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Differently from others Leishmania species, infection by the protozoan parasite L. ama-
zonensis is associated with a lack of antigen-specific T-cell responses. Dendritic cells 
(DC) are essential for the innate immune response and for directing the differentiation 
of T-helper lymphocytes. Previously, we showed that L. amazonensis infection impairs 
DC activation through the activation of adenosine A2B receptor, and here, we evaluated 
the intracellular events triggered by this receptor in infected cells. To this aim, bone 
marrow-derived DC from C57BL/6J mice were infected with metacyclic promastigotes 
of L. amazonensis. Our results show, for the first time, that L. amazonensis increases 
the production of cAMP and the phosphorylation of extracellular signal-regulated
protein kinases 1/2 (ERK1/2) in infected DC by a mechanism dependent on the A2B 
receptor. Furthermore, L. amazonensis impairs CD40 expression and IL-12 produc-
tion by DC, and the inhibition of adenylate cyclase, phosphoinositide 3-kinase (PI3K), 
and ERK1/2 prevent these effects. The increase of ERK1/2 phosphorylation and the 
inhibition of DC activation by L. amazonensis are independent of protein kinase A 
(PKA). In addition, C57BL/6J mice were inoculated in the ears with metacyclic pro-
mastigotes, in the presence of PSB1115, an A2B receptor antagonist. PSB1115
treatment increases the percentage of CD40+ DC on ears and draining lymph nodes. 
Furthermore, this treatment reduces lesion size and tissue parasitism. Lymph node cells 
from treated mice produce higher levels of IFN-γ than control mice, without altering the 
production of IL-10. In conclusion, we suggest a new pathway used by the parasite  
(A2B receptor  →  cAMP  →  PI3K  →  ERK1/2) to suppress DC activation, which may 
contribute to the decrease of IFN-γ production following by the deficiency in immune 
response characteristic of L. amazonensis infection.
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inTrODUcTiOn

Leishmania parasites are protozoa transmitted between their 
hosts by female sand flies and cause in humans a group of dis eases 
known as leishmaniasis. These diseases present a wide spectrum 
of clinical manifestations dependent on the parasite species and 
the host immune response. Leishmania amazonensis (L. amazon-
ensis), in humans, causes diffuse leishmaniasis that is associated 
with diffuse non-ulcerative lesions with innumerous parasites. In 
this case, the parasite resistance to treatment is common (1, 2). 
The deficiency in immune responses associated with L. amazon-
ensis infection, characterized by a lack of antigen-specific T-cell 
responses, contributes significantly to the failure of therapeutic 
approaches. Therefore, the understanding of evasion mechanisms 
used by L. amazonensis during infection has much to contribute 
to the development of new therapeutic strategies. In the murine 
model, this parasite causes non-healing chronic lesions in mouse 
strains otherwise resistant to other Leishmania species, such as 
Leishmania braziliensis and Leishmania major (3–5). The murine 
model has been extensively used to evaluate the mechanisms 
involved in the activation/evasion of the host immune response 
by the parasite.

Dendritic cells (DC) are essential players in the fight against infec-
tion where they link the innate and acquired immune responses. 
The role of these cells in infections induced by Leishmania has 
been clearly demonstrated. After contact with micro organisms, 
these cells initiate a maturation process chara cterized by increased 
expression of MHC class II and co-stimulators, such as CD80, 
CD86, and CD40 (6). Importantly, CD40–CD40L interaction is 
essential for antigen-specific T-helper lymphocyte priming (7, 8). 
Additionally, DC produce a wide array of cytokines and can direct 
T-helper cell differentiation (9). In this way, IL-12 production by 
DC induces the differentiation of IFN-γ-producing Th1 lympho-
cytes, which are critical to the control of Leishmania replication 
in the infected host (10–12). Several studies evaluated the interac-
tion between Leishmania parasites and DC demonstrating that  
L. amazonensis can modulate several DC functions by modifying 
the expression of MHC class II, CD80 and CD86 and the produc-
tion of IL-10 and IL-12 (13–18).

One important aspect of the infection by L. amazonensis in 
the murine model is the fact that, contrary to other Leishmania 
species, no mouse strain is completely resistant to the parasite 
[reviewed by Pereira and Alves (19)]. In addition, with the excep-
tion of BALB/c mice, the susceptibility to L. amazonensis infec-
tion is independent of disease-inducing cytokines such as IL-4 
or IL-10, regardless of number or stage of development (purified 
metacyclic or stationary phase) of the promastigotes used for 
infection as well as the site of the infection (20–22). IL-10 only 
seems to play a relevant role, when its production is increased 
at the site of infection by the administration of sandfly saliva 
or adenosine and AMP (22, 23). Thus, finding an alternative 
immunomodulatory mechanism distinct from the participation 
of regulatory cytokines has been the aim of our laboratory for the 
last 15 years.

Extracellular ATP, released during infection or cellular injury, 
acts as a danger signal and a potent stimulator of inflammatory 
responses (24–26). Ectonucleotidases CD39 and CD73 hydrolyze 

ATP to adenosine, the latter of which presents immunomodula-
tory properties, such as inhibition of the production of inflam-
matory cytokines, such as TNF-α and IL-12, and sti mulating 
the production of IL-10 (27, 28). Adenosine can act through 
A1, A2A, A2B, and A3 receptors. A2 receptors are able to stimulate 
adenylate cyclase, leading to the accumulation of cAMP (29–31), 
which impairs CD40 expression, the generation of inflammatory 
mediators, IL-12 production and microbicidal activity (32, 33).

Previously, we showed that L. amazonensis infection impairs 
DC activation (by decreasing the expression of MHC class II, 
CD86, and CD40) and, as a consequence, the triggering of an 
antigen-specific cellular response. This effect was dependent on 
the activation of A2B receptor (34), but the signaling pathways 
activated by this receptor remained unknown. Similarly, other 
studies demonstrated that inhibition of L. amazonensis-stimu-
lated extracellular signal-regulated protein kinases 1/2 (ERK1/2) 
phosphorylation increases CD40 expression on DC (35) and 
decreases lesion size in mice infected by this parasite (36).

