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Primary immunodeficiency diseases (PID) result from defects in genes affecting the 
immune and other systems in many and varied ways (1, 2). Until the last few years, treat-
ments have been largely supportive, with the exception of bone marrow transplantation. 
However, recent advances in immunobiology, genetics, and the explosion of discovery 
and commercialization of biologic modifiers have drastically altered the landscape and 
opportunities in clinical immunology. Therapeutic options and life expectancy of PID 
patients have also improved dramatically, in large part as a result of better prevention and 
treatment of infections as well as better understanding and treatment of autoimmune 
complications (3). As early-life infection-related mortality declines we should anticipate 
the emergence of other conditions that were previously not appreciated, including 
malignancies and degenerative disorders unmasked by increasing longevity (4). The 
genomic revolution has identified literally hundreds of new genetic etiologies of immune 
dysfunction, many of which are or will soon be eligible for targeted therapies. These 
emerging immunomodulatory agents represent new therapeutic options in PIDs (5).

Keywords: immunodeficiency, immune modulation, chronic granulomatous disease, leukocyte adhesion 
deficiency, interferon gamma

THeRAPY BASeD ON CLiNiCAL PRACTiCe

Prophylaxis
Invasive bacterial, fungal, viral, and mycobacterial infections carry a high morbidity and mortality 
in the immunocompromised, and therefore, enormous effort has been directed at prevention. The 
advent of antibiotics in the last century was critical for the survival of patients with primary immu-
nodeficiency disease (PID) (6). Even before the advent of antibiotic prophylaxis in advanced HIV 
infection, which transformed AIDS from a rapidly fatal to a more manageable disease, long-term 
prophylactic antibiotics were widely implemented in chronic granulomatous disease (CGD), with 
excellent effects (7). CGD also served as the first PID for which cytokine therapy with interferon 
gamma (IFNγ) (8) and antifungal prophylaxis was indicated and approved (9). The reasons that CGD 
played such a prominent role in the development and study of prophylaxis were that it was relatively 
survivable with medical management and bone marrow transplantation was relatively infrequent 
until recently. Therefore, a relatively large population of patients was able to participate in clinical 
trials, which markedly assisted the exploration and development of therapeutics. This paradigm 
has been missing from several other diseases, either because they are not as survivable or because 
bone marrow transplantation has been more aggressively practiced [e.g., severe combined immune 
deficiency, Wiskott–Aldrich syndrome (WAS), hyper-IgM syndrome]. For these reasons, many of 
the approaches discussed below will not have significant prospective clinical validation, making it 
necessary to rely upon mechanistic explanations and anecdotal reports. While it is likely that in the 
relatively near future treatments to replace (transplantation) or repair (gene therapy) the underlying 
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B cell, T cell, and NK cell defects will be available, it is most likely 
that immunopathology will continue to be a prominent and 
recurring cause for PID patients to seek care.

The dual and somewhat conflicting demands of immune 
deficiency, with its recurrent and severe infections, and immune 
dysregulation, with its associated autoimmunity or autoinflam-
mation, are now well appreciated as a hallmark of PID (10). This 
means that balancing close attention to infection susceptibility 
against needs for immunosuppression poses a major therapeutic 
challenge (11).

Steroids
Corticosteroids have been the backbone of immune modulation 
since their discovery in the 1930s and their use in rheumatoid 
arthritis (RA) in 1948 (12, 13). Despite their long use, their long-
term toxicity remains significant and their specific mechanisms 
poorly understood. However, they continue to be a mainstay 
and first-line approach to immune modulation, especially when 
needed urgently. Their broad, rapid onset of effects on all the 
major actors of immune response (T, B, NK, neutrophils) as well 
as nominally non-immune pathways (e.g., wound healing, glu-
cose metabolism, adrenal suppression) make them both highly 
effective and very difficult to clearly understand. Their significant 
complications such as polyphagia, diabetes, cataracts, osteopenia, 
and infections limit their utility and keep provider and patient 
anxiety levels high.

Despite these concerns, corticosteroids effectively manage the 
hollow viscera obstructive and inflammatory disorders in CGD 
and are surprisingly well tolerated with minimal additional infec-
tious complications at low doses (14). In CGD, steroids have also 
been used in the treatment of “mulch pneumonitis,” the acute 
inflammatory and necrotizing granulomatous lung disease that 
follows inhalation of organic matter, such as mulch, compost, dirt, 
or hay (15). In the CGD mouse model, fatal pulmonary granu-
lomatous inflammation can be caused by either live Aspergillus 
hyphae, which cause invasive fungal infection, or, more surpris-
ingly, by dead Aspergillus hyphae, which cause a severe fatal 
granulomatous response (16). Further, in CGD, steroids have been 
used in the setting of staphylococcal liver abscess, where they can 
largely obviate the need for surgery and better preserve long-term 
liver function (17). They have also helped with the management 
of necrotizing Nocardia pneumonias (18). Therefore, in CGD 
both invasive infection and hyper-inflammation vie as causes of 
morbidity and mortality and can be successfully managed with 
judicious coadministration of both steroids and antibiotics.

