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Cancer can be considered an aberrant organ with a hierarchical composition of different 
cell populations. The tumor microenvironment, including the immune cells and related 
cytokines, is crucial during all the steps of tumor development. In particular, type I and 
II interferons (IFNs) are involved in a plethora of mechanisms that regulate immune 
responses in cancer, thus balancing immune escape versus immune surveillance. IFNs 
are involved in both the direct and indirect regulation of cancer cell proliferation and met-
astatic potential. The mutational background of genes involved in IFNs signaling could 
serve as a prognostic biomarker and a powerful tool to screen cancer patients eligible 
for checkpoint blocking therapies. We herewith describe the latest findings regarding the 
contribution of IFNs in colorectal cancer and melanoma by researching their dual role as 
either tumor promoter or suppressor, in diverse tumor types, and microenvironmental 
context. We are reporting the most innovative and promising approaches of IFN-based 
therapies that have achieved considerable outcomes in clinical oncology practice and 
explain the possible mechanisms responsible for their failure.
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iNTRODUCTiON

Cancer cells originate from healthy cells following genetic or epigenetic changes (1). During 
tumor development, a crucial role is played by the tumor microenvironment, which is mainly 
characterized by the presence of stromal and immune cells, as well as by the cytokines produced 
by each cell subset (2). The cross-talk among these cell types is fundamental for both primary 
tumor formation and the metastatic process, thus affecting all the steps of carcinogenesis. Previous 
studies have shown that different immune cell populations and molecules (3–7), play a key role in 
tumor progression. In this context, type I (α and β) and II (γ) interferons (IFNs) are of particular 
importance in cancer (8). The immune system is able to recognize not only the self versus non-self/
pathogen, but also self versus transformed cells. This principle was initially proposed by Burnet 
and Thomas in the 1950s, who suggested the role of the immune system in protecting the host 
against cancer initiation (9, 10), which then led to the definition of “cancer immunosurveillance.” 
Nowadays, this model has been confirmed by studies in mouse models and also clinical data on 
humans. The role of the immune system in tumor progression has been investigated by observing 
different immunogenic tumor phenotypes grown in immunocompetent/immunodeficient hosts. 
Indeed, the immune system can have both a negative or a positive effect on tumor growth. It can 
protect the host or promote tumor onset in different phases of tumor progression, in a process 
called “cancer immunoediting.” For this reason, it is crucial to study and define all the possible 
pathways involved in the cross-talk between cancer and immune cells. Cancer immunoediting 
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consists of three phases: (i) the elimination, which is based 
on the recognition of tumor cells and their being killed by an 
innate or adaptive immune system (cancer immunosurveil-
lance model); (ii) the persistence, based on the failure of the 
elimination step that leads to an equilibrium between growing 
cancer cells and immune system pressure; and (iii) the escape, 
which starts when the cancer cell growth is able to overcome the 
protective effect of the immune system due to immune exhaus-
tion/inhibition or the generation/selection of resistant cancer 
cell clones. Schreiber and colleagues published an excellent 
review about the role of IFNs in the different steps of anti-tumor 
immunity in 2006 (8).

The interaction between cancer and immune cells is finely 
controlled during all the stages of tumor development, in which 
the IFNs definitely assume a pivotal role. Immunotherapy has 
already achieved impressive results especially in immunogenic 
tumors, such as melanoma, which is characterized by a high 
number of DNA mutations responsible for the creation of neo-
antigens recognized by immune cells (11). Colorectal cancer 
(CRC) is generally considered a scarcely immunogenic tumor but, 
recently, increased attention has been given to CRCs with defects 
in miss match repair (MMR) mechanisms (12). These tumors 
account for approximately 15% of the total cases and they are 
usually associated with a favorable prognosis at early stages while 
if metastatic or relapsed, they do not do well (13). MMR-deficient 
CRCs display a high lymphocyte infiltrate that is engaged by the 
conspicuous number of neo-antigens expressed on the surface 
of CRC cells and that contributes to cancer clearance. Thus, the 
treatment of MMR-deficient CRCs with immunotherapy has 
improved their therapeutic outcome (12) and may represent a 
crucial clinical challenge for all aggressive CRCs.

Being aware that dealing with all the aspects of IFN biology  
in cancer may result reductive, this review presents a comprehen-
sive overview of the latest findings regarding IFN cell signaling 
and its clinical administration as non-specific immunotherapy, 
with particular attention given to CRC and melanoma.

iFNs’ ROLe iN CANCeR

The IFNs are cytokines that are released in the presence of 
pathogens or cancer cells. They are involved in many biological 
processes spanning from cellular immune response against viral/
microbial infections to cell cycle, differentiation, and apoptosis 
(8, 14). IFNs are divided into three subgroups: type I (α, β, ε, 
κ, and ω), binding IFNα/β receptor 1 (IFNAR1) and IFNAR2 
subunits, type II (γ) that binds IFN-γ receptor 1 (IFNGR1), and 
type III (λ), which binds the IFN-λ receptor 1 and IL 10 receptor 
subunit  β heterodimeric receptor (14). Dendritic cells (DCs) are 
the main IFN-α producing cells however, many other cells such 
as infiltrating innate immune cells, can produce it in an autocrine 
or paracrine manner. IFN-β is usually produced in an autocrine 
manner to limit proliferation stimuli as a negative feedback loop. 
Other type I IFNs, including ε, κ, and ω, are less characterized 
and their expression seems to be tissue/disease specific. The type 
II IFNs are mainly released by γδ T cells and natural killers (NKs). 
Following the binding of IFNs to their receptors, associated with 
JAK1 and TYK2, they are phosphorylated, thus leading to the 

activation of STATs that translocate to the nucleus and activate 
the expression of several target genes.

