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Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the gastrointes-
tinal tract. Although the etiology and pathogenesis of IBD remain unclear, both genetic 
susceptibility and environmental factors are implicated in the initiation and progression of 
IBD. Recent studies with experimental animal models and clinical patients indicated that 
the intestinal microbiota is one of the critical environmental factors that influence nutrient 
metabolism, immune responses, and the health of the host in various intestinal diseases, 
including ulcerative colitis and Crohn’s disease. The objective of this review is to highlight 
the crosstalk between gut microbiota and host immune response and the contribution 
of this interaction to the pathogenesis of IBD. In addition, potential therapeutic strategies 
targeting the intestinal micro-ecosystem in IBD are discussed.

Keywords: intestinal microbiota, host immune response, inflammatory bowel disease, intestinal barrier function, 
epithelial cells

iNTRODUCTiON

Inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn’s disease (CD), is 
a chronic and relapsing inflammatory condition of the gastrointestinal (GI) tract characterized by 
abdominal pain, diarrhea, and bloody stools (1–3). IBD affects approximately 3.7 million people in 
North America and Europe (4–6). Furthermore, an increasing incidence of IBD has been observed 
in Asian countries, such as China (7), India, South Korea (4, 8), and Saudi Arabia (9), over the past 
two decades. Although CD and UC share partially overlapping pathological and clinical symptoms, 
there are distinct clinical characteristics; for example, CD can affect one or several segments of the 
digestive tract, whereas UC is mainly restricted to the mucosal layer of the colon or rectum without 
affecting other areas of the GI tract (2, 10). The clinical manifestations of IBD have been well-defined 
many years ago. Nevertheless, the etiologies and pathogenesis of this disorder remain largely elusive 
(11). The identification of genetic loci associated with susceptibility to IBD has indicated the role 
of genetic background in the pathophysiology of IBD (12). However, genetic polymorphism alone 
does not predict the development of IBD, thus highlighting the involvement of other environmental 
factors in pathogenesis (13).

The human gut is the habitat for 100 trillion of different microbial organisms, including bacteria, 
viruses, fungi, and protozoans, which are 10 times more than all of the cells in the human body  
(14, 15). It is generally believed that the gut of human is colonized by commensal microbes from 
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the vaginal canal, skin, feces, or breast milk during delivery or 
after birth (16, 17). The phylogenetic diversity of the intestinal 
microbiota increases with growth and development and ulti-
mately leads to a complex and relatively stable community of 
microorganisms at the age of roughly 2–3 years (18, 19). Based on 
culture-independent molecular profiling methods (20, 21), it is 
estimated that more than 1,000 species of bacteria are represented 
in the GI tract, and the majority of them are obligate anaerobic 
organisms, including Firmicutes, Bacteroidetes, Proteobacteria, 
and Actinobacteria (22). Among them, Firmicutes (Gram-
positive) and Bacteroidetes (Gram-negative) are the predominant 
phyla across all mammalian species, accounting for over 90% of 
all intestinal bacteria (12, 23–25). The total number and composi-
tion of bacteria vary in different segments of the GI tract, with a 
relatively low number and few species of bacteria residing in the 
stomach and upper part of the small intestine. The number of 
resident microbes increases from the jejunum to each subsequent 
part of the gut, reaching up to 1012/g in the feces (18, 26).

Changes in the composition of intestinal bacteria could influ-
ence intestinal homeostasis through various signaling pathways, 
thus affecting the interactions between bacteria and the host 
(27, 28). Intestinal bacteria are responsible for the degradation 
of indigestible carbohydrates to produce short-chain fatty acids 
(SCFAs), synthesis of vitamins (vitamin K, vitamin B12, and folic 
acid), synthesis of amino acids, and regulation of fat metabolism, 
which are required for the integrity of intestinal barrier function 
(29–31). Accordingly, studies have observed that the small intes-
tinal crypts of germ-free mice are atrophic and have a decreased 
proliferation rate and impaired angiogenesis (32, 33). In addition, 
the bacteria in the gut protect the intestinal epithelium from the 
harmful effects of pathogens by inhibiting the colonization of 
pathogenic bacteria and producing antimicrobial compounds, 
thus contributing to homeostasis (34). Furthermore, the intesti-
nal microbiota actively stimulates and promotes the development 
and maturation of the immune system, which is required for the 
body’s defense against pathogens and peripheral immune toler-
ance against potential antigens in the lumen (35–37). The resident 
intestinal microbiota is vital for the physiology and health of the 
host. However, this does not mean that a particular species is 
entirely beneficial (38). Bacteroides fragilis, a commensal bacte-
rium that is well controlled under normal conditions, has been 
reported to invade intestinal tissues and pose a serious threat in 
immunocompromised individuals (39).