Given that L. amazonensis decreases DC activation, in par-
ticular CD40 expression, via A2B receptor, in this study, we 
evaluated the intracellular events triggered by this receptor in 
infected cells. Furthermore, we evaluated the role of A2B receptor 
on lesion development in mice infected by L. amazonensis. Our 
results show that L. amazonensis increases cAMP production by 
DC and stimulates the phosphorylation of ERK1/2 in these cells 
by mechanisms dependent on A2B receptor. Adenylate cyclase, 
phosphoinositide 3-kinase (PI3K), and ERK1/2 are involved 
in the decreased CD40 expression and IL-12 production in  
L. amazonensis-infected DC. In addition, A2B receptor blockade 
controls lesion development in mice infected by L. amazonensis, 
probably by increasing the percentage of CD40+ DC and the 
production of IFN-γ by lymph node cells.

MaTerials anD MeThODs

animals and Parasites
C57BL/6J (2–6  months old) mice were obtained from the 
Universidade Federal de Ouro Preto animal facility. Animals 
received water and food ad libitum. This study was carried out in 
accordance with the recommendations of the Brazilian Guidelines 
for animal experimentation. The protocols were approved by the 
University’s Ethical Committee on Animal Experimentation 
(CEUA 2012/02 and CEUA 2013/51). Leishmania amazonensis, 
PH8 strain (IFLA/BR/67/PH8) promastigotes were grown in 
Grace’s medium (Sigma-Aldrich, St. Louis, MO, USA) supple-
mented with 10% heat-inactivated fetal calf serum (FCS, Cultilab, 
Campinas, SP, Brazil), 2 mM l-glutamine (Sigma-Aldrich) and 
100  U/mL penicillin G potassium (Sigma-Aldrich), pH 6.5, at 
25°C. Metacyclic promastigotes were purified by gradient cen-
trifugation of parasites at the stationary phase of culture (day 5)  
over Ficoll 400 (Sigma-Aldrich), as previously described (5). In 
in  vitro DC infection experiments, metacyclic promastigotes, 
suspended in PBS with 5% FCS, were incubated in the presence 
of 5 µM CFSE (Sigma-Aldrich) at 37°C for 10 min in the dark. The 
suspension was centrifuged and the parasites were washed in PBS, 
pH 7.2 (37). Alternatively, parasites were labeled with PKH26 
(Sigma-Aldrich) according to the manufacturer’s instructions.
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Differentiation of Bone  
Marrow-Derived Dc
Bone-marrow-derived DC were obtained from C57BL/6J bone 
marrow as previously described (38). Briefly, bone marrow 
cells were isolated from the femur and tibia of C57BL/6J mice. 
Bone marrow cell suspensions were centrifuged and cells 
cultured in RPMI-1640 (Sigma-Aldrich) supplemented with 
10% FCS, 2  mM l-glutamine, 100  U/mL penicillin G potas-
sium, and 50  µM β-mercaptoetanol (Pharmacia Biotech AB, 
Uppsala, Sweden), pH 7.2. Cells were plated in Petri dishes at 
a concentration of 3 × 105 cells/mL and incubated at 37°C/5% 
CO2. GM-CSF (R&D Systems, Minneapolis, MN, USA) was 
added to each plate on the days 0, 3, and 6, at a concentration 
of 3  ng/mL (1,050  U/mL). Non-adherent DC were collected 
on the ninth day of culture. In regard to a recently published 
work (39), DC were extensively characterized. DC were 
CD11b+CD11c+F4/80−/lowMHCII+ cells and showed morphol-
ogy characteristic of this population, with several and irregular 
dendrites. In addition, these cells were able to stimulate mixed 
leukocyte reaction and antigen-specific proliferation of CD4+ 
T lymphocyte (data not shown).

In Vitro Dc infection
CFSE-labeled metacyclic promastigotes and DC were co-
incubated (1:3 cell to parasite ratio) in RPMI-1640 supplemented 
with 10% FCS, 2  mM l-glutamine, 100  U/mL penicillin G 
potassium, and 50  µM β-mercaptoetanol (Pharmacia Biotech 
AB, Uppsala, Sweden), pH 7.2, at 33°C/5% CO2 for 3 h and sub-
sequently incubated at 37°C/5% CO2 for up to 17 h. In selected 
experiments A2B adenosine receptors antagonist, MRS1754 
{N-(4-cyanophenyl)-2-[4-(2,3,6,7-tetrahydro-2,6-dioxo-1,3-
dipropyl-1H-purin-8-yl)phenoxy]-acetamide, Tocris Bioscience, 
Park Ellisville, MO, USA}, or inhibitors of adenylate cyclase 
[SQ22536, 9-(tetrahydro-2-furanyl)-9H-purin-6-amine, Tocris 
Bioscience], protein kinase A (PKA) (KT5720, (9R,10S,12S)-
2,3,9,10,11,12-hexahydro-10-hydroxy-9-methyl-1-oxo-9,12-
epoxy-1H-diindolo[1,2,3-fg:3’,2’,1’-kl]pyrrolo[3,4-i][1,6]
benzodiazocine-10-carboxylic acid, hexyl ester, Sigma-Aldrich), 
PI3K [LY294002, 2-(4-morpholinyl)-8-phenyl-4H-1-benzo-
pyran-4-one hydrochloride, Sigma-Aldrich] or ERK1/2 (U0126, 
1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio]butadiene, 
Tocris Bioscience) were added at the moment of DC infection as 
described in figure legends. All drugs were diluted in DMSO (1% 
final concentration), which was added to control cultures.