As previously mentioned, IFNs can activate a plethora of 
biological signaling pathways in tumor cells including cell 
prolif eration, differentiation, survival, and invasion. IFNs can 
indeed affect cell proliferation in tumor cells both by prolong-
ing or blocking the cell cycle (15, 16), regulating p21 (16), p38 
MAPK (17), or CRKL, which in turn interacts with RAP1A, a 
tumor suppressor that antagonizes RAS (18, 19). IFNs can also 
regulate the apoptotic machinery by controlling the extrinsic 
and intrinsic apoptotic pathways (20, 21). Thanks to the deletion 
of type I IFN genes (22) and the down-regulation of IFN recep-
tors (23, 24) or signaling molecules involved in the IFN cascade, 
such as STAT1 (25), all these regulatory effects can be bypassed 
by tumor cells. All these findings can explain the partial failure 
of IFN treatment used to control cancer cell proliferation in 
different models.

Beyond all the above-mentioned direct effects, IFNs can also 
indirectly regulate tumor cell growth, affecting different biologi-
cal processes involved in tumor progression, such as angiogenesis 
and immunity (26, 27). The first demonstration of an indirect 
effect has been highlighted by Brouty-Boye and colleagues who 
showed that the administration of IFNs increased the survival 
of mice affected by lymphocytic leukemia, regardless of the 
intrinsic sensibility of tumor cells to IFN preparations (28). 
Indeed, IFNs behave as activators of several immune cells includ-
ing macrophages, DCs, NKs, B cells, and T cells. It has recently 
been demonstrated that DCs producing type I IFNs induce an 
anti-tumor effect in mice affected by melanoma (29). Contrarily, 
the accumulation of infiltrating DCs was associated with a poor 
prognosis in breast cancer (30). These apparently conflicting 
results can be explained by recent findings, which illustrate that 
IFN-α-deficient tumor-associated DCs accumulate in aggressive 
tumors and lead to the expansion of regulatory T  cells (Treg), 
which contribute to tumor immune tolerance and a poor clinical 
outcome (31). It has been demonstrated that tumor cells often 
abrogate IFN production to successfully metastasize (32). The 
immunoregulatory effect of IFNs includes the up-regulation of 
tumor antigens expression (33), the DCs tumor antigen presenta-
tion to T cells, the acquisition of CD8+ T cell effector phenotype 
(34, 35), the down-regulation of (Treg) (36, 37), the inhibition of 
myeloid-derived suppressor cells (MDSCs) accumulation (38) 
(Treg and MDSCs accumulate in circulation of cancer patients 
where they negatively regulate the cytotoxic activity of T cells), 
and the monocyte differentiation in M1-polarized immu-
nostimulatory macrophages (39). Finally, IFNs can increase the 
major histocompatibility complex (MHC) antigen presentation 
(40), the expression of ligands involved in immune checkpoints 
(such as the programmed cell death protein 1, PD-1) (41), and the 
release of cytokines (42, 43).

iNDUCTiON OF iFNs iN CANCeR 
iMMUNOTHeRAPY

It is well known that cancer cells can act with a multitude of 
immune evasion processes, whose mechanisms are crucial to 
make many anti-tumor therapies ineffective (44). However, 
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recent findings suggest that the stimulation of the immune system 
in cancer patients is sufficient to counteract tumor progression, 
directly inducing tumor cell death, and indirectly boosting the 
immune system against it (45). Among the immune targets that 
show promising results in preclinical and clinical studies, we 
find the toll-like receptors (TLRs), oncolytic viruses (OVs), and 
stimulator of interferons genes (STING). Here we describe the 
anti-tumor properties of the above-mentioned pathways that 
affect the production of IFNs in cancer cells that in turn cause 
cell death, as well as their possible application in cancer immu-
notherapy, alone or in combination with standard anti-tumor 
regimens.

The first strategy involves the use of TLR agonists. TLRs are 
mammalian homologs of the toll protein of Drosophila and 
include 10 members in human (46). Some of these proteins are 
present on the cell membrane (TLR1, TLR2, TLR4, TLR5, and 
TLR6), while TLR3, TLR7, TLR8, and TLR9 are expressed on 
the endosome’s membrane. These receptors share the protein 
structure, which includes the transmembrane domain, the 
ectodomain responsible for ligand binding, and the cytosolic 
toll/IL-1 receptor (TIR) domain (47). The binding of pathogen-
associated molecular pattern (PAMP) or damage-associated 
molecular pattern (DAMP) to the ectodomain triggers the 
association of TIR with adapter proteins thus leading to the 
activation of nuclear factor-kB (NF-kB) inflammation pathway, 
and the release of type I IFNs (47). Different TLRs recognize 
specific PAMPs and DAMPs, including lipoproteins, peptidogly-
cans, viral single or double strand RNA, lipopolysaccharides 
bacterial flagellin, CpG-containing oligodeoxynucleotides, 
and heat-shock proteins. Several TLR agonists are currently 
under investigation in preclinical and clinical trials for their use 
in cancer therapy, as recently reviewed by Shi and colleagues 
(48). In the tumor context, recent evidences show that TLRs 
are expressed not only on immune cells, but also on cancer 
cells (49). TLRs on immune cells act as immune system sensor 
molecules that detect tumor antigens and start the elimination 
of cancer cells through the activation of effector cells (50). 
Thanks to this process, the immune cells avoid the establish-
ment of an inflammatory tumor microenvironment. Contrarily, 
TLRs expressed on cancer cells enhance immune suppression 
and favor the establishment of an inflammatory microenviron-
ment, thus leading to tumor evasion from immune surveillance  
(51, 52). Although the exact mechanisms of action is still 
unclear, TLR expression on cancer cells indeed correlates with 
tumor progression, with an increased cancer cell proliferation 
and invasion index (53).