The diversity and composition of the intestinal flora can be 
altered by diet, environmental factors, stress, lifestyle, exogenous 
probiotics, and antibiotic use (40, 41), which in turn would affect 
intestinal homeostasis. The mutual relationship and interaction 
between the intestinal flora and host have increasingly attracted 
the attention of both research scientists and clinical practitioners, 
and this has led to a greater understanding of the human micro-
biome in recent years (42). Consistently, the dysfunction of the 
interaction between the intestinal microbiota and host can lead to 
an excessive inflammatory response and contribute to the initia-
tion and/or progression of IBD (28), intestinal bowel syndrome, 
and functional dyspepsia in humans (43), thus highlighting 
the critical role of the intestinal microbiota in health and IBD 
(44). Given these observations, IBD is regarded as an excessive 

activation of the host immune response to the intestinal micro-
biota in genetically susceptible patients (7). Herein, we summa-
rize the current literature that describes the association between 
gut microbiota and host immune response in the pathogenesis of 
IBD as well as the potential therapeutic strategies involving the 
modulation of the intestinal micro-ecosystem.

iNTeSTiNAL MiCROBiOTA iN iBD

A large number of studies have shown that the disturbance 
of normal microbial populations in the GI tract is linked to 
both acute infections, such as Clostridium difficile infection 
(CDI) and to chronic diseases, including IBD, irritable bowel 
syndrome, metabolic diseases, and autoimmune disorders  
(45, 46). The term “dysbiosis” was first coined by Metchnikoff 
in the early twentieth century to describe changes in intestinal 
bacteria, which has been further defined and extended by others 
(47). The concept of dysbiosis implies that an imbalance in the 
microbial ecosystem disrupts immune homeostasis and leads to 
intestinal disorders, including both CD and UC (48). It empha-
sizes the critical role of the interactions between the intestinal 
flora and host immune system in the pathogenesis of intestinal 
diseases (49). In an initial study conducted in 2002, Swidsinski 
et  al. demonstrated that the abundance of mucosal microbiota 
in patients affected with IBD is positively correlated with disease 
severity (50). Although they did not observe substantial changes 
in the composition of the intestinal flora in IBD patients because 
of technological limitations (24, 25), this is the first study showing 
a possible relationship between bacteria and IBD. In the last dec-
ade, the application of culture-independent molecular approaches 
in the study of intestinal microbiota diversity has improved our 
understanding of the intestinal microbiota and immune response 
in intestinal disorders (51). Metagenomic studies demonstrated 
that microbial diversity and intestinal microbiota stability 
decrease in IBD patients compared with individuals without IBD 
(52). Consistently, 25% fewer genes were detected in the fecal 
samples of IBD patients than in those of control patients (26). 
Further studies have shown that IBD patients have fewer bacteria 
with anti-inflammatory properties (bacteria in phyla Firmicutes) 
and/or more bacteria with pro-inflammatory properties (24, 
53–55). Joossens et  al. demonstrated that the fecal microbiota 
in CD patients has a reduced abundance of anti-inflammatory 
F. prausnitzii, B. adolescentis, and D. invisus and an increased 
abundance of potentially pro-inflammatory R. gnavus (56). This 
change in the intestinal flora might contribute to chronic inflam-
mation as observed in the GI tract of IBD patients.