caMP Measurement
Briefly, metacyclic promastigotes and DC were co-incubated as 
already described, in the presence of 0,1 mM Ro 20-1724 (phos-
phodiesterase inhibitor, Sigma-Aldrich), at 33°C/5% CO2 for 
15 min. In selected groups, MRS1754 was added at the moment of 
DC infection. In other groups, DC previously co-incubated with 
parasites and adenosine receptor antagonists were stimulated 
with 1 µM 5′-(N-ethylcarboxamido) adenosine (NECA, Sigma-
Aldrich) at 33°C/5% CO2 for more 15 min. cAMP was measured 
by a bioluminescent assay according to the manufacturer’s 
instructions (Promega, Madison, WI, USA).

infection of Mice
Female C57BL/6J mice were inoculated intradermally in the 
ears with 103 or 105 metacyclic promastigotes of L. amazon-
ensis, in the presence or absence of 5 µM PSB1115 [1-propyl-
8-(4-sulfophenyl) xanthine potassium salt hydrate]. Lesion 
size was measured weekly with a digital micrometer (Starrett, 
Athol, MA, USA). The lesion size was defined as the differ-
ence between the thickness of the infected and uninfected 
ears.

culture of lymph node cells
Single-cell suspensions were prepared from the auricular lymph 
nodes of mice infected for 12  weeks. Cell concentration was 
adjusted to 5 × 106 cells/mL in DMEM (Sigma-Aldrich) supple-
mented with 10% FCS, 2 mM l-glutamine, 100 U/mL penicillin G, 
50 µM β-mercaptoethanol and 25 mM HEPES (Sigma-Aldrich), 
pH 7.2. Cell suspensions were distributed in culture plates and 
stimulated with 50 µg/mL of L. amazonensis particulate antigen. 
Supernatants were harvested after 48 h.

Parasite load estimation
The number of parasites in the ear lesion was estimated by the 
limiting dilution assay (3). After 12  weeks of infection, mice 
were euthanized and the ears removed and incubated in RPMI-
1640/1 mg/mL collagenase A, pH 7.2, for 2 h at 37°C/5% CO2. 
The ears were ground in Grace’s medium, pH 6.5. Tissue debris 
were removed by centrifugation. Cells were resuspended in 
Grace’s medium supplemented with 10% FCS, 2 mM l-glutamine 
and 100 U/mL penicillin G, pH 6.5. The parasite suspension was 
serially diluted in 10-fold dilutions, pipette tips were replaced 
for each dilution. After 2  weeks of incubation at 25°C, plates 
were examined under an inverted microscope for the presence 
of parasites. Results were expressed as −log of the number of 
parasites corresponding to the last dilution in which they were 
observed.

isolation of cells from ears and Draining 
lymph nodes
C57BL/6J mice were inoculated intradermally in both ears with 
105 metacyclic promastigotes of L. amazonensis, in the presence 
or absence of 5  µM PSB1115. 7  days after infection, both ears 
and draining auricular lymph nodes were removed. Only ears 
were incubated in RPMI-1640/1 mg/mL collagenase A, pH 7.2, 
for 2 h at 37°C/5% CO2. The ears were ground in RPMI-1640, 
pH 7.2, using a BD Medimachine™ system and the suspension 
was filtered through a 30 µm Filcon (BD Biosciences, San Jose, 
CA, USA). The lymph nodes were ground in RPMI-1640, pH 7.2, 
using a tissue homogeneizer. Cells were stained and analyzed by 
flow cytometry as described below.

cytokine Measurement
Supernatants from DC cultures were collected after 20  h and 
supernatants from lymph node cell cultures after 48  h and 
IL-12p70, IL-10, and IFN-γ cytokine levels were measured by 
ELISA using kits according to the manufacturer’s instructions 
(BD OptEIA, San Diego, CA, USA).
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Flow cytometry
For surface markers staining, cells in PBS with 1% BSA were 
submitted to FcγR blocking in the presence of anti-mouse CD16/
CD32 (produced in our laboratory). Subsequently, cells were 
incubated with anti-mouse CD11c (HL3 clone), anti-mouse 
CD40 (3/23 clone—BD Pharmingen, San Diego, CA, USA), or 
their respective isotype controls, at 4°C for 30 min in the dark. 
The suspensions were centrifuged and the cells were washed in 
PBS, pH 7.2 and resuspended in a solution of 1% paraformalde-
hyde, 47.7 mM sodium cacodylate, and 113 mM NaCl, pH 7.2. 
Intracellular phospho-protein staining was performed according 
to the manufacturer’s instructions (BD Phosflow, San Diego, CA, 
USA). Briefly, DC previously co-incubated with parasites were 
stimulated with 1 µM NECA at 33°C/5% CO2 for 15 min, fixed in 
Lyse/fix buffer, permeabilized with Perm buffer III and incubated 
with anti-ERK1/2 pT202/pY204 (20  A clone), or its respective 
isotype control, at room temperature for 60  min in the dark. 
The suspensions were centrifuged and the cells were washed in 
PBS, pH 7.2 and resuspended in Stain buffer. The samples were 
analyzed in BD FACSCalibur™ flow cytometer. Cell acquisition 
was performed using BD CellQuest™ Pro software. Data analysis 
was performed using FlowJo software.

statistical analysis
Student’s t-test and one-way ANOVA were performed using 
Prism 5.0 software (GraphPad Software, La Jolla, CA, USA). 
p < 0.05 was considered statistically significant.

resUlTs

L. amazonensis infection increases caMP 
Production, Which impairs Dc activation
As previously stated, our group showed that L. amazonensis 
impairs DC activation, especially CD40 expression, by a mecha-
nism dependent on the A2B receptor (34). Here, we decided to 
investigate the signaling pathways involved in this process. In 
the figures, a schematic of the possible pathways triggered by 
the A2B receptor is shown, highlighting the pathways activated in  
L. amazonensis-infected DC.

