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In addition to providing essential molecules for the overall function of cells, metabolism 
plays an important role in cell fate and can be affected by microenvironmental stimuli as 
well as cellular interactions. As a specific niche, tumor microenvironment (TME), consist-
ing of different cell types including stromal/stem cells and immune cells, is characterized 
by distinct metabolic properties. This review will be focused on the metabolic plasticity 
of mesenchymal stromal/stem cells (MSC) and macrophages in TME, as well as on how 
the metabolic state of cancer stem cells (CSC), as key drivers of oncogenesis, affects 
their generation and persistence. Namely, heterogenic metabolic phenotypes of these 
cell populations, which include various levels of dependence on glycolysis or oxidative 
phosphorylation are closely linked to their complex roles in cancer progression. Besides 
well-known extrinsic factors, such as cytokines and growth factors, the differentiation 
and activation states of CSC, MSC, and macrophages are coordinated by metabolic 
reprogramming in TME. The significance of mutual metabolic interaction between tumor 
stroma and cancer cells in the immune evasion and persistence of CSC is currently 
under investigation.

Keywords: metabolism, cancer stem cells, mesenchymal stem cells, macrophages, tumor microenvironment, 
cancer, plasticity

inTRODUCTiOn

Cells constituting tumor microenvironment (TME), such as immune cells, endothelial cells, 
fibroblasts, and mesenchymal stromal/stem cells (MSC), communicate with cancer cells mutually 
influencing properties of each cell type and overall outcome of tumor growth (1). Predominantly 
engaged in turnover of vital biomolecules, energy metabolism is an important regulator of cell 
fate and functions, while it can be modified through the crosstalk with microenvironmental cues. 
The lever between two general metabolic processes, anabolism and catabolism, can be shifted to 
respond to cells’ needs (2). When it comes to stem cells, general opinion is that the pluripotent, 
quiescent state of these cells drives or is driven by a glycolytic profile, while in the state of dif-
ferentiation stem cells turn to oxidative phosphorylation (OXPHOS) for energy production (2, 3). 
In TME, not only cancer cells are able to reprogram their metabolism according to their needs but 
also they can reprogram the metabolism of surrounding cells to respond to their demands and 
fuel tumor growth (4, 5). Although the specificity of cancer metabolism is partly recognized, the 
metabolic properties and mutual interactions of each cell type within TME need to be revealed in 
order to understand the complex metabolic crosstalk within. This review will focus on the meta-
bolic properties in three compartments of TME: cancer stem cells (CSC), MSC, and macrophages 
as major component of leukocytic infiltrate in tumors.

http://www.frontiersin.org/Immunology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2017.00939&domain=pdf&date_stamp=2017-08-09
http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
https://doi.org/10.3389/fimmu.2017.00939
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:jelena.krstic@medunigraz.at
https://doi.org/10.3389/fimmu.2017.00939
http://www.frontiersin.org/Journal/10.3389/fimmu.2017.00939/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2017.00939/abstract
http://loop.frontiersin.org/people/305827
http://loop.frontiersin.org/people/84098
http://loop.frontiersin.org/people/427594
http://loop.frontiersin.org/people/126467
http://loop.frontiersin.org/people/30483
http://10.13039/501100004564


FigURe 1 | Metabolic plasticity of cells in tumor microenvironment. Selected metabolic features of (A) cancer stem cells (CSC), (B) mesenchymal stromal/stem cells 
(MSC)/cancer-associated fibroblasts (CAF), and (C) macrophages. Refer to the text for further details.
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inTRinSiC HeTeROgeneiTY OF CAnCeR 
CeLL MeTABOLiSM—PLACe TO Be FOR 
CSC

The ability to acquire necessary nutrients from an often poor 
nutrient content within the environment and to produce mol-
ecules required for its own expansion is a hallmark of cancer 
metabolism (5). Oncogenic mutations lead to metabolic repro-
gramming of cancer cells that support carcinogenesis. The altera-
tions in intracellular and extracellular metabolites have profound  
effects on gene expression, cellular differentiation, and the 
TME of cancer cells. Cancer-driven metabolic features include 
deregulated uptake of glucose and amino acids, use of glycolysis/
tricarboxylic acid (TCA) cycle intermediates for NADPH pro-
duction, genesis of oncometabolites, and metabolic interactions 
with TME (5, 6). Although glycolytic, many cancer cells produce 
ATP in mitochondria, since, besides pyruvate, fatty acids and 
amino acids can supply substrates to the TCA cycle. Therefore, 
cancer cells have an opportunity to adapt their metabolic path-
ways to the microenvironment. Cancer cells adjacent to blood 
vessels use nutrients and oxygen for anabolism, while cancer 
cells away from vessels have to include other metabolic path-
ways, such as oxidation of fatty acids or recycling of molecules 
via autophagy (5).

