are generated 
using lymphopenic (T, B, and NK cell deficient) mice that also 
harbor defects in innate immunity, such as non-obese-diabetic 
(NOD)/scid and NOD/scid/IL-2γ-receptor null (NSG) mice. 
NSG mice not only have the SIRP1α polymorphism of the NOD 
mouse, which enables SIRP1a-CD47 interactions that prevent 
phagocytosis of human cells by murine monocytes (132), but also 
lack the common gamma chain (IL-2Rγc), resulting in NK cell 
deficiency and a lack of IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21 
signaling (133). Thereby, the use of NSG mice as recipients of 
human hematological neoplasms, hematopoietic cells and solid 
tumors, has allowed significant advances in the development of 
this preclinical model (134, 135).

Tumor transplantation allows the human tumor to engraft, 
vascularize, and grow in the immune-deficient mice (Figure 1). 
Tumors from P0 mice can be excised and their explants trans-
planted into new NSG hosts. While each PDX transplantation 
round increases the size of the human donor-matched PDX 
cohort, it also dilutes any co-transferred immune cells and abro-
gates investigative abilities to test immunotherapy approaches 
that target the endogenous patient-derived immune repertoire. 
However, PDX models are nevertheless a valuable translational 
research tool that enables long-term in vivo studies using human 
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process can be repeated (P2) to generate ever-larger cohorts of tumor-matched mice. While each PDX transplantation cohort is increased in size, the human 
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tumors in which the tumor heterogeneity and tumor microenvi-
ronment has been preserved (129, 135, 136), they enable impor-
tant preclinical developments of targeted therapeutic strategies, 
including combination therapies or high-risk strategies, and 
facilitate bench to bedside transitions (136).

To generate “P0” PDX mice, fresh patient tumors obtained 
directly from surgery are used to ensure highest tumor cell 
viability to maximally improve PDX engraftment efficacy  
(106, 136, 137). The transplantation is either done subcutane-
ously, into the skin, or orthotopically, into the organ where the 
original cancer developed. Another, perhaps more complicated 
method involves tumor tissue transplantation under the murine 
kidney capsule (136, 138). Ultimately, the goal of all PDX trans-
plantation methods is to allow for the speedy vascularization 
of the transplanted tumor tissue and its subsequent growth, 
without the introduction of major changes in the tumor com-
position or microenvironment. Indeed, a PDX model of gastric 
cancer recently demonstrated that the engrafted PDX tumor has 
genetic and histological characteristics highly consistent with the 
primary tumor (137). In addition to P0 tumors, P1 tumors can 
be generated from P0 tumors by harvest of the PDX tumor from 
its murine host, followed by transplantation of P0 PDX tumor 
explants into non-tumor-bearing recipients. Tumors can thus be 
maintained by being continuously passaged from mouse to mouse 
(136). These types of PDX models have successfully been used to 
study different types of cancer, such as melanoma, breast, pancre-
atic, ovarian, lung, colorectal, and brain cancer (139). In studies 
involving PDX models for hepatocellular carcinoma, colorectal 
cancer, breast cancer, pancreatic ductal adenocarcinoma, head 

and neck squamous cell carcinoma, adenoid cystic carcinoma, 
acute lymphoblastic, leukemia, lung, and gastric cancer, the 
authors concluded that tumors of PDX mice effectively mirrored 
the histological characteristics, gene-expression, and drug-
response features of the corresponding primary tumor.