Adenosine A2B receptors are G protein-coupled receptors 
that can be associated both to αs, leading to cAMP produc-
tion, or to αq subunits, which stimulate phospholipase C and 
accumulation of intracellular calcium (29). Thus, to evaluate the 
accumula tion of cAMP, DC were infected with L. amazonensis, 
in the presence or absence of MRS1754, a selective A2B receptor 
antagonist, and cAMP levels measured by a chemiluminescence 
assay before and after the addition of NECA, a non-selective 
adenosine receptor agonist. As shown in Figures  1A,B, L. 
amazonensis infection significantly increases cAMP production 
by DC. Interestingly, the blockade of A2B receptor reverses this 
effect. Addition of NECA to the culture does not substantially 
increase cAMP levels. The fact that cAMP production was 
inhibited by MRS1754 even in the absence of an exogenous 
stimulus (NECA) suggests that some level of extracellular 
adenosine production is present during the interaction between 
the parasite and the host cell.

Previous studies have shown that cAMP plays a critical role 
in the inhibition of immune cells (32), including DC (40, 41). To 
confirm that cAMP production induced by A2B receptor activation 
is important for the inhibition of DC activation by L. amazonen-
sis, we evaluated the expression of CD40 and the production of 
IL-12p70 and IL-10 in cells treated with SQ22536, an inhibitor 
of adenylate cyclase. As previously shown (34), L. amazonensis 
inhibits CD40 expression on DC and this effect is abolished in the 
presence of MRS1754 (Figures 1C,D). In addition, we showed 
that inhibition of adenylate cyclase by SQ22536 treatment also 
restores CD40 expression on infected DC (Figures  1C,D). 
Moreover, cells infected with L. amazonensis are unable to 
produce basal levels of IL-12p70, but this ability is restored after 
the blockade of A2B receptor or inhibition of adenylate cyclase 
(Figure  1E). The same effect is observed when we stimulated 
infected cells with LPS (Figure 1G). Finally, we find no changes in 
IL-10 production by infected DC as compared to uninfected DC 
and MRS1754 or SQ22536 treatments do not interfere with IL-10 
production by these cells (Figures 1F,H). Taken together, our first 
set of results show that L. amazonensis infection increases cAMP 
production by DC, and that the production of this intracellular 
messenger is critical for the decrease of CD40 expression and 
IL-12p70 production by infected cells.

In addition to Gs proteins, the adenosine A2B receptor has been 
shown to also engage Gq protein capable of stimulating intracel-
lular calcium accumulation (29). To exclude the role of calcium 
in DC inhibition by L. amazonensis, L. amazonensis metacyclic 
promastigotes were labeled with PKH26 and used to infected 
DC cells loaded with Oregon Green 488. Our results show 
that although L. amazonensis infection increases the amount 
of intracellular calcium in DC, this increase is independent of 
A2B receptor activation, since treatment with MRS1754 does not 
reverse calcium accumulation (Figure S1A in Supplementary 
Material). Furthermore, we observe no change in intracellular 
calcium levels after addition of NECA, a non-selective adeno-
sine receptor agonist, both in uninfected cells and infected cells 
(Figure S1A in Supplementary Material). These results show that 
L. amazonensis infection leads to the accumulation of calcium in 
DC, but adenosine is not responsible for this effect. Moreover, 
since calcium accumulation triggers protein kinase C (PKC) 
activation, DC were infected in the presence of staurosporine, a 
PKC inhibitor, and this treatment was unable to reverse the inhi-
bition of CD40 expression and IL-12p70 production in infected 
cells (Figures S1B–D in Supplementary Material) confirming 
that calcium accumulation was not related to inhibition of CD40 
expression.

Decrease of cD40 expression and  
il-12p70 Production by L. amazonensis-
infected Dc is Dependent on Pi3K
cAMP can binds PKA or Epac (exchange protein activated 
by cyclic AMP), which is able to phosphorylate residues 
on several target proteins (32). cAMP may also lead to the 
activation of another kinase, PI3K (29, 42). In order to verify 
whether these proteins are involved in cAMP-mediated  
DC inhibition, cells were infected by L. amazonensis in the 
presence of KT5720 or LY294002, known inhibitors of PKA and 
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FigUre 1 | Leishmania amazonensis infection increases cAMP production by dendritic cells (DC), that is involved in the decrease of CD40 expression and IL-12p70 
production. (a) DC obtained after 9 days of culture with GM-CSF were infected with metacyclic promastigotes (1:3 cell to parasite ratio) in the presence of 0.1 mM 
Ro 20-1724 and 5 µM MRS1754 (adenosine A2B receptor antagonist) and the cAMP production evaluated after 15–60 min. (B) After 30 min of infection (as shown 
by arrow in graph A), DC were stimulated with 1 µM NECA (non-selective adenosine receptor agonist) for more 15 min. The results represent the mean + SD from 
three independent experiments. *p < 0.05 between La and Control or La + MRS1754 groups, or between linked groups, two-tailed Student’s t-test. (c–h) DC were 
infected with CFSE-labeled metacyclic promastigotes in the presence of 5 µM MRS1754 or 100 µM SQ22536 (adenylate cyclase inhibitor) and CD40 expression 
and IL-12p70 and IL-10 production evaluated after 20 h. (c,D) CD11c+ DC were gated into populations of uninfected (CFSE− cells, white bars) and infected (CFSE+ 
cells, black bars) cells and the MFI of CD40 analyzed in both populations. Control is DC that had not contact with parasites. (c) Histograms are representative of at 
least three independent experiments. IL-12p70 (e,g) and IL-10 (F,h) cytokine levels were measured in the supernatants using an ELISA. (g,h) 2 µg/mL LPS was 
added after 3 h of infection. ND, not detected. The results represent the mean + SD from five independent experiments. *p < 0.05 between uninfected and infected 
DC or between linked groups, two-way ANOVA and Tukey’s post-test (a,B,D) two-tailed Student’s t-test (g).
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PI3K, respectively, and after 20 h of infection, CD40 expression 
and cytokine production were evaluated. As shown in Figure 2, 
inhibition of PKA does not modify CD40 expression (Figure 2A) 
and IL-12p70 production (Figure 2B). In addition, it also does not 
alter IL-10 production (Figure 2C) by L. amazonensis-infected 
cells. On the other hand, treatment with LY294002 significantly 
increases CD40 expression and IL-12p70 production by infected 
cells, showing that PI3K activation takes part in the inhibition of 
DC activation by L. amazonensis.