Cancer persistence is associated with existence of CSC, which 
are recognized as cells with accumulated mutations, ability 

to differentiate/transdifferentiate (7) and self-renew (8). Even 
though metabolic features of CSC are not yet revealed, it is pos-
sible to speculate that, in comparison to normal stem cells, CSC 
with the mutated genome have greater opportunity to adapt to 
microenvironmental circumstances by modulating their energy 
production pathways (9). It has been accepted that CSC have gly-
colytic metabolic phenotype, while more differentiated cells rely 
on OXPHOS. This notion is partly associated with the switch from 
OXPHOS to glycolysis during reprogramming and achieving of 
pluripotency initiated by transcription factors, Sox2, Oct4, Klf4, 
or Myc in iPS cells (10). However, CSC with OXPHOS profile 
were shown to be resistant to inhibition of glycolysis and more 
independent from microenvironment nutrient level. Importantly, 
CSC can also rely on mitochondrial fatty acid oxidation (FAO) 
(11) for ATP and NADPH generation (12, 13). Thus, CSC with 
OXPHOS profile may acquire a selective advantage in specific 
TME, as they use limited nutrients more efficiently. Lactate, 
excreted by more differentiated cancer cells that are dependent 
on glycolysis, may in return serve as fuel for OXPHOS in CSC  
that depend on mitochondrial metabolism, consequently estab-
lishing a metabolic symbiosis system (12, 14) (Figure 1A).

Depending on the cancer type, CSC show distinct metabolic 
profiles that can be glycolysis or OXPHOS dependent (Figure 1A). 
In either case, mitochondrial function is critical and exhibits 
crucial role in CSC metabolism. The changeable metabolism of 
CSC population in various cancer types will be discussed next.
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There are inconsistent results regarding metabolic feature 
of CSC within lung cancer. As for CSC within small-cell lung 
cancer cell line H446, OXPHOS metabolic profile, lower oxygen 
consumption rate, and acidification compared to non-stem-like 
cells were shown (15). Yet, another study reported that side 
population in lung cancer cells which export Hoechst 33342 and 
chemotherapeutics has high glycolytic activity (16).

Similarly, uneven results can be observed for breast cancer 
CSC. Glycolytic profile of CSC and non-stem cancer cells within 
breast was confirmed (17). Enhanced Notch signaling was 
shown to support self-renewal of breast CSC with high glyco-
lytic activity associated with progressive hormone-independent 
growth in vivo. Hormonal therapy induces OXPHOS metabolic 
editing of luminal breast cancers, establishing self-renewal of 
dormant CD133high/estrogen receptor (ER)low cells (18). In con-
trast, cultivation of breast cancer cells in non-adherent condi-
tions fosters shift from OXPHOS toward glycolysis, increasing 
activity of anaerobic glycolysis enzymes, such as pyruvate kinase 
M2 isoform, lactate dehydrogenase, and glucose 6-phopshate 
dehydrogenase in breast CSC (19).

In pancreatic ductal adenocarcinoma (PDA), CSC also rely 
on glycolysis, as glycolysis inhibitor, 3-bromopyruvate, attenu-
ates self-renewal potential, aldehyde dehydrogenase 1 (ALDH1) 
activity, and reverts gemcitabine resistance (20). Stimulation of 
glucose transporter 1 (GLUT-1) expression has been related to 
the maintenance of CSC population in pancreas, ovarium, and 
brain in in  vivo animal models, thus indicating importance of 
glucose metabolism for these CSC (21). CSC within PDA can also 
utilize non-canonical glutamine pathway. Glutamine deprivation 
caused attenuated self-renewal ability, decreased expression of 
stemness genes, and induced apoptosis in pancreatic CSC (22).