The use of TLR agonists in combination with standard anti-
tumor treatments, including chemo- and radio-therapy has 
shown promising results. In fact, the combinatorial treatment 
showed more pronounced cancer cell proliferation inhibitory 
effect and less side effects than single agents (54, 55). This syn-
ergy is probably due to the enhanced DC maturation following 
treatment with TLR agonists. Chemo- and radio-therapy are in 
fact sufficient to induce the release of tumor antigens, which in 
the presence of mature DCs, leading to the antigen presenta-
tion, the release of type I IFNs, and the priming of cytotoxic 
T lymphocytes (CTL).

Oncolytic viruses have recently drawn the attention of the 
scientific community for their promising application as anti-
tumor agents in cancer immunotherapy. The OVs are defined 
as wild-type, or genetically engineered viruses, which are able 
to selectively replicate into cancer cells thus inducing cell death, 
without affecting normal cells. The rational for the use of OVs 
in cancer immunotherapy lies on previous observations about 
tumor regression following systemic viral infection (56). Several 
clinical trials have been performed between 1950 and 1980 in 
order to understand if and how viral infection could be used 
for cancer treatment. The main problem in those studies at that 
time was represented by the inability to limit the viral replica-
tion in cancer cells. Thanks to today’s knowledge regarding 
virus replication and the innovative strategies to manipulate 
the virus genome, in the last two decades it was possible to use 
OVs in clinical settings with very important results in clinical 
trial. OVs belong to two important classes: the viruses that 
preferentially replicate in cancer cells due to their sensitivity 
to innate antiviral agents and their dependence on oncogenic 
signaling pathways (parvoviruses, myxoma virus, reovirus), 
and genetically modified viruses to be used as vaccine vectors 
(measles virus, poliovirus, vaccinia virus) or genetically engi-
neered viruses that bear mutations, which make them optimal 
for replication in cancer but not in healthy cells (adenovirus, 
herpes simplex virus, vescicular stomatitis virus) (57, 58). There 
are several advantages to using OVs compared with standard 
anti-tumor regimens, among these we find (i) the absence of 
acquired resistance (which is one of the most common issues 
when using standard treatments); (ii) the tumor selectivity and 
the low grade side effects; (iii) the virus’ replication that increase 
virus copies over time (contrary to the normal pharmacokinetics 
of conventional drugs that decrease over time); and (iv) the pos-
sibility to deliver viruses and control their effects thus leading 
to high therapeutic indexes (i.e., blocking virus neutralization, 
increasing stability, and delivery with nanoparticles). The main 
goal in the use of OVs for cancer immunotherapy is the induc-
tion of direct or indirect (by activating immune cells) death of 
cancer cells. The most important issue that researchers are facing 
by using OVs for cancer immunotherapy is due to the induction 
of inflammatory process in the tumor context. Inflammation 
can play a dual role in tumor progression, leading to anti-tumor 
immunity on one side and, if chronic, promoting tumorigenesis, 
and inhibiting T cell anti-tumor activity. For this reason, a better 
understanding of the immune response following OV treatment 
is crucial for the development of the next OVs-based immuno-
therapeutic strategies. Another important issue to be addressed 
is represented by the expression of immune evasion genes in 
OVs. To solve this problem, several mutations have been studied 
to improve the induction of immunity and the presentation 
of tumor-associated antigens. However, this could lead to a 
decreased virus replication and spread. Interestingly, following 
OV-mediated cell death, cancer cells release tumor-associated 
antigens, viral PAMPs, DAMPs, and cytokines (including type I 
IFNs), thus leading to the maturation of antigen-presenting cells 
(APCs) such as DCs.

Several clinical trials have been performed with OVs as a 
cancer immunotherapy agent, mostly ended in phase I and 
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phase II. The most promising is represented by the HSV1 
expressing GM-CSF, which showed very important results in 
phase III, in the treatment of unresected stage IIIB-IV mela-
noma (T-Vec). This OV has been engineered to have a double 
mutation in the γ34.5 and α47 genes (for cancer-selective 
replication and enhanced anti-tumor response, respectively), 
and the insertion of the GM-CSF human gene to enhance the 
anti-tumor immunity induction. This trial includes subjects 
treated with intratumor injections of T-Vec of GM-CSF alone, 
reporting 16% of response rate for T-Vec arm, compared with 
2% of response rate for the patients treated with GM-CSF 
alone (59). T-Vec was recently approved by the FDA in United 
States, Europe, and Australia for the treatment of melanoma  
patients.

Another strategy to increase IFN production in the tumor 
context is to act on the STING pathway (60–62). STING is a trans-
membrane protein of the endoplasmic reticulum activated by the 
presence of double strand DNA in the cytosol and acts as defense 
mechanism against viral, bacterial, or mitochondrial DNA that 
can be detected by the host immune system. Cytosolic DNA  
is detected following its binding with cyclic-GMP-AMP synthase, 
which produces cyclic GMP-AMP (cGAMP) from guanosine 
triphosphate and adenosine triphosphate. cGAMP plays a crucial 
role in the binding and activation of STING (63, 64). The activa-
tion of STING leads to a cascade that ends with the phosphorila-
tion of interferon regulatory factor 3 (IRF3), whose translocation  
into the nucleus is crucial in driving the transcription of IFN-β, 
as well as other target genes (65). The importance of the STING 
pathway in the production of IFNs, activators of immune system 
cells (i.e., CD8+ T  cells), has not only been demonstrated in 
infectious diseases, but also in cancer (62). The STING pathway 
is able to drive cancer cell death also in an IFN-independent 
manner, through the association with Bcl-2-associated X protein 
on mitochondria thus inducing the mitoptosis caspase 9- and 
3-dependent (66–68). It has been demonstrated that apoptotic 
caspases are also able to suppress the STING pathway as negative 
feedback (69). A better understanding of the regulation mecha-
nisms could lead to the design of an optimal strategy for STING’s 
use in clinical setting in the near future.