erK1/2 is involved in the Decrease of 
cD40 expression and il-12p70 Production 
by L. amazonensis-infected Dc
Mitogen-activated protein kinases (MAPK) is a diverse protein 
family that consists of three main groups: the c-Jun N-terminal 
kinases (JNK), the stress-activated protein kinase (SAPK) p38, 
and the extracellular signal-regulated protein kinases (ERK). 
These kinases are involved in intracellular signaling events 
triggered by adenosine (29). Although L. amazonensis infection 
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FigUre 2 | Decrease of CD40 expression and IL-12p70 production by Leishmania amazonensis-infected dendritic cell (DC) is dependent on phosphoinositide 
3-kinase (PI3K). DC were infected as described in Figure 1 in the presence of 5 µM MRS1754 (adenosine A2B receptor antagonist) or 10 µM KT5720 [protein kinase 
A (PKA) inhibitor] or 1 µM LY294002 (PI3K inhibitor) and CD40 expression and IL-12p70 and IL-10 production evaluated after 20 h. (a) CD11c+ DC were gated into 
populations of uninfected (CFSE− cells, white bars) and infected (CFSE+ cells, black bars) cells and the MFI of CD40 analyzed in both populations. IL-12p70 (B) and 
IL-10 (c) cytokine levels were measured in the supernatants using an ELISA. Control is uninfected DC. ND, not detected. The results represent the mean + SD from 
three independent experiments. *p < 0.05 between uninfected and infected DC or between linked groups, two-way ANOVA and Tukey’s post-test.
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increased the phosphorylation of JNK and p38, these effects are 
independent of the A2B receptor; furthermore, the inhibition of 
both proteins is unable to alter the levels of CD40 expression and 
the production of IL-12p70 and IL-10 by infected cells (Figure S2 
in Supplementary Material).

As previously mentioned, it has been shown that L. amazon-
ensis is able to stimulate the phosphorylation of ERK1/2, which 
is involved in the inhibition of CD40 on L. amazonensis-infected 
DC (35, 43); however, the mechanisms that lead to the activa-
tion of ERK1/2 in infected DC remain unknown. To investigate 
whether the activation of the A2B receptor is involved in ERK1/2 
phosphorylation, DC were infected with L. amazonensis in 
the presence or absence of MRS1754. As shown in Figure 3A, 
phosphorylation of ERK1/2 is significantly higher in infected 
cells if compared to uninfected controls, after 1 h of infection. 
Interestingly, the blockade of the A2B receptor by MRS1754 treat-
ment completely abrogates this effect (Figure 3B), demonstrating 
that the A2B receptor is critical for the phosphorylation of ERK1/2 
induced by L. amazonensis infection.

In addition, DC infection in the presence of U0126, a potent 
inhibitor of MEK, results in a considerable increase in the expres-
sion levels of CD40 in infected cells (Figure 3C). Furthermore,  
L. amazonensis-infected DC treated with U0126 recover their 
ability to produce IL-12p70 (Figure 3D). Again, IL-10 production 
by DC is not affected (Figure 3E). The same effects are observed 
in DC infected in the presence of PD98059, another inhibitor of 
ERK1/2 (data not shown). Taken together, our results show that 
ERK1/2 phosphorylation driven by A2B receptor activation plays 
a relevant role in the inhibition of CD40 expression and IL-12p70 
production by L. amazonensis-infected DC.

Our results demonstrate that inhibition of CD40 expression 
and IL-12p70 production by L. amazonensis-infected DC is 
dependent on A2B receptor activation, cAMP production, PI3K 
activation, and ERK1/2 phosphorylation. To assess whether 
ERK1/2 phosphorylation, as previously found for A2B receptor, 
is also dependent on the cAMP production and PI3K activation, 
DC were infected in the presence of SQ22536 or LY294002. 
U0126 was used as control. Interestingly, both adenylate cyclase 
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FigUre 3 | Extracellular signal-regulated protein kinases 1/2 (ERK1/2) is involved in the decrease of CD40 expression and IL-12p70 production by Leishmania 
amazonensis-infected dendritic cells (DC). (a) DC were infected as described in Figure 1 and the MFI of phospho-ERK1/2 analyzed in populations of uninfected 
and infected DC after multiple periods of infection. After infection, cells were stimulated with 1 µM NECA for 15 min, fixed and then analyzed by flow cytometry. 
(B) MFI of phospho-ERK1/2 in uninfected and infected CD11c+ DC in the absence (Control) or presence of 5 µM MRS1754 (adenosine A2B receptor antagonist), 
after 1 h of infection (as shown by arrow in graph A). The results represent the mean + SD from three independent experiments. *p < 0.05 between uninfected 
and infected DC or between linked groups, two-way ANOVA and Tukey’s post-test. (c–e) DC were infected in the presence of 5 µM MRS1754 or 10 µM U0126 
(MEK inhibitor) and CD40 expression and IL-12p70 and IL-10 production evaluated after 20 h. (c) CD11c+ DC were gated into populations of uninfected 
(CFSE− cells, white bars) and infected (CFSE+ cells, black bars) cells and the MFI of CD40 analyzed in both populations. IL-12p70 (D) and IL-10 (e) cytokine levels 
were measured in the supernatants using an ELISA. Control is uninfected DC. ND, not detected. The results represent the mean + SD from five independent 
experiments. *p < 0.05 between uninfected and infected DC or between linked groups, two-way ANOVA and Tukey’s post-test.
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and PI3K inhibition are able to reverse the phosphorylation of 
ERK1/2 stimulated by L. amazonensis (Figure 4), suggesting that 
A2B receptor, adenylate cyclase, PI3K, and ERK1/2 act in a direct 
pathway, instead of these proteins act in parallel and independent 
pathways.