On the other hand, ovarian CSC are not limited to aerobic 
glycolysis but are amino acid metabolism dependent, especially 
for serine, aspartate, glutamate, and glutamine (23). Particularly, 
lipid metabolism is involved in CSC maintenance. It has been 
shown that the fatty acetyl-CoA synthetase VL3 (ACSVL3) is 
involved in glioblastoma genesis, while neurospheres of glio-
blastoma CSC have high level of ACSVL3 expression, associated 
with expression of several stemness markers, such as CD133, 
ALDH, Musashi-1, and Sox-2 (24). In accordance, fatty acid 
synthase (FASN), key lipogenic enzyme, can attenuate stemness 
in glioma cells, while their differentiation abolishes FASN 
expression (25). Also, fatty acids derived through lipolysis in 
gonadal fat can fuel FAO in leukemic stem cells (LSCs) which 
express high level of fatty acid transporter CD36, contributing 
to high chemoresistance of LSC (26). Hypoglycemic condition 
in the bone marrow (BM) favors survival of LSC which are more 
dependent on AMPK-suppression of oxidative stress than LSC 
in spleen, thus indicating tissue context-dependent metabolic 
activity of LSC (27).

MeTABOLiC RePROgRAMMing OF  
MSC FUeLS CAnCeR gROwTH

Among the stromal cells of TME, MSC have recently drawn 
great attention. These adult stem cells play important role in 

tissue homeostasis and repair due to their self-renewal and 
multilineage differentiation capacity. Aside from the well-
known feature of MSC to migrate and home tumors, there are 
conflicting reports regarding whether they promote or suppress 
tumor growth (28). Even less is known about the role of MSC 
metabolism in carcinogenesis. However, the capacity of resident 
or recruited MSC to differentiate into cancer-associated fibro-
blasts (CAF) (29) which affect cancer cell proliferation and 
invasiveness through secretion of growth factors, cytokines, and 
various metabolites has been well recognized. Indeed, mutual 
interactions between cancer cells and CAF have been found as 
the most important metabolic crosstalk in TME where metabolic 
asymmetry between these cell compartments critically drives 
tumor growth (30).

In particular, in many types of human tumors, including 
breast, prostate, head and neck cancers, and lymphomas, cancer 
cells metabolically reprogram CAF toward glycolytic pheno-
type, increasing their glucose uptake and lactate secretion (31) 
(Figure  1B). This reprogramming of CAF toward catabolic 
behavior is mediated by increased expression of GLUT-1 and 
monocarboxylate transporter-4 (MCT-4) enabling lactate efflux. 
In turn, cancer cells upload lactate through the MCT-1 and 
consume it for ATP synthesis through the TCA and OXPHOS 
undergoing reverse Warburg metabolism or metabolic coupling 
(32). Moreover, cancer cells use these molecules in anabolic 
pathways to provide biomass for cell proliferation (4). Similar 
metabolic coupling was evidenced between glycolytic adipose 
tissue-derived MSC which secreted lactate and expressed higher 
levels of MCT-4 and osteosarcoma cells which consumed lactate 
for ATP production and OXPHOS by increased expression of 
MCT-1 (33).

Other findings demonstrated that catabolic CAF also pro-
duce other metabolites, such as ketone bodies and glutamine 
which can fuel mitochondria of cancer cells and drive their 
OXPHOS and growth. Overexpression of ketogenic enzymes 
(e.g., mitochondrial 3-hydroxy-3-methylglutaryl CoA syn-
thase) was found in CAF, while enzymes associated with ketone 
reutilization (e.g., ACAT1) were shown to be upregulated in 
cancer cells (34, 35). Moreover, it has been shown that autophagy 
in CAF can be induced by ketogenesis-derived ketone bod-
ies (36), implying the reciprocal relationship between these 
processes. The role of CAF in glutamine metabolism has been 
recently studied showing increased expression of glutamate-
ammonia ligase, key enzyme of glutamine synthesis, in CAF 
upon culture with cancer cells (37). Furthermore, CAF-derived 
glutamine was found to increase mitochondrial biogenesis and 
favor OXPHOS in cancer cells by decreasing their autophagy 
(4, 38). Mesenchymal stem-like cells (MSLC), isolated from 
malignant pleural effusion or ascites of lung, breast, and ovar-
ian cancer patients, were also shown to transfer energy and 
biomass by glutamine to cancer cells (39). Moreover, it was 
proposed that glutamine and ammonium form a vicious cycle 
between MSLC and cancer cells. Namely, glutamine released 
by MSLC was used by cancer cells which further catabolized it 
to ammonia giving ammonium upon extracellular secretion. 
Interestingly, this ammonium was absorbed by MSLC promot-
ing their growth.
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Intensive investigations of mechanisms underlying metabolic 
coupling in cancer revealed critical role of nuclear factor kappa-B  
and hypoxia-inducible factor-1α (HIF-1α) transcription factors 
activation in CAF by pseudo-hypoxic state which has been 
generated via cancer cell-driven inflammation and oxidative 
stress (40). High reactive oxygen species (ROS) levels produced 
by cancer cells were found to induce loss of Caveolin-1 in CAF 
leading to increased autophagy and ketone bodies generation 
along with enhanced glycolysis mediated through HIF-1α stabi-
lization (41). Moreover, enhanced OXPHOS activity, increased 
proliferation and invasiveness of breast cancer cells were evi-
denced upon nanotubes-mediated transfer of BM-MSC-derived 
mitochondria to cancer cells (42).