iFNs AND CRC

CRC is the third most common cancer and the fourth cause of 
cancer-related death, with more than one million new diagnoses 
made every year (World Cancer Report February 2015). CRC 
progression is characterized by the transformation of normal 
mucosa into an adenoma and then into a malignant tumor. It 
is a very slow process that involves the acquisition of multiple 
mutations that give tumor cells an advantage in cell proliferation 
and migration. Recent findings show that tumor cells originate 
from healthy stem cells, thus generating the so called cancer 
stem cells (CSCs) (1, 70, 71). This hierarchical carcinogenesis 
model is important because it provides an explanation for tumor 
heterogeneity. CSCs are responsible for chemoresistance and 
relapse, being characterized by self-renewal capabilities, multi-
lineage differentiation capacity, enhanced DNA repair machin-
ery, and high expression levels of anti-apoptotic proteins and 

ATP-binding cassette (ABC) transporters (72). Despite the fact 
that all these properties seem to be intrinsically owned by CSCs, 
the tumor microenvironment, including immune cells and the 
cytokines they produce, can play a crucial role in maintaining 
“cancer stemness,” as well as regulating differentiation and 
apoptotic index (73).

Recent findings have highlighted the importance of the 
IFN signaling pathway in CRC (Figure  1). IFNs’ mechanisms 
of action are numerous. Goldstein and colleagues investigated 
the role that IFN-α has in regulating the EGF pathway in CRC 
(74). Here, the authors demonstrated that treatment with IFN-α 
increases the expression of EGFR on both the cell’s surface and 
endocytic vesicles. The latter phenomenon was accompanied by 
a marked growth inhibition (74). This result paved the way for 
a combinatorial treatment with repeated IFN-α administration 
followed by EGFR inhibition to completely eradicate CRC. 
Preclinical data showed that the combination of IFN-α and 
the EGFR tyrosine kinase inhibitor, gefitinib, slowed down the 
growth of head and neck xenografts in nude mice, and prolonged 
mice survival (75). A clinical trial conducted on metastatic renal 
carcinoma demonstrated the efficacy of the kinase inhibitor 
sorafenib with IFN-α in ameliorating the overall response and 
disease stabilization (76). mTOR is a downstream effector of the 
EGFR pathway and its targeting with temsirolimus, the first-line 
therapy for renal cancer, coupled with IFN-α, did not succeed 
in improving overall survival (OS) of patients (77). Several 
explanations have been postulated such as the occurrence of 
side effects and a decreased temsirolimus dose when compared 
with single treatment. However, the achievements obtained with 
EGFR signaling inhibition and concomitant IFN-α administra-
tion, seem to promise improvement to current therapies and 
warrant further investigation.

IFN-α was also studied for its involvement in the regulation 
of angiogenesis in CRC. Fidler’s group showed that systemic 
administration of IFN-α can inhibit liver metastases and cause 
a strong reduction in tumor growth, vascularization, and bFGF 
and MMP9 expression (78). This effect seems to be due to the 
induction of apoptosis in metastases-associated liver endothelial 
cells. Moreover, recently it was reported that IFN-α treatment 
in combination with methyltransferase and histone deacetylase 
inhibitors, could have a very promising therapeutic potential, 
inducing both an antiproliferative and pro-apoptotic effect on 
metastatic colorectal CSCs (CR-CSCs) (79). This combinatorial 
regimen is also able to induce the release of high mobility group 
protein B1 by CR-CSCs, thus inducing the so called immuno-
genic cell death (79).

The other type I IFN, the IFN-β, was studied for its role in the 
CRC model. It has recently been shown that IFN-β can sensitize 
CRC cells to 5-FU treatment with a potent effect on the reduction 
of tumor mass, suggesting a novel strategy to selectively target 
CRC (80). In line with recent findings, which show that the PI3K 
pathway is crucial for CSCs ability to proliferate and invade 
distant organs (81, 82), Spitz and colleagues showed that activat-
ing this pathway is an important contributor to IFN-β treatment 
resistance (83).

Slattery and colleagues showed that genetic variations in 
IFN-γ, specifically in IFNGR or IRFs, are associated with the 
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increased risk of developing CRC and decreased survival after 
diagnosis (84, 85). In particular, the authors demonstrated that 
the IRF2 mutational status is associated with both colon and 
rectal cancer, whereas mutations in other genes involved in IFN 
signaling pathway were uniquely associated with colon (IFN-γ 
and IRF3) or rectal cancer (IFNGR1, IFNGR2, IRF4, IRF6, and 
IRF8). Accordingly, Qu and colleagues showed that the deficiency 
of endogenous IFN-γ in adenomatous polyposis coli-mediated 
intestinal tumor, increased the number and size of adenomas. 
Moreover, the authors found that these effects were driven by 
increased EGFR/Erk and Wnt pathways. The administration 
of IFN-γ led to the inhibition of CRC cell proliferation, while 
the knockdown of IFNGR1 stimulated cell proliferation and 
colony formation potential (86). Interestingly, the use of IFN-γ 
in the treatment of CRC has recently shown important results, 
against the CSC subset by inducing apoptosis both in in vitro 
and in vivo (87). Huang and colleagues also demonstrated that 
treatment with IFN-γ has a synergistic effect when combined 
with the conventional oxaliplatin treatment in eliminating both 
CSCs and differentiated CRC cells (87).