PDX MODeLS FOR THe STUDY  
OF CANCeR iMMUNOTHeRAPieS

PDX models are also increasingly used to develop and evaluate 
the efficacy of cancer immunotherapies; however, these studies 
require the presence of a full repertoire of functional human 
immune cells (135). For this purpose, researchers have explored 
ways to humanize both the immune system and the tumor of 
PDX mice, by co-engrafting the patient tumor fragment with 
donor-unrelated CD34+ human hematopoietic stem cells (HSCs) 
that are either isolated from human umbilical cord blood, human 
bone marrow, or human peripheral blood (136, 140): 5  weeks 
after intrahepatic co-transplantation of human umbilical cord 
blood-derived CD34+ human HSC, and human breast cancer cell 
lines into the liver of neonatal NSG mice, human immune cells 
had populated all tissues of the recipient NSG mouse, and tumor 
cells were detectable in the lungs and bone marrow. Three months 
posttransplant, tumor-cell effusions, and macroscopic tumors 
were found in the livers and spleens. Tumor growth was accom-
panied by the expression of T-cell maturation markers and tumor 
cell-specific T-cell activation. Importantly, this model can be used 
to evaluate immunotherapy approaches in  vivo. In this study, 
treatments with IL-15/IL-15Rα were designed to stimulate IL-15 
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receptor expressing cells, such as cytotoxic T cells and NK cells, 
in trans. Indeed, when both lymphoid and non-lymphoid tissues 
were examined, the authors reported increased NK cell numbers 
and NK activation, as well as an expansion of CD3+ T cells (both 
CD4+ and CD8+ T  cells) in non-lymphoid organs (141, 142). 
Unfortunately, the authors did not report whether this treatment 
had a significant effect on tumor growth and/or metastasis forma-
tion. While the use of CD34+ HSC allows for the reconstitution 
of human innate cells and lymphocytes, and generally does so 
without the complication of graft-versus-host disease (GVHD), 
one significant caveat is that all human T  cells in this type of 
xenograft model lack thymic education/proper human leukocyte 
antigen (HLA)-restriction due to the absence of a human thymus 
in recipient mice. Similarly, the transplanted human immune 
system that results from infusions of human CD34+ HSC and as 
such leads to the development of human KIR-expressing NK cells, 
may or may not be an HLA match to the unrelated human tumor 
donor. This likely mismatch in HLA expression may further affect 
NK  cell responses to the transplanted tumor (143). Whether 
this leads to non-physiologic and perhaps difficult to interpret 
immune interactions within the transplanted tumor remains to 
be further evaluated.

Alternative ways to reconstitute NSG mice with a human 
immune system have been evaluated, and one of these 
approaches is to inject peripheral blood mononuclear cells 
(PBMCs) into tumor recipient NSG mice to reconstitute the 
immune system of tumor recipient NSG mice with either 
donor-unrelated or human-tumor-matched immune cells. 
Several such studies were published recently and enabled the 
testing of immunotherapy approaches in vivo. We will first dis-
cuss results obtained in PDX models that received infusions of 
human tumor donor unrelated PBMC, followed by a discussion 
of data obtained in syngeneic PDX models.

In one model, the infusion of peripheral blood lympho-
cytes and dendritic cells followed by implantation of a human 
prostate cancer cell line, PC3, resulted in co-engraftment and 
tumor infiltration by human lymphocytes and enabled an in vivo 
assessment of tumor and immune system interactions (144). In 
a different model, an orthotopic humanized-xenograft model 
of human renal clear cell carcinoma (RCC) was generated by 
the co-implantation of a human RCC cell line into the kidney 
capsule of NSG mice and simultaneous infusion of human 
PBMCs that were selected for by high antibody-dependent cyto-
toxicity activity. The authors chose this approach to evaluate the 
effectiveness of an antibody specific to the carbonic anhydrase 
IX protein expressed by the RCC cell line whose Fc portion is 
capable of binding to and activating NK  cells via the activat-
ing receptor CD16. Antibody immunotherapy lead to tumor 
infiltration by NK cells and activation of T cells and ultimately 
resulted in the inhibition of cancer growth (145). While in both 
cases, co-infusion of human PBMC robustly reconstitutes the 
human immune system in PDX mice, this approach is clearly 
only suitable for short-term experiments as it is limited by the 
rapid onset of GVHD (129), an outcome which may favorably 
influence antitumor responses in this model and result in exag-
gerated therapeutic success not easily recapitulated in the clinics, 
especially when donor-mismatched PMBCs are used.