Cytokine Therapy
Interferon Alpha (IFNα)
Defects in the TLR3 pathway have been clearly defined as causes 
of recurrent herpes simplex encephalitis (HSE) in children due to 
mutations in TLR3, UNC-93B, TRIF, TBK-1, TRAF-3, and IRF3 
(19). All of these genes converge on the pathways for neuronal 
IFNα production, mutations in which put neurons at risk for 
uncontrolled herpesviral replication. Importantly, in some of 
these defects (TBK1, TLR3, TRAF3) peripheral blood mono-
nuclear cell IFNα production is normal, even though fibroblast 

and neuronal production are impaired. Therefore, the search 
for defects involved in HSE should be done genetically and not 
based entirely on the in vitro responses found in peripheral blood 
samples. Exogenous IFNα or IFNβ therapy clearly rescue the viral 
phenotype in vitro, suggesting that IFNα or IFNβ therapy might 
be useful in cases of HSE associated with defects in the TLR3 
pathway (20, 21). Whether IFNα therapy might have activity 
in cases of HSE without defects in the TLR3–IRF3 pathway is 
unclear at this point.

Interferon Gamma (IFNγ)
After its early cloning and production, expectations for the 
clinical applications of IFNγ were high. Unfortunately, very few 
of those expectations were realized. However, the observation 
that IFNγ increased superoxide production from monocyte-
derived macrophages in vitro led to interest in using it in therapy 
for chronic granulomatous disease (CGD). An international, 
prospective, randomized double-blind trial in CGD patients 
showed clear reduction in severe infections in the IFNγ  
(50  μg/m2 subcutaneously three times weekly) group without 
exacerbation of granulomatous or inflammatory complications 
(22). IFNγ is essential for the killing of many intracellular 
microbes and has been used to enhance anti-mycobacterial 
immunity in patients with partial dominant IFNγ receptor 1 defi-
ciency and chemotherapy-resistant mycobacterial infection (23). 
Higher doses of IFNγ (200 µg/m2) have been used in those with 
mycobacterial infections in the dominant partial forms of IFNγ 
receptor deficiency and in recessive IL12Rβ1 deficiency (24).

THeRAPY BASeD ON MeCHANiSM

interleukin-2
Interleukin-2 is secreted from T cells and supports T cell prolif-
eration, NK cell activation, and can promote activation-induced 
cell death (25, 26). However, at low does, recombinant IL-2 
has also been shown to selectively increase T regulatory (Treg) 
cells. In the WAS, IL-2 therapy was recognized to enhance kill-
ing activity in vitro (27). In a prospective study WAS patients 
responded to low-dose IL-2 (0.5  MU/m2 for 5  days every 
3 weeks) with modest increases in lymphocyte counts. However, 
consistent with the narrow dose range for many cytokines, at 
the 1 MU dose several patients had worsened thrombocytopenia 
(28). In the setting of bone marrow transplantation low-dose 
and very low-dose IL-2 have been shown to increase Treg cells, 
but their long-term value in preventing graft-versus-host disease 
(GVHD) is still being determined (29).

Cell Depletion
CD 20
Rituximab (anti-CD20) is active in the treatment of lymphoma 
and in many autoimmune diseases, presumably through B  cell 
depletion and also through disruption of autoantibody produc-
tion. However, depletion of CD20+ B cells also removes potent 
antigen presenting cells, so it may have more than one mechanism 
of action. Improved quality of life has been observed in those with 
B-cell class-switch defects (hyper-IgM syndrome), who received 
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rituximab for the treatment of autoimmune manifestations and 
generalized lymphadenopathy (30). Rituximab has been used as 
immunomodulatory therapy, especially as part of the treatment 
of granulomatous lymphocytic interstitial lung disease (31) in 
CVID as well as in CVID-associated autoimmune cytopenias 
(32–34). In patients with anti-IFNγ autoantibodies who have 
severe disseminated infections with intracellular pathogens, 
especially non-tuberculous mycobacteria, rituximab has helped 
to reduce antibody levels allowing clearance of infection (35).