The evidence, which shows that not all the cancer patients 
respond uniformly to the treatment with IFNs, encourages 
the researchers to find possible predictive response markers to 
develop targeted rather than randomized trials in the imminent 
future.

THe USe OF iFNs iN THe TReATMeNT  
OF CRC

The use of IFN-based treatment has been tested over the last 
decades on many types of cancer including renal cell carcinoma, 
breast cancer, melanoma, and CRC. At first glance, the obtained 
results were not encouraging as they demonstrated a significant 
regression in only a small number of treated patients. The 
treatment costs are high and have unpleasant side effects due 
to enhanced toxicity of combinatorial regimens given by IFNs, 
thus discouraging researchers. However, the first studies were 
conducted using only a limited number of patients and without 
the correct optimization of the regimens. Novel discoveries, 
which clarified how the effects of IFNs on solid tumors are 
more likely to be dependent on immune cells rather than hav-
ing a direct effect on tumor cells, have permitted to obtain very 
promising results in the treatment of cancer patients using IFNs. 
Reason for which these molecules have been approved for the 
treatment of tumors. In fact, several innovative formulations of 
IFNs have recently been used in the clinic (88). For instance, 
the two most important IFN-based treatments consist in the 
use of pegylated IFNs or agonists of STING pathway. IFNs, such 
as other small protein drugs, have a relatively short half-life, 
thus requiring continuous treatment and often having limited 
efficacy. Pegylation, which is the addition of poly ethylene glycol, 
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increases IFNs’ stability and reduces their toxicity, leading to 
the increment of both pharmacokinetics and efficacy of IFNs 
in treating several diseases, including CRC. A recent study 
has indeed shown that pegylated IFN-β possesses anti-tumor 
activity in colon xenografts models (89). Baker and colleagues 
demonstrated that the combinatorial use of pegylated IFN-β 
and bevacizumab has a greater tumor growth inhibition effect 
compared with exclusively using pegylated IFN-β, which had no 
significant effects compared with vehicle control (89).

The protective role of STING against CRC has been recently 
demonstrated (90–92). Barber and colleagues have shown that 
STING is fundamental for the induction of inflammatory wound 
repair and the deregulation of IL-22BP by IL-18 (90). Moreover, 
they have found that loss of STING could enable cancer cells 
to evade the host immunosurveillance processes, due to the 
absence of key cytokines that facilitate anti-tumor-T cell priming 
(91). Kanneganti and colleagues demonstrated that the absence 
of STING was sufficient to increase the production of the pro-
inflammatory cytokines IL-6 and keratinocyte chemoattractant, 
due to the abrogation of NF-kB and STAT3 signaling pathways 
(92). However, the role of STING in tumor development is 
cause for much debate. In another recent study, Barber’s group 
has shown that the absence of STING makes mice resistant to 
DMBA-induced skin cancer (93). This finding can be explained 
by the absence of pro-inflammatory cytokines, which are crucial 
players in the inflammation-induced carcinogenesis in different 
cancer models.

For all the above-mentioned reasons, STING agonists have 
attracted the interest of the scientific community and they have 
been used on humans in combination with standard chemotherapy.

Unfortunately, before the discovery that the analog of 
flavone acetic acid (DMXAA) was a potent agonist of STING, 
a phase 3 clinical trial enrolling advanced non-small cell lung 
cancer patients was not effective in improving neither OS nor 
progression-free survival (94). The reason for this failure was 
explained a few years later with the finding that DMXAA was 
specific for mouse STING and not for the human protein (95–97). 
So Gajewski and colleagues decided to synthesize a large panel 
of cyclic dinuocleotide (CDN) derivatives able to activate both 
mouse and human STING, without significant toxicity. They 
showed that intratumoral injection of selected CDNs into estab-
lished xenograft derived by subcutaneous injection of CT26 cells 
into mice left flanks was able to greatly reduce tumor growth and 
promote lasting systemic antigen-specific T cell immunity (60).

Recently, a phase I clinical trial was opened using a human 
agonist of the STING pathway for patients affected by solid 
tumors (NCT02675439).

iNNATe AND ADAPTive iMMUNiTY 
COOPeRATeS iN eiTHeR THe 
eRADiCATiON OR PROMOTiON OF 
MeLANOMA THROUGH TYPe i AND  
TYPe ii iFNs

Melanoma accounts for more than 1/100.000 new case per year 
worldwide and its incidence is increasing especially among 

light-skinned ethnicities (98). It represents the most aggressive 
skin cancer and is characterized by its life-threatening spread and 
rapid disease progression. Melanoma is a highly curable cancer 
if diagnosed in its early stages, while if metastatic, it is unre-
sponsive to conventional anti-cancer therapy and has less than 
a 20% of 5-year survival rate (99). Melanoma originates from 
a malignant transformation of melanocytes. These are cells that 
during embryonic development migrate from the neural crest 
and move to the skin where they differentiate and start producing 
pigment (100). Therefore, melanoma cells possess intrinsic capa-
bilities to migrate and to be plastic, switching their phenotype 
in accordance to the hostile cancer milieu (101). Several recent 
findings reported that such a plastic behavior is guided by a 
small sub population of stem-like cells that were prospectively 
isolated for the expression of CD133, ABCG2 (102), nestin (103), 
ABCB5 (104), and CD271 (105). On the other hand, Morrison 
and colleagues noticed that a single melanoma cell transplant in 
NOD/SCID IL2rg−/− mice, generated xenografts regardless of 
membrane marker expression (106).