In our previous study, we observed that infection by L. ama-
zonensis in addition to decrease CD40 expression, also inhib-
ited the expression of MHCII and CD86. We also demonstrated 
that the inhibition of the expression of these molecules was 
reversed by the A2B receptor antagonist, MRS1754. To verify 
if the pathway involved in the inhibition of CD40 expression 
is also associated with the inhibition of MHCII and CD86 
expression, we analyzed the expression of these molecules in 
the presence of the inhibitors of the key enzymes studied here. 
As shown in Figure S3 in Supplementary Material, although the 
blockade of the A2B receptor is able to reverse the inhibition of 
MHCII and CD86, inhibition of adenylate cyclase, PI3K and 
of ERK phosphorylation has no effect on these parameters 
suggesting the activation of a different pathway starting at the 
A2B receptor.

inhibition of the adenosine a2B receptor 
increases cD40 expression by Dc in Mice 
infected by L. amazonensis
Considering that cAMP production triggered by A2B receptor is 
important to the inhibition of CD40 in L. amazonensis-infected 
DC, that this effect is not present in infection by other species of 
Leishmania (34) and that CD40 plays a central role in the activa-
tion of T  lymphocytes by DC (8), we evaluated the expression 
of CD40 on DC from ears and draining lymph nodes of mice 
infected by L. amazonensis, in the presence or absence PSB1115, 
an A2B receptor antagonist. Due to its higher solubility in water, 
PSB1115 is more appropriate for in vivo studies (44) and hence 
was used in the following experiments. Administration of 
PSB1115 in the infective inoculum increases the percentage of 
CD40+ DC in both the ear and draining lymph nodes (Figure 5). 
The percentage of DC, evaluated by CD11c expression, on injec-
tion sites and draining lymph nodes is not modify by infection 
or PSB1115 treatment nor is the expression of CD40 in DC from 
uninfected mice (Figure  5). PSB1115 has no direct effect on 
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FigUre 4 | Extracellular signal-regulated protein kinases 1/2 (ERK1/2) 
phosphorylation in Leishmania amazonensis-infected dendritic cells (DC) is 
dependent on A2B receptor, AMPc production, and phosphoinositide 3-kinase 
(PI3K) activation. DC were infected as described in Figure 1, in the absence 
(Control) or presence of 5 µM MRS1754 (adenosine A2B receptor antagonist), 
100 µM SQ22536 (adenylate cyclase inhibitor), 1 µM LY294002 (PI3K 
inhibitor), or 10 µM U0126 (MEK inhibitor), and the MFI of phospho-ERK1/2 
analyzed in populations of uninfected and infected CD11c+ DC after 1 h of 
infection. After infection, cells were stimulated with 1 µM NECA for 15 min, 
fixed and then analyzed by flow cytometry. The results represent the 
mean + SD from three independent experiments. *p < 0.05 between 
uninfected and infected DC, #p < 0,05 between Control and treated DC, 
two-way ANOVA and Tukey’s post-test.
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the viability or proliferation of promastigotes (data not shown). 
These results corroborate in  vivo our findings of the previous 
experiments.

adenosine a2B receptor Blockade controls 
lesion Development in Mice infected by  
L. amazonensis
To investigate the role of the A2B receptor activation on lesion 
development during L. amazonensis infection, C57BL/6J mice 
were inoculated in the ears with metacyclic promastigotes and 
lesion size measured weekly. Tissue parasitism and cytokine 
production were evaluated at the 12th week of infection. 
Interestingly, our results show that the blockade of A2B recep-
tor by PSB1115 reduces lesion size (Figure  6A) starting at 
the eighth week of infection. The reduction in lesion size was 
accompanied by a decrease in tissue parasitism (90%) after 
12  weeks of infection (Figure  6B). Evaluation of cytokine 
production by antigen stimulated lymph node cells from 
treated mice demonstrated that the reduction in lesion size 
and tissue parasitism is associated with higher levels of IFN-γ 
in culture supernatants when compared with cells from control 
mice (Figure 6C). However, no alteration was detected on the 
production of IL-10 by these cells also demonstrating in vivo 

the apparent lack of role of this cytokine in L. amazonensis 
infection even with the inhibition of A2B receptor at the begin-
ning of the infection (Figure 6D).

DiscUssiOn

Leishmania amazonensis infection is characterized by a defici-
ency in antigen-specific T  cell response, which contributes 
to disease progression and failure in therapy (1, 2). It is, thus, 
relevant to study the mechanisms responsible for this anergy 
and DC would be a preferential target for intervention, given 
the essential role of these cells in the differentiation of effec-
tor T  lymphocytes. Having previously demonstrated that  
L. amazonensis inhibit DC response by a mechanism dependent 
on A2B adenosine receptor (34), here we decided to evaluate the 
intracellular events triggered by this receptor in infected cells.

Of the four adenosine receptors (A1, A2A, A2B, and A3), A2A and 
A2B are responsible for the main immunosuppressive effects of 
this nucleoside. In a previous work, we showed that A2A receptor 
is not involved in the inhibition of L. amazonensis-infected DC 
(34); therefore, we focused this work only on the A2B receptor.