However, mutual metabolic cooperation between stromal 
and cancer cells is very dynamic and even more sophisticated, 
as opposite metabolic interplay between them was reported.  
In colorectal carcinoma, opposite behavior of CAF was suggested, 
as increased expression of lactate dehydrogenase (LDH)-5 and 
MCT-4 related to glycolytic metabolism was shown in cancer cells, 
while high levels of LDH-1 and MCT-1 indicative of OXPHOS 
was found in CAF (Figure  1B) (43). Similarly, BM-MSC and 
MSC-derived CAF were shown to upload lactate secreted by 
breast cancer cells via MCT1 and to convert it via LDH-B into 
pyruvate (44) and glycolytic metabolism of melanoma cells (45). 
More recently, CAF were demonstrated to inhibit OXPHOS 
while inducing glycolysis in prostate cancer cells through deliv-
ery of extracellular vesicles (EV), which were shown to transfer 
TCA cycle metabolites, amino acids and lipids (46). Novel find-
ings showing that EV derived from serum-deprived BM-MSC 
contain glutamic and lactic acid, as well as microRNAs which 
regulate metabolism-associated genes, indicate that MSC can 
also affect osteosarcoma cell metabolism and growth through 
cargo content of their EV (47, 48).

MeTABOLiC RePROgRAMMing DRiveS 
MACROPHAgeS FATe in TMe

Macrophages are versatile innate immune cells that play crucial 
roles in normal tissue homeostasis as well as in several patho-
logical conditions (49, 50). Tumor-associated macrophages 
(TAM) are present in large proportion in TME and play a key 
role in tumorigenesis (51). Under different microenvironmental 
signals macrophages undergo different states of activation: 
the classical activation or M1 (“killing phenotype”) and the 
alternative activation or M2 (“healing phenotype”). Briefly, the 
M1 state is proinflammatory and it is induced by endotoxin, 
interferon-γ, and/or interleukin-1α (IL-1α), while M2 state is 
anti-inflammatory and it is involved in the resolution of inflam-
mation, induced by IL-4, IL-10, IL-13, transforming growth 
factor (TGF)-β, and glucocorticoids (49, 52). Most TAM have 
the M2 phenotype due to the signals in the TME, such as IL-4 
and TGF-β (51). Also, TAM can increase the number, drug 
resistance, and tumorigenicity of CSC, while CSC are able to 
induce the M2 phenotype (51).

Importantly, macrophages require changes in the intracellular 
metabolism for proper polarization. M1 macrophages express 

high glycolysis rate and release lactate in parallel to the reduction 
in oxygen consumption, allowing their survival in low oxygen 
microenvironment found in cancer and chronic inflammatory 
sites. On the other hand, M2 macrophages preferably exploit 
OXPHOS and FAO (53–55) as shown in Figure 1C.