In order to circumvent melanoma CSC therapy resistance, 
different therapeutic approaches have been tested, especially 
those potentiating the immune response against this high immu-
nogenic type of cancer. Some examples are represented by the 
ectopic administration of type I IFNs, currently being tested in 
patients affected by melanoma. However, little attention has been 
given to the endogenous IFN pathway (Figure 2). In this context, 
it has been demonstrated that in vitro and in vivo inactivation 
of IFN signaling by using shIFNAR1 cells and IFNAR1-null 
mice, respectively, overcomes oncogenes-induced senescence, a 
tumor suppressive signal that protects DNA damaged cells from 
the onset of cancer. Cancer cells initially proliferate and then 
become senescent. However, additional events such as mutation 
in PTEN, PI3K, and mTOR can cause them to abandon their 
state of senescence. Type I IFNs are produced following DNA 
damage and contribute to senescence in these cells. IFNAR1 can 
be partially down-regulated by BRAF activation and additional 
mutations such as in PI3K, can disrupt this balance and abolish 
the tumor suppressive role of IFN signaling. Preservation of IFN 
signaling can protect melanocytes from becoming malignant 
and renders melanoma cells sensitive to BRAF inhibitors and 
immunotherapy (107).

As mentioned above, IFN-α binding to its receptors IFNAR1 
and IFNAR2, triggers the phosphorylation of Tyr2 and Jak1, 
which in turn activates the JAK/STAT signaling cascade.  
In ABCB5+ melanoma cells, STAT is responsible for the transcrip-
tion of the tumor suppressor promyelocytic leukemia protein, 
which inhibits proliferation of malignant melanoma initiating 
cells. However, melanoma cells can overcome the IFN-α effect 
via suppressor of cytokine signaling 1 (SOCS1), which mediates 
ubiquitinization and degradation of JAK. Interestingly, the heli-
case HAGE is selectively expressed on tumor cells and promotes 
the expression of SOCS1 (108).

Another example of type I IFN involvement in boosting anti-
cancer immunity is represented by the recent discovery report-
ing that in vivo growth of melanoma cells is strictly dependent 
on the production of prostaglandin E2 (PGE2) as a result of the 
cyclooxygenase (COX) activity. PGE2 limits the activity of type 
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FiGURe 2 | Interferons (IFNs) mediate the cross-talk among melanoma cells and immune cells. IFNs, which are secreted by immune cells, regulate different aspects 
of cancer cells’ behavior, including proliferation and metastatic spread. In turn, cancer cells can affect immune cell viability and their IFNs’ secretion. β-NGF, β-nerve 
growth factor; CCL8, chemokine (C-C motif) ligand 8; CCR2, C-C chemokine receptor type 2; CTL, cytotoxic T lymphocyte; IFNGR, interferon-γ receptor; LDHA, 
lactate dehydrogenase A; MDSC, myeloid-derived suppressor cell; NRP-1, neuropilin-1; NFAT, nuclear factor activated T cells; NK, natural killer; PD-1, programmed 
cell death protein 1; PD-L1, programmed death-ligand 1; PML, promyelocytic leukemia protein; Treg, regulatory T cells; UVB, ultraviolet B.
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I IFNs-secreting immune cells with consequent failure of tumor 
eradication. Based on their preclinical data, the existence of a 
positive correlation between type 1 IFN signature in melanoma 
patients and longer relapse-free survival (RFS), authors pro-
posed to couple COX inhibitors to anti-PD-1 therapy in clinical 
settings (109).

Differently, over-expression of CD271 in melanoma cells is 
induced by the IFN-γ released from CTLs at tumor sites. CTLs 
also secrete the CD271 ligand, named β-nerve growth factor (β-
NGF), whose binding to its receptor, causes the down-regulation 
of the antigen expression on the melanoma cells’ surface that 
leads to the suppression of CTL activation (110). The pro-
grammed death-ligand 1 (PD-L1) is physiologically expressed 
on T, B, and APC. This latter is necessary for normal tissue 
homeostasis so to guarantee tolerance and protection. PD-L1 
is also expressed on non-immune cells such as melanoma cells,  
and its engagement to its cognate receptor PD-1 on T  cells, 
inhibits T cell proliferation, survival, and cytokines release (111).

Interestingly, PD-L1 is expressed on melanoma cells following 
stimulation with IFN-γ, through a mechanism known as “adaptive 

immune resistance,” causing a double suppressive stimuli for CTLs 
(110). These results were confirmed by Hersey and colleagues 
who defined the mechanism that modulates the inducible PD-L1 
expression. By using both the NF-kB pharmacological inhibitors, 
BMS-345541 and I-BET151, and siRNA for NF-kB subunits, they 
have proven that IFN-γ released by tumor-infiltrating lympho-
cytes up-regulates PD-L1 expression on melanoma cells (112). 
Moreover, the blockade of PD-1 in a murine model, increased 
the secretion of IFN-γ and CXCL10 and was critical in recruiting 
anti-tumoral T cells into tumor sites (113).

These findings led to the hypothesis that melanoma cells acti-
vate a self-protective response system against the immune attack 
in the tumor microenvironment and that patients could benefit 
from the double combination treatment using targeted therapy 
(or chemotherapy) and anti-PD-1 immunotherapy. Interestingly, 
even though melanoma patients, who experienced a resistance  
to BRAF inhibitors, showed an up-regulation of PD-L1 (114), a 
large number of studies reported that the inducible PD-L1 expres-
sion is not correlated with BRAF mutational status (112, 115). 
On the other hand, the “innate immune resistance” model claims 
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that constitutive PD-L1 expression can be triggered by driver 
mutations in oncogenes. However, it seems to not be applicable 
in the case of melanoma, where constitutive PD-L1 expression is 
not associated with mutations in BRAF, PTEN, NRAS, and AKT 
amplification (116).