The adenosine A2B receptor has been shown to engage Gs or 
Gq proteins, capable of stimulating adenylate cyclase and phos-
pholipase C, respectively (29). The increase in intracellular cAMP 
concentration by adenylate cyclase activity has been strongly 
associated with inhibition of immune cells, including monocytes/
macrophages (32, 45), DC (40, 41, 46) and T lymphocytes (47). 
Here, we show, for the first time, that L. amazonensis infection, 
via activation of the A2B receptor, increases cAMP production by 
DC and uses this mechanism to inhibit the co-stimulatory activity 
of infected cells. Furthermore, we showed that this messenger is 
essential for the inhibition of infected DC, since the inhibition of 
adenylate cyclase by SQ22536 treatment restores the ability of L. 
amazonensis-infected DC to express CD40 and produce IL-12p70.

Phospholipase C leads to the accumulation of intracel-
lular calcium (29) that is involved in the maturation of human 
monocyte-derived DC (48, 49) and may be involved in the 
generation of a population of DC that produces low amounts of 
IL-12 and drives the differentiation of Th2 lymphocytes (48). Our 
results show that, although L. amazonensis infection increases the 
intracellular levels of calcium, this effect was independent of A2B 
receptor triggering. In addition, NECA, a non-specific adenosine 
receptor agonist, did not alter the levels of calcium in infected 
cells, showing that although calcium may be important in  
L. amazonensis-infected DC response, the increase in intracel-
lular calcium concentration does not seem to be dependent on 
the activation of adenosine receptors.

Impairment of DC activation was independent of PKA activity 
but triggered by a PI3K-dependent pathway. Considering that the 
inhibition of adenylate cyclase and the inhibition of PI3K have 
the same effect on DC response, and that cAMP can lead to the 
PI3K activation (29, 42), we suggest that the inhibition of CD40 
expression and IL-12p70 production by infected DC is mediated 
by a cAMP-PI3K pathway.

The triggering of adenosine receptors, especially A2B receptor, 
can lead to the activation of any of three major MAPK cascades, 
known as JNK, p38 and ERK1/2 (29, 30). As previously shown 
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FigUre 5 | A2B receptor blockade increases the percentage of CD40+ dendritic cells on ears and draining lymph nodes of L. amazonensis-infected mice. C57BL/6J 
mice were inoculated intradermally in both ears with 105 metacyclic promastigotes of L. amazonensis, in the presence or absence of 5 µM PSB1115 (adenosine A2B 
receptor antagonist). 7 days after infection, both ears and draining auricular lymph nodes were removed. The percentage or the total number of cells in both tissues 
of CD11c+ (B,e) or CD11c+CD40+ (c,F) cells in the ears (B,c) or lymph nodes (e,F) were analyzed using flow cytometry. Representative dot plots of the expression 
of CD11c and CD40 in the ears (a) or lymph nodes (D). The results represent the mean + SD from two independent experiments with three or four mice per group. 
*p < 0.05 between linked groups, one-way ANOVA and Tukey’s post-test.
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FigUre 6 | A2B receptor blockade controls lesion development in mice infected by L. amazonensis. C57BL/6J mice were inoculated intradermally in the ears with 
103 metacyclic promastigotes of L. amazonensis, in the presence or absence of 5 µM PSB1115 (adenosine A2B receptor antagonist). (a) Lesion sizes were 
measured weekly. The lesion size was defined as the difference between the infected and uninfected contralateral ear. (B) Tissue parasitism at the 12th week of 
infection. Lesions from infected mice were excised and parasitism evaluated by limiting dilution. IFN-γ (c) or IL-10 (D) production by draining lymph node cells from 
mice infected for 12 weeks. Cells were stimulated for 48 h with particulate antigen of L. amazonensis. The results represent the mean + SD from three independent 
experiments with four mice per group. *p < 0.05 between Control and PSB1115 groups (a,B) or between unstimulated and stimulated cells or linked groups (c), 
two-tailed Student’s t-test (a,B), two-way ANOVA and Tukey’s post-test (c).
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for macrophages infected with Leishmania mexicana (50), we 
also found that DC infection by L. amazonensis increases the 
phosphorylation of these three kinases. However, the increase of 
phosphorylation of JNK and p38 in infected cells was independ-
ent of A2B receptor. Moreover, the inhibition of these proteins by 
SP600125 or SB203580 was unable to reverse the inhibition of 
DC activation as measured by CD40 expression and IL-12 pro-
duction. It has been previously described that L. amazonensis 
stimulates the expression of phospho-ERK1/2 in infected DC 
(35). In another study, Schulte and Fredholm (51) demonstrated 
that the phosphorylation of ERK1/2 induced by the activation 
of the A2B receptor is dependent on PI3K and independent of 
PKA. Our results link these previous observations by showing 
that ERK1/2 phosphorylation in L. amazonensis-infected DC is 
dependent on A2B receptor activation and cAMP production. 
Our data also strongly suggest that the previously unknown G 
protein-coupled receptor associated with ERK1/2 phosphoryla-
tion (43) is, in fact, the adenosine A2B receptor. In addition, by 
showing that the inhibition of CD40 expression and IL-12p70 
production by DC caused by L. amazonensis was dependent on 
ERK1/2, we provide further evidence that ERK1/2 phospho-
rylation is associated with the pathogenesis of L. amazonensis 
infection.

Several pathogens are also able to modulate MAPK signal-
ing (reviewed by Ref. (52)). In Toxoplasma gondii infection, the 

blockade of ERK phosphorylation decreases parasite proliferation 
(53) and increase IL-12 production by host cells (54), corrobo-
rating our results with L. amazonensis infection. Interestingly, 
Trypanosoma cruzi, another protozoan parasite, triggers ERK 
phosphorylation which stimulates the production of IL-10 and 
decreases lymphocyte proliferation by regulatory DC (55). Also, 
ERK phosphorylation is associated to cardiac damage induced 
by TGF-β in T. cruzi-infected mice (56). Thus, ERK phospho-
rylation seems to be a common observation in situations where 
immune modulation by pathogens occurs. However, the partici-
pation of purinergic signaling in these settings has not yet been 
addressed. It would be interesting to investigate the participation 
of adenosine mediated ERK phosphorylation in infections by 
these parasites.