Cytokine Antagonists
Anti-IL-17 and Anti-p40 (Anti-IL-12/23)
IL-17 is an important mediator of inflammation, especially at 
epithelial surfaces. It is itself induced in CD4 + T cells by IL-23 
and in turn induces the generation of G-CSF and IL-22. IL-17 
neutralization has profoundly beneficial effects on the clini-
cal courses of psoriasis and colitis (36). IL-23 is formed by the 
heterodimerization of IL-23p19 and IL-12p40, while IL-12 is 
formed by the heterodimerization of IL-12p35 and IL-12p40. In 
a mouse model of colitis, neutralization of IL-23 using an IL-23-
specific anti-p19 antibody significantly alleviated both emerging 
and established colitis, through the downstream inhibition of 
IL-17 expression, leading to diminished neutrophil infiltration 
(37). One case of severe CGD colitis treated with ustekinumab 
(anti-p40, the common chain of IL-12 and IL-23) showed clinical 
improvement but developed a severe infection (38).

Leukocyte adhesion defect (LAD) 1 is characterized by a severe 
periodontal disease and premature loss of teeth. Moutsopoulos 
et al. showed that excessive IL-17 expressing T cells in periodontal 
tissue is responsible for the inflammation and bone loss in human 
and mouse models of LAD1. These observations support target-
ing IL17 production through inhibition of IL-12/23 p40 (39).

IL-1
IL-1 is induced in response to numerous inflammatory stimuli 
and is the critical mediator of fever; it was previously known 
as “endogenous pyrogen.” Its natural antagonist, IL1RA, 
inhibits IL-1’s activation of its receptor and, therefore, blocks 
IL1-mediated inflammation. IL-1 is generated from proIL-1 
by the action of the IL-1 inflammasome, mediated by NLRP3, 
previously known as CIAS. Gain-of-function (GOF) mutations in 
NLRP3 lead to autoinflammatory diseases, so-called because they 
do not depend on antigen-specific triggers or T or B responses. 
Anakinra has been used extensively in disorders of inflammation. 
de Luca et al. showed that inhibition of IL-1 receptor activation 
using the receptor blocker anakinra resulted in inflammasome 
inactivation, restoration of autophagy, improvement in colitis, 
and protection from invasive aspergillosis in p47phox−/− mice. 
Studies in human subjects are essential to derive data on safety, 
dosage, and duration and complete efficacy of anakinra therapy 
in patients with CGD.

IL-6
IL-6 is a cytokine that induces signal transducer and activator of 
transcription (STAT) 3 phosphorylation and leads to fever and 
the acute phase response. Interestingly, it is also a myokine that is 
produced by muscle during activity. IL6 is elevated in RA and has 

been successfully targeted in that disease by tocilizumab, which 
inhibits downstream STAT3-mediated effects. In the disease 
caused by GOF STAT3 mutations, signaling is pathologically aug-
mented, leading to fever, arthritis, rashes and lung disease. Milner 
et  al. showed that tocilizumab led to marked improvement of 
peripheral arthritis and scleroderma-like skin lesions in a patient 
who had failed multiple other immunosuppressive therapies (40).

Signal Blockade
CTLA4
CTLA4 is expressed on Treg cells and activated T cells, providing 
an inhibitory signal to effector T lymphocytes through its bind-
ing to CD80/CD86. Therefore, reduced CTLA4 expression leads 
to reduced Treg activity, which in turn leads to autoimmunity. 
CTLA4 deficiency is characterized by cytopenias and the triad 
of granulomatous brain lesions, granulomatous lung lesions and 
gut involvement; these manifestations can be separate or together, 
and either immunodeficient or autoimmune phenomena may 
predominate. Abatacept is a protein formed by the fusion of the 
Fc domain of IgG1 to the extracellular domain of CTLA4, thereby 
mimicking the binding of CTLA4 to CD80/CD86 and helping to 
tamp down autoimmunity. Lee et  al. reported the effectiveness 
of abatacept in an adolescent girl with a mutation in CTLA4 and 
severe gut and other disease (41).

T Cell-Directed Therapies
In ALPS-associated autoimmune cytopenias steroids are the first 
line of treatment, followed by mycophenolate mofetil (a prodrug 
of mycophenolic acid that inhibits inosine monophosphate 
dehydrogenase and suppresses T and B cells) and sirolimus [an 
mechanistic target of rapamycin (mTOR) inhibitor] that more 
effectively targets double-negative T cells (32, 42).

In other PIDs, such as CGD, methotrexate and cyclosporine 
have been used to control T-cell-mediated complications. 
Hydroxychloroquine, a moderately effective but less immu-
nosuppressive drug, can be used as a single drug therapy or in 
combination with low-dose steroids. Hydroxychloroquine may 
enhance CLTLA4 expression through the inhibition of lysosomal 
CTLA4 degradation (43).