Additionally, the exposure of mouse neonatal skin to 
ultraviolet B (UVB) radiation caused enhanced survival and 
immunoevasion of melanoma cells. Upon UVB exposure, mela-
noma cells start producing chemokine receptor type 2 (CCR2) 
ligands that recruit CCR2-expressing macrophages to the skin. 
Macrophages in turn secrete IFN-γ, thus activating melanoma 
cells to produce chemokine (C-C motif) ligand 8, a CCR2 ligand. 
This feedback mechanism augments the interaction between 
melanoma cells and macrophages promoting an inflammatory 
and pro-tumorigenic microenvironment (117).

Despite the previously mentioned tumor promoting effects 
of IFN-γ, several studies showed its role as anti-tumor mediator. 
This pro-inflammatory cytokine is secreted by NK, NKT, and 
activated T cells and can potentially exerts an anti-tumor response 
by activating CTLs, monocytes, NK  cells, and macrophages, 
promoting the expression of MHC class I (118). Indeed, some 
reports divulged that IFN-γ inhibits cancer cell proliferation 
and angiogenesis as well as enhancing the immune response in 
melanoma (119). As soon as 3  days after inoculation, IFN-γ-
secreting γδ T  cells are recruited to the B16 mouse melanoma 
cell injection site in immunocompetent mice, suggesting that γδ 
T cells are involved at early stages of immunosurveillance against 
the development of cancer (120). By using immunocompetent 
C57BL/6 mice, Kreutz’s group demonstrated that tumor cells with 
low lactate dehydrogenase A (LDHA) activity, which metabolizes 
pyruvate in lactate during elevated glucose consumption and is 
responsible for lowering the intracellular and extracellular pH, 
grew slower than control cells in  vivo due to immune surveil-
lance (119). Indeed, control tumors characterized by high LDHA 
activity, had a reduced or undetectable number of CD8+ T cells 
and NK  cells, respectively. CD8+ T  cells were also inactive as 
they lacked CD25 expression. Contrarily, there was no difference 
in tumor growth in cells harboring different levels of LDHA in 
Rag2−/− γc−/− mice, which lack T, B, and NK cells, suggesting 
the important role played by the immune system. Acidification 
of the tumor microenvironment caused the apoptosis of T and 
NK  cells. Moreover, it lowered the intracellular pH of T  cells, 
compromising the activity of nuclear factor activated T  cells, 
which controls the transcription of IFN-γ. Mice lacking IFN-γ 
and IFN-γR1 failed to counteract tumor growth in mouse mela-
noma cells, possessing both IFN-γ and IFN-γR1, regardless of 
LDHA status. This suggests the importance of IFN-γ signaling 
occurring in the immune cell compartment. Low IFN-γ levels 
impair the switch of MDSCs into APCs, given that the acidic 
microenvironment provides IL-23 necessary for MDSCs survival. 
Hence, authors proved that melanoma patients with high LDHA 
levels possess high extracellular lactate levels and are therefore 
associated with poor prognosis (119).

Another immune cell compartment that plays a fundamen-
tal role in cancer is constituted by Tregs, which facilitate tumor 
progression by limiting anti-tumor immunity. Vignali’s group 
described that neuropilin-1 deficient Tregs, by secreting IFN-γ, 

destabilize the function of surrounding wild-type Tregs preventing  
them to exert their pro-tumorigenic activity. Furthermore, IFN-
γ-mediated fragility of Tregs is mandatory for the efficacy of 
anti-PD-1 therapy (121).

iFN-BASeD THeRAPieS iN THe 
MANAGeMeNT OF MeLANOMA

Among the IFNs family of glycoproteins, IFN-α has been the most 
implicated in clinical settings. IFN-α is administered at high, 
intermediate, and low doses according to the type of molecule 
and patient morbidity. IFN-α is mainly given in the adjuvant 
setting to those patients that possess a high risk of reoccurrence 
after having undergone a melanoma resection. In 1996, the 
United States Food and Drug administration approved the use 
of IFN-α2b for this particular category of patients on the basis of 
the improved RFS and OS observed in the first clinical trial using 
high doses of IFN-α2b (ECOG 1684) (122). Two other clinical 
trials, the E1690 and E1694, compared high doses of IFN to low 
doses and to vaccines with the ganglioside GMK, respectively. 
Both clinical trials showed improvements in RFS, while only 
E1694 showed increased OS (123, 124).

As mentioned earlier, IFN-α2b has been conjugated with 
polyethylene glycol (Peg-IFN-α2b) to reduce its clearance and 
augment immunogenicity. It was approved by the FDA in 2011 as 
an adjuvant therapy for high risk patients affected by melanoma 
stage II and III. Peg-IFN-α2b has been tested in clinical trial 
(EORTC 18991) in high risk melanoma patients with involve-
ment of lymph nodes and achieved improved RFS but no differ-
ences in OS (125).

Kirkwood and colleagues showed that patients treated with 
IFN-α2b in the neoadjuvant setting had longer OS (126). Other 
studies are showing results from combination therapy using IFN-
α2b and chemotherapy and fail to show complete responses (127).