Differently from the infection with other Leishmania spe-
cies (57–59) IL-10 does not seem to play a relevant role in  
L. amazonensis infection (20, 60). As shown before by our group 
(34) and in the present study, IL-10 production by DC was 
not altered by L. amazonensis infection or by any of the treat-
ments used. These findings contrast with the observation that 
ERK1/2 phosphorylation is important for IL-10 production by  
L. amazonensis-infected macrophages (36). Possible explana-
tions for the discrepancy observed are the cell type (macrophages 
versus DC), the parasite stage (amastigotes versus metacyclic 
promastigotes), the strain of mice used (BALB/c—highly 
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susceptible to Leishmania infection versus C57BL/6—resistant 
to most Leishmania species) and the fact that low molecular 
weight hyaluronic acid was necessary for IL-10 production.  
In our studies, cells were not further stimulated (present work)  
or were stimulated with LPS (34). Interestingly, however, the 
study by Yang and colleagues (36) shows that treatment of 
infected mice with U0126, to inhibit ERK1/2 phosphorylation, 
restrains parasite growth and lesion development. The find-
ing that cAMP is involved in the regulation of DC activation 
is relevant in the context of L. amazonensis infection since it 
provides an explanation for the lack of role of IL-10 in this 
infection.

Our results confirm, to some extent, a very recent work pub-
lished with human macrophages demonstrating an association 
between A2B receptor activation and ERK1/2 phosphorylation 
(61). However, contrary to our results, the study reports an 
association between IL-10 production and A2B receptor activa-
tion, although this observation was not directly tested. We believe 

the discrepancy between the two studies could be related to the 
model used and/or the high concentration of MRS1754 used 
in the human study which may have an overlapping action on 
other adenosine receptors. The inhibition of other adenosine 
receptors, particularly, the A2A may interfere with IL-10 produc-
tion Nevertheless, the study by Vijayamahantesh and colleagues 
reinforces our observation and extends it to the human system, 
thus proving the validity of our findings.

The results described in this report link several previous 
“unrelated” observations regarding the mechanism by which  
L. amazonensis inhibits the establishment of an adequate  
immune response. Our data implicate the activation of the  
adenosine A2B receptor during the infection by this parasite 
species to the inhibition of CD40 expression (14, 35), the lack 
of IL-12 production (16, 35), the phosphorylation of ERK1/2 
(35, 36) (Figure 7) and also provide an explanation (increased 
cAMP) for the inhibi tion of the immune response by this parasite 
in the absence of a Th2 response (3) and IL-10 production (20, 

FigUre 7 | cAMP-phosphoinositide 3-kinase (PI3K)–extracellular signal-regulated protein kinases 1/2 (ERK1/2) pathway activated by the adenosine A2B receptor is 
important to dendritic cell inhibition and lesion development in mice infected by L. amazonensis. L. amazonensis infection leads to the accumulation of adenosine 
(ADO) in the extracellular environment that activates adenosine A2B receptor (A2B ADOR) on dendritic cells (DC). The following steps of this pathway are the activation 
of adenylate cyclase (AC) and consequent production of cAMP, activation of PI3K and, finally, the phosphorylation of ERK1/2. In order to identify this pathway, we 
used inhibitors that are showed in parenthesis. phospho-ERK1/2 is able to translocate to the nucleus to interacts with transcription factors that leads to the 
decrease of CD40 expression and IL-12p70 production. DC inhibited by L. amazonensis can decrease IFN-γ production by lymph node cells, resulting in the 
suppression of immune response and lesion development in mice.
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60). The impairment of CD40 expression and IL-12p70 produc-
tion by DC caused by L. amazonensis is an important immune 
response evasion mechanism, since both molecules are essential 
for the development of a Th1 response necessary to control the 
parasite infection (7, 10). Moreover, the lower expression of these 
molecules could explain the lack of T  cell activation observed 
in patients with diffuse cutaneous leishmaniasis caused by  
L. amazonensis infection (62, 63).

Corroborating this hypothesis, we demonstrated, in vivo, that 
inhibition of the A2B receptor at the moment of infection not only 
increases CD40 expression by DC present not only in the injec-
tion site but also at the draining lymph nodes but also increases 
the Leishmania-specific Th1 response resulting in decreased 
lesion size and tissue parasitism. Furthermore, this enhanced Th1 
response was not associated with changes in the production of 
IL-10 reinforcing the apparent lack of role of this cytokine in the 
control of the infection by L. amazonensis in C57BL/6 mice. Our 
data point to a new mechanism of control of immune response by 
the parasite that is associated with autocrine production of cAMP 
by the infected cell rather than the secretion of immunomodula-
tory cytokines. The fact that the treatment used in this study is 
not able to completely control parasite development indicates that 
other factors may control the enhanced Th1 response. The role of 
purinergic signaling on macrophages and other cells involved in 
the immune response against L. amazonensis is currently under 
investigation.

Finally, the recent advances of the role of purinergic signaling 
in the establishment and control of the immune response has 
triggered a series of clinical studies designed to evaluate the use 
of agonists, as well as antagonists, of purine receptors in different 
diseases with emphasis in cancer treatment (64). The confirma-
tion of the pathway used by the L. amazonensis to suppress the 
immune response (A2B receptor → cAMP → PI3K → ERK1/2) 
in humans may suggest possible targets for new therapeutic 
approaches to control L. amazonensis infection specially in the 
case of diffuse cutaneous leishmaniasis which is, as mentioned 
earlier, usually refractory to treatment.
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