Another bacterium with pro-inflammatory properties is  
E. coli AIEC (adherent/invasive E. coli), a mucosa-associated 
E. coli with strong adhesive–invasive properties, which was 
originally isolated from adult CD patients (57). In comparison 
with normal controls and patients with colonic CD, about 38% 
of patients with active ileal CD have been found to have an 
increased concentration of AIEC (58, 59). Campylobacter con­
cisus, another invasive proteobacterium, has also been reported 
to preferentially colonize CD patients (60–62). The increase in 
pathogenic bacteria that adhere to intestinal epithelial cells affects 
intestinal permeability, alters the diversity and composition of gut 
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FiGURe 1 | Host immune responses to intestinal microbiota. Several immune mechanisms work in concert to the intestinal microbiota and contribute to intestinal 
homeostasis. Goblet cells secret mucin glycoproteins, plasma cells secret IgA, and epithelial cells secrete antimicrobial proteins through toll-like receptors (TLRs), or 
nucleotide-binding oligomerization domain-containing protein 2 (NOD2)-dependent mechanisms. Dendritic cells (DCs) take up bacteria migrate to Peyer’s patches 
and mesenteric lymph nodes where B cells are differentiated into IgA-secreting plasma cells. In addition, sampling of polysaccharide A (PSA) from Bacteroides 
fragilis by intestinal DCs leads to induction of regulatory T (Treg), which is responsible for the production of IL-10. In addition, the antimicrobial proteins secreted by 
the host cells can modulate the composition of the microbiota. IL-10, interleukin 10; M cell, microfold cell; MYD88, myeloid differentiation primary-response protein 
88; REG3γ, C-type lectin regenerating islet-derived protein 3γ.
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microbiota, and induces inflammatory responses by regulating 
pro-inflammatory gene expression, ultimately resulting in colitis 
(63). In addition, the disruption of intestinal bacteria affects 
the pathogenesis of IBD by their metabolites. For example, the 
SCFAs produced by commensal bacteria exert anti-inflammatory 
activity and serve as a major energy source for the colonic epi-
thelium. The production of SCFAs has been reported to decrease 
in IBD-affected patients because of decreased F. prausnitzii, a 
butyrate-producing bacterium in the gut (64–67). By contrast, 
the concentration of sulfate-reducing bacteria is higher in IBD 
patients, which can result in the metabolic production of hydro-
gen sulfide that is toxic to intestinal epithelial cells and induce 
mucosal inflammation, thus leading to UC (68). Taken together, 
the overall data have indicated a strong correlation between 
intestinal microbiota alteration and the pathogenesis of IBD 
(69–71). However, it should be kept in mind that the diversity 
and composition of bacteria among experimental animal studies 
or IBD patients are not consistent, and the results are contradic-
tory under some conditions (72). Moreover, it remains unclear 
whether the observed changes in phylogenetic composition are 
causative for the development of IBD or simply a consequence of 
an altered intestinal environment during the progression of IBD  
(18, 72, 73). Additional studies and an in-depth analysis of the 
gut flora are needed to address these issues before any conclu-
sions can be drawn.

iMMUNe MeCHANiSMS FOR iNTeSTiNAL 
HOMeOSTASiS MAiNTeNANCe

Intestinal epithelial cells are in direct contact with a variety 
of xenobiotic factors, including pathogenic microorganisms, 
dietary antigens, or toxic components, which can trigger and 
activate the immune system of the host (74, 75). Inflammation 
is a protective response of the immune system to infection or 
tissue injury. However, prolonged or chronic inflammation is 
detrimental and associated with the development of IBD (76). 
Therefore, an appropriate immune response to intestinal patho-
gens without eliciting an inflammatory response to commensal 
bacteria is critical for the maintenance of intestinal homeostasis 
(77). Host immune cells have evolved various mechanisms to 
ensure intestinal homeostasis, including the mucosal and 
epithelial barrier, pro-inflammatory signaling pathways, and 
intestinal innate and adaptive components (78) (Figure  1). 
These mechanisms allow a relative stable bacterial population 
to form and limit the colonization of pathogenic bacteria and 
microbiota-driven inflammation (76, 79). First, the intestinal 
barrier formed by epithelial cells provides a physical barrier 
separating the luminal contents from the underlying immune 
compartments, thereby blocking the entry of microflora into 
the lamina propria (76). Second, the specialized secretory cells 
in the GI tract, such as plasma cells, goblet cells, and Paneth 
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FiGURe 2 | Interactions between microbiota and host genetic and environmental factors contribute to the pathogenesis of IBD. Under healthy conditions (left panel), 
pathogens are suppressed by beneficial commensal bacteria through the induction of antimicrobial proteins, such as IL-10 and REG3γ, thus maintaining 
homeostasis. In IBD (right panel), a combination of genetic factors and environmental factors (such as stress, diet, and antibiotic) lead to dysbiosis, which in turn 
affects barrier integrity, innate, and adaptive immunity, resulting in uncontrolled chronic inflammation and hyper-activation of T helper 1 (Th1) and Th17 cells, increase 
in tight junction permeability, reduction in regulatory T (Treg) cells, and decrease in REG3γ and IL-10. ATG16L, autophagy-related 16-like; CARD9, caspase 
recruitment domain family member 9; FUT2, fucosyltransferase 2; IBD, inflammatory bowel disease; IL-10, interleukin 10; IRGM, immunity-related GTPase M; 
NOD2, nucleotide-binding oligomerization domain-containing protein 2; REG3γ, C-type lectin regenerating islet-derived protein 3γ.
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cells, produce and secret IgA, mucus, and antimicrobial pro-
teins, respectively; these make up the main components of the 
intestinal mucosa, which function as a defense line to reduce 
the microbial burden of the epithelium (38). The expression 
of antimicrobial proteins in the gut is regulated by distinct 
mechanisms (Figure  1). For example, most α-defensins are 
constitutively expressed, whereas the expression of β-defensins, 
C-type lectin regenerating islet-derived protein 3γ, and a subset 
of α-defensins is regulated by bacteria-activated toll-like recep-
tor or nucleotide-binding oligomerization domain-containing 
protein 2 (NOD2) signaling (80). Third, microbiome-derived 
metabolites or small molecules with microbicidal or micro-
biostatic properties promote resistance to colonization by 
pathogenic species. For instance, polysaccharide A, a microbial 
molecule synthesized by B. fragilis, has been reported to prevent 
colitis induced by Helicobacter hepaticus through suppression 
of interleukin (IL)-17 production and enhancement of IL-10-
producing CD4+ T cells (81). Fourth, when commensal bacteria 
penetrate the intestinal epithelial cells, the innate and adaptive 
immunity systems can be activated to eliminate the microbiota 
(38). A combination of the above-mentioned actions in epi-
thelial cells, secretory cells, and immune cells ensures a state 