Interestingly, both IFN-α2b and Peg-IFN-α2b are being tested 
in combination with the BRAF inhibitor vemurafenib (NCT0-
1943422 and NCT01708941). IFN-α2b efficacy is increa sed by 
administering anti-CTLA4 antibody to patients with unresect-
able melanoma (NC01708941) and the combination treatment 
utilizing Peg-IFN-α2b and the anti-PD-1 pembrolizumab are 
currently in clinical trials (127). In order to overcome the serious 
side effects of systemic administration of high dose IFN-α, a cell-
based therapy has been developed, in which cells are engineered to 
express IFN-α and to convey it to the tumor site. For this purpose, 
mesenchymal stem cells (MSCs) are ideal candidates because they 
are easy to isolate, expand ex vivo and transduce with viral or 
non-viral vector encoding IFN-α. They also possess an excellent 
aptitude for migrating to inflammatory sites, which is typical of 
tumor microenvironments. In particular, MSCs tropism in tumors 
is dictated by the expression of adhesion molecules and receptors 
that recognize factors secreted by cancer cells (128). However, 
evidence suggests that MSC therapy should be administered in 
association with other therapies in order to improve its efficacy. 
Furthermore, IFN-α directly causes tumor cell apoptosis and 
impairs tumor vasculature, while the contribution of the immune 
system is still controversial. Thus, adjusting the number of MSCs 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


9

Di Franco et al. IFNs in Cancer and Therapy

Frontiers in Immunology | www.frontiersin.org July 2017 | Volume 8 | Article 878

and the quantity of IFN-α secreted could eventually potentiate the 
involvement of the immune system.

Interestingly, a phase I clinical trial currently ongoing in 
patients with advanced melanoma, is evaluating the efficacy of 
intravenous delivery of nanoparticles holding RNA. These parti-
cles are called RNA-lipoplexes, which encode for tumor antigens 
and selectively target DCs and macrophages at lymphoids organs. 
These transduced immune cells start secreting IFN-α follow-
ing TLR7 stimulation, thus promoting their maturation when 
they express the epitope of interest needed for T  cell priming. 
Additionally, IFN-α transforms activated T  cells into effector 
T cells (129). This strategy provides an ideal example of coop-
eration between innate and adaptive responses occurring during 
tumor eradication. Moreover, being that RNA can encode for a 
broad range of antigens, it represents a powerful approach in the 
treatment of various types of cancer.

As in CRC, STING is a sensor for cytosolic DNA and medi-
ates the transcription of IFN-β in melanoma. Intratumoral 
injection of STING agonists potentiates the secretion of IFN-β 
by DCs that have been exposed to tumor DNA. This leads to 
enhanced cross-priming between APCs and T cells. Preclinical 
data showed that mice treated with STING antagonists showed 
a reduction of melanoma metastases and durable immune 
memory (60).

The activation of the type I and type II pathways can dictate the 
selection criteria for anti-cancer therapies. The mutational status 
of genes involved in IFN-γ signaling is a prognostic tool used 
to select patients that are eligible for anti-CTLA (Ipilimumab). 
Even if, IFN-γ alone has been tested in clinical trials in melanoma 
and failed (130, 131), patients harboring DNA lesions in gene 
encoding for IFN-γ, as well as mice carrying tumors mutated 
in IFNGR1, poorly responded to immunotherapy. Accordingly, 
patients treated with Ipilimumab displayed T  cells with an 
enhanced production of IFN-γ (132).

Accordingly, in a study demonstrating the efficacy of a 
peptide vaccine, using the melanoma specific epitope Trp2180, 
IFN-γ reduced the capability of CD8+ T  cells to recognize 
and kill melanoma cells. The authors demonstrated that IFN-
γ increases the expression of both cognate and non-cognate 
MHC-I on tumor cells that can compete for the binding to TCR 
and limit CD8+ cells activity (133). This is a clear example on 
how experimental conditions, for instance the use of tumor cells 
instead of peptide-expressing APCs or freshly purified CD8+ 
T cells, can influence immune responses by shifting the balance 
between immune surveillance and evasion. It also explains the 
dual role of IFN-γ as a pro- and anti-tumor effector, depending 
on circumstances.

Finally, treatments of melanoma patients with anti-PD-1 
(Pembrolizumab) achieved long lasting responses and recent data 
showed that nearly 25% of patients became refractory to immu-
notherapy and experienced cancer progression. The explanation 
of therapy resistance in these patients relies on loss-of-function 
mutations in JAK1 and JAK2, involved in the IFN signaling 
pathway (134). On the other hand, melanoma patients showing 
poor T cell infiltrates, do not benefit from anti-PD-1 immuno-
therapy. It is important to notice that when Tuting’s group used 

a melanoma mouse model with exiguous immune infiltrate, they 
observed that the stimulation of type I IFN signaling sensitizes 
mice to anti-PD-1 monoclonal antibody (11).

CONCLUSiON

Recent findings showed that type I and II IFNs are essential 
for tumors’ immunoediting, as is the case with CRC and  
melanoma. IFNs can also act directly on cancer cell behavior, 
having a double role in promoting proliferation or growth 
inhibition. Indeed, several studies established conflicting 
results with regard to the function of IFNs as tumor promoters 
or tumor suppressors in melanoma and CRC. Discrepancies 
can originate from different experimental settings such as  
the influence of the microenvironment, the quantity and  
quality of immune infiltrate, and the mutational status of  
cancer cells.

Several therapies have been elaborated to selectively target 
IFNs, especially IFN-α, and have obtained good clinical out-
comes in melanoma patients whilst no appreciable results were 
obtained in the treatment of CRCs. These findings are explained 
by the well-high immunogenicity of melanoma and thus, its 
high susceptibility to be influenced by the immune system and 
related cytokines, such as IFNs. Indeed, melanoma harbors 
an elevated number of mutations, with respect to CRC, which 
is mirrored by the expression of aberrant proteins that serve 
as neo-antigens for the recognition by the immune system 
machinery.

Thus, there is a need to better understand the biology of IFNs 
in cancer and to analyze data depending on circumstances. In 
this context, we envision that the designing of more personal-
ized therapies and an optimal combination of cancer vaccines, 
checkpoint blockade immunotherapy, cell transfer, and IFNs, 
will significantly contribute to the improvement of cancer patient 
outcomes.
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