There is an inverse relation between regulators of M1 and M2 
macrophages. For instance, in classical activation of peritoneal 
macrophages a strong expression of u-phosphofructokinase 2 
(u-PFK2) isoform concomitant with increased levels of Fru-
2,6-P2 occurs, and u-PFK2 seems to promote glycolysis (56, 57). 
On the other hand, the sedoheptulose kinase CARKL, that limits 
the pentose pathway, is upregulated in M2 and its expression is 
strongly reduced in M1 (58). Furthermore, in M1 macrophages 
the Krebs cycle is stopped at two different points. First, after 
citrate step; citrate accumulation appears to be essential for the 
synthesis of proinflammatory regulators including ROS, nitric 
oxide (NO), and prostaglandins among others (57). Cytosolic 
citrate participates in phospholipids synthesis via its conversion, 
by the citrate lyase, into acetyl-CoA, thus providing substrates 
for arachidonic acid, which is critical for the production of 
prostaglandins. Similarly, oxaloacetate is produced and used for 
NADPH generation through its conversion into malate by the 
cytosolic malic enzyme, which participates in both NO and ROS 
generation. In addition, NADPH is also produced by pentose-
phosphate pathway that is strongly activated during classical 
activation of macrophages (57, 59). Second, after succinate 
step; accumulation of succinate plays a critical role for IL-1α 
induction by lipopolysaccharide (LPS), since it leads to HIF-
1α activation by inhibition of prolyl hydroxylases. Activated 
HIF-1α further transcriptionall activates IL-1α promoter thus 
triggering IL-1α expression (60). Conversely, HIF-2α activa-
tion is mainly observed in mouse M2 macrophages to induce 
arginase-1 (Arg1) expression and inhibit NO production (61) 
(Figure  1C). Also, M1-polarized macrophages present active 
glutamine metabolism. Glutamine is, via glutaminolysis, 
metabolized to Krebs cycle, stimulating α-ketoglutarate and 
succinate production and HIF1α activation, which is critical for 
IL-1α expression (62).

Meanwhile, M2 macrophages have an intact Krebs cycle hav-
ing a primacy over glycolysis. The high active oxidative glucose 
metabolism (OGM) in IL-4-induced M2 provides the required 
energy for its contribution to tissue repair and regeneration 
(57, 63). For example, the related expression of Arg1 with the 
metabolism of arginine to proline is implicated in collagen 
production, which is required for tissue repair during resolution 
of inflammation (64). Both IL-4 and IL-13 are inducing OGM 
through inhibition of mechanistic target of rapamycin (mTOR). 
This mTOR inhibition causes reduced expression of HIF-1α 
which is further related to decreased expression of glycolytic 
and inflammatory response genes (65). Also, M2 polarization is 
highly dependent on FAO, which is critical for providing carbons 
to Krebs cycle. Triglycerides, the main source of fatty acids, are 
uptaken through CD36 and then subjected to lysosomal acid 
lipase hydrolysis, which is induced by IL-4 (57, 66). FAO induc-
tion is dependent on both STAT6 and peroxisome proliferator-
activated receptor-γ-coactivator-1β (PGC-1β). Interestingly, 
PGC-1β is vital for IL-4-induced FAO, since RNAi knockdown 
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or constitutive expression of PGC-1β either inhibit or increase 
FAO after IL-4 treatment, respectively (57, 67). Furthermore, 
lipid metabolism contributes to the regulation of membrane 
fluidity in macrophages phagocytosis process (68).

Another important feature of M2-polarized macrophages is  
the high AMPK activity, which plays a role as a key sensor of 
energy status for OXPHOS and FAO (64) (Figure 1). Furthermore, 
glutamine catabolism is also active in M2 polarization, but in this 
case relative to uridine diphosphate N-acetylglucosamine (UDP-
GlcNAc) production, which is used for the N-glycosylation of 
mannose-binding lectin, a key mediator of M2 functions (57, 59).

COnCLUSiOn

The complexity of TME arising from the variety of cell types 
present within is additionally enlarged by the heterogeneity of 
their metabolic state which can be modulated in such manner 
to sustain or stimulate tumor growth. As discussed in this 
review, metabolic signature can define whether stem cells are 
in their quiescent or proliferative state, it can define whether 
cells are being used as “feeder” cells by the tumor, or, in case 
of macrophages, whether they act as pro- or anti-inflammatory 
cells (summarized in Figure  1). Understanding the metabolic 
properties of the CSC entity that is associated with cancer occur-
rence and survival may help to define their elusive phenotype. 
Comprehension of the metabolic state of each cell population, 

particularly due to cells’ interaction within tumor stroma, 
can also open possibilities to develop new therapeutic targets 
by specific metabolic reprogramming of each of the three 
aforementioned cell types. More efficient antitumor therapies 
will have to consider simultaneous targeting of all metabolic 
compartments in TME.
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