In a tumor—PBMC donor-matched study, a gastric carcinoma 
was co-transplanted with syngeneic (tumor donor derived) human 
PBMC into NSG mice, to evaluate the effects of co-administration 
of urelumab (anti-hCD137) and nivolumab (anti-hPD-1) in vivo. 
This immunotherapy is designed to simultaneously fight immune 
exhaustion via blocking of the Programmed Death pathway that 
negatively regulates immune cell antitumor functions (PD-1 
blockade with an antagonistic mAb) while simultaneously aug-
menting immune responses via stimulation of 4-1BB (146, 147). 
In PDX mice in which transferred T lymphocytes expressed the 
checkpoint inhibitors PD-1 and the tumor necrosis factor family 
member 4-1BB (hCD137), combination immunotherapy with 
these two antibodies significantly slowed tumor growth and 
correlated with the increased activation of IFN-γ-producing 
human T cells and a decrease in the numbers of human regulatory 
T lymphocytes in the tumor xenograft (148).

However, to avoid complications related to the infusion of 
PBMC into mice, a protocol that eventually causes lethal GVHD, 
improved PDX models that harbor donor-matched tumors and 
immune cells are needed to improve the physiological relevance 
of these models for preclinical studies. Theoretically, human 
donor-matched tumor and immune system reconstitution 
could be achieved by co-engraftment of tumor tissue as well as 
bone marrow-derived stem cells, liver, and thymus tissue (131), 
though this approach would clearly be very invasive for the 
patient and is thus clinically unacceptable (129). A glimmer of 
hope came from an early attempt at reconstituting the human 
immune system of PDX mice with actual tumor-infiltrating 
co-transferred immune cells. In this model, Simpson-Abelson 
and colleagues not only demonstrated successful engraftment 
of solid tumors but also a simultaneous reconstitution of 
human T cells in NSG mice upon subcutaneous implantation of 
non-disrupted explants of human primary lung tumor. Several 
months later, human immune cells were present in the spleen, 
lung, liver, kidney, and intestine and had an effector memory 
phenotype. Further, tumor-associated T cells isolated from the 
spleens of tumor-bearing PDX mice could be maintained and 
expanded after adoptive transfer into tumor-free NSG recipients 
(149). These data are encouraging, as a preservation of the tumor 
microenvironment and the implantation of tumor-associated 
human donor matched immune cells including HLA-restricted 
T cells could be achieved, opening the door to target endogenous 
exhausted immune cells with immunotherapy in the presence of 
donor-matched tumors.

A similar approach was taken for an ovarian cancer PDX 
model, in which ovarian tumor cells and tumor stroma, spe-
cifically tumor cells and tumor-associated lymphocytes and 
fibroblasts obtained from patient biopsies, were successfully 
engrafted into the peritoneum of NSG mice. Encouragingly, 
the tumor progression in this PDX model mimicked clinically 
relevant stages observed in ovarian cancer patients: initially, 
tumor growth was slow in the omentum, ovaries, liver, spleen, 
uterus, and pancreas, followed by a more rapid tumor growth 
within the peritoneal cavity, resulting in the occurrence of 
tumor ascites and spontaneous metastases to the lung. When 
the authors examined the levels of the ovarian cancer marker 
CA125 in sera and ascites of PDX mice, they found CA125 
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levels to increase over time. In addition, both tumor-associated 
human fibroblasts, and transferred human lymphocytes per-
sisted in this translational ovarian cancer model, and immune 
cells remained functional, as demonstrated by their ability 
to respond to cytokine stimulation (150). It is, therefore, not 
surprising that, despite their limitations, PDX models are now 
considered preclinical models of cancer, and their use is recom-
mended to monitor overall tumor expression profiles and drug 
target genes in clinical applications (137, 151).

CONCLUDiNG ReMARKS

Since the beginning of cancer immunotherapy in the nineteenth 
century, treatment options have evolved to include the use of 
monoclonal antibodies, immune checkpoint inhibitors, geneti-
cally engineered cancer fighting immune cells, cancer vaccines, 
and combination therapies that combine traditional chemo-
therapy with one of the above approaches to treat cancer. With the 
arrival of novel treatment options, a greater need for improved 
animal and translational models has also emerged. These include 
highly sophisticated mouse models of cancer, spontaneous cancer 
models such as the canine model, and translational models bearing 
transplanted human tumors such as the PDX models. Together, 
their use will further our understanding of cancer biology and 
antitumor immunology, allow for a speedier assessment of the 

efficacy and safety of novel approaches, and ultimately provide a 
faster bench to beside transition.
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