Janus-Associated Kinase/STAT Inhibitors
Gain-of-function mutations in STAT1 lead to sustained 
levels of phosphorylation of STAT1 upon stimulation, which 
result in increased expression of interferon-simulated genes. 
Autoimmunity and infection caused by STAT1 GOF mutations 
are thought to be the result of dysregulated T  cell responses. 
Janus kinase inhibitors may be effective targeted treatments for 
long-term disease control of severely affected patients for whom 
hematopoietic stem cell transplantation is not available (44–46). 
The experience with transplantation for STAT1 GOF has so far 
been disappointing, suggesting that there are complex issues that 
will need novel approaches in terms of preparative regimen, in 
particular (47).

mTOR Inhibitors
Mechanistic Target of Rapamycin is a serine/threonine protein 
kinase that regulates a dizzying array of cellular and metabolic 
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activities, especially including T  cell proliferation. Conditions 
that constitutively or aberrantly activate the mTOR pathway lead 
to excess signaling, and are associated with abnormal cell prolif-
eration and autoimmunity. Rapamycin is a small molecule that 
blocks mTOR activity and has found extensive clinical application 
in the maintenance of transplant tolerance. It has also achieved 
good clinical responses in patients with immune dysregulation, 
polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome, 
probably related to the decrease in proliferation of T effector 
cells with relative preservation of Treg cells. It leads to reduction 
in hepatosplenomegaly and lymphadenopathy, improvement in 
naive T cell counts, and restitution of lymphocyte IL-2 secretion 
(48, 49).

In activating mutations in PIK3CD, Lucas et  al. demon-
strated that rapamycin restored the abundance of naive T cells, 
largely “rescued” the in  vitro T  cell defects and improved the 
clinical course (50). In LRBA deficiency, which is associated with 
impaired CTLA4 display due to LRBA’s role in CTLA4 recycling, 
the CTLA4 mimetic abatacept caused dramatic and sustained 
improvement (43).

Apoptosis
Programmed cell death protein 1, PD-1, binds to PD-1 ligand, 
PDL-1, and downregulates the activity of inflammatory 
T cells. This interaction forms the basis of one of the immune 
checkpoints, a node at which immune reactivity can either be 
encouraged (PD-1 inhibition) or diminished (PD-1 expression). 
This fundamental recognition has served as the basis for the 
newer immune therapies in cancer, which use PD-1 inhibition 
to disinhibit high PD-1 expression leading to antitumor immune 
response. High PD-1 expression is generally associated with 
exhaustion of T  cells, such as during chronic viral infections, 
and is associated with poor responses to antigen activation. 
Importantly, blockade of this PD-1/PD-1-ligand interaction 
restores antigen-specific responses in vitro (51). PD-1 receptor 
blockade increased JC virus-specific T-cell immune responses 
in a subgroup of progressive multifocal leukoencephalopathy 
(PML) patients in vitro, suggesting that this pathway might be 
important in the control of JC virus-associated PML (52).

Miscellaneous Agents
Magnesium
LOF mutations in the gene encoding the X-linked magnesium 
transporter 1 (MAGT1) result in an immunodeficiency char-
acterized by EBV infection and lymphoma (XMEN), due to 

impaired magnesium-dependent intracellular signaling, which 
is especially important in NK cell function (53). Treatment with 
high-dose magnesium, supplied by the oral preparation magne-
sium threanate has been able to restore NK activity and reduce 
EBV viral loads in a small number of cases.

Pioglitazone
Peroxisome proliferator-activated receptor γ (PPARγ) is a central 
mediator of metabolic responses, which has made it a target for 
endocrine therapies. PPARγ is involved in numerous cellular 
pathways, including reactive oxygen species (ROS) generation 
in mitochondria, fatty acid metabolism, and gluconeogenesis. 
Activation of intracellular PPARγ by agonists such as piogl-
itazone improved neutrophil ROS production and enhanced 
microbicidal action against Staphylococcus aureus in a murine 
CGD model (54). Apparently, pioglitazone leads to increased 
mitochondrial ROS, which then supplements the intracellular 
killing of certain microbes. Pioglitazone may also regulate other 
pathways, including IL-17, which is aberrantly high in CGD.

STATe-OF-THe-ART TReATMeNTS

Chronic and refractory viral infections remain a cause of sig-
nificant mortality both before and after HSCT in patients with 
PID. Reconstitution of T cell immunity is critical for control of 
viral infections. Adoptive immunotherapy with virus-specific 
T lymphocytes (VSTs) is an attractive option for addressing the 
underlying impaired T  cell immunity (55). Infusion reactions 
are uncommon, mild and likely related to the cryopreservation 
additive rather than the VST themselves. To date, with limited 
phase 1 and 2 studies, cytokine release syndrome has not been 
described, though it remains a theoretical risk, particularly in 
patients with disseminated viral disease. And also it is unclear if 
the rate of GVHD in those receiving VST therapy is different from 
the background rate of GVHD in patients undergoing HSCT.
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