of limited mucosal response to commensal bacteria (38, 76). 
Importantly, immune responses induced by commensal flora 
can regulate the composition of the intestinal microbiota, thus 
maintaining the dynamic balance between commensal bacteria 
and the host immune system and ensuring gut homeostasis and 
health (82).

DYSReGULATeD iNTeRACTiON 
BeTweeN iNTeSTiNAL MiCROBiOTA  
AND HOST iMMUNe ReSPONSe iN iBD

Despite the mucus, antimicrobial proteins and secretory IgA 
are critical components for maintaining intestinal homeostasis, 
several GI pathogens can penetrate the epithelial barrier and 
contribute to the pathogenesis of IBD if they are not eliminated 
through host immune reactions (38). By using non-aqueous 
Carnoy fixative, Swidsinski et al. demonstrated increased bacte-
rial adherence to the mucosal surface of IBD patients, indicating 
a decreased ability to limit direct contact between the epithelium 
and intestinal microbiota and the potential over-activation 
of the host immune response (83) (Figure  2). Based on this 
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observation, IBD is regarded as a chronic inflammatory disorder 
caused by an excessive immune response to intestinal flora. Many 
susceptibility genes and environmental factors have been identi-
fied to interfere with the interactions between the microbiota and 
host immune system through various signaling pathways in IBD 
patients (27, 28, 82, 84, 85).

Genetic Factors Affecting the interactions 
between intestinal Microbiota and Host 
immune Response in iBD
Nucleotide-binding oligomerization domain-containing pro-
tein 2 plays an important role in intestinal homeostasis by 
activating nuclear factor-κB or the mitogen-activated protein 
kinase (MAPK)-mediated immune response upon sensing 
specific bacterial peptidoglycan motifs in the cytosol (86). The 
activation of NOD2 signaling also enhances the production of 
antimicrobial peptides and mucin, two critical components of 
the intestinal mucosa that prevent the bacteria from colonizing 
epithelial cells (86). As a critical regulator of inflammation, 
mutations of NOD2 are associated with decreased Clostridium 
group XIVa and IV (SCFA-producing bacterial strains) and 
increased Actinobacteria and Proteobacteria, resulting in an 
intestinal flora shift in patients with CD and UC and thus 
leading to a higher susceptibility to inflammation (87–91). 
Consistently, NOD2-deficient mice have compromised epi-
thelial barrier, reduced intraepithelial lymphocytes, decreased 
α-defensin production, and impaired immune responses to 
pathogenic bacteria, which are indicative of experimental 
colitis (92–94). In addition to NOD2, other IBD susceptibility 
genes, such as ATG16L1, XBP1, IRGM, CARD9, and FUT2, 
have been reported to affect innate and/or adaptive immune 
functions as well as the composition and diversity of the 
intestinal flora (95, 96). The ATG16L1 or XBP1 gene variants 
are associated with disturbances in Paneth and/or goblet cell 
function (97–99) and increased IL-1β production in response 
to bacterial peptidoglycan muramyl dipeptide (95), thus con-
tributing to the ileal disease phenotype in CD. Recently, fuco-
syltransferase 2 (FUT2), a gene that regulates the expression 
of H antigens (precursors of blood group A and B antigens) in 
the GI mucosa, has been reported to be involved in regulat-
ing the structure and composition of the intestinal micro-
biota, thereby significantly contributing to CD susceptibility  
(100). Genome-wide association studies have identified over 
163 single nucleotide polymorphisms (SNPs) associated with 
different susceptibilities to CD or UC, and more loci will no 
doubt be reported in the future (101–103). Most of the identi-
fied genes (110 of 163 gene loci) are shared by both CD and 
UC, whereas only 23 and 30 loci are specifically correlated 
with susceptibility to UC and CD, respectively (103, 104). 
These susceptibility genes primarily regulate host immune 
response signaling (101–103). Recent studies have shown 
that dysregulation of the IL-23/Th17 axis is associated with 
multiple genetic susceptibility SNPs in patients with CD and 
UC because of impairment in the innate and adaptive immune 
response (105, 106). Notably, intestinal dysbiosis is associ-
ated with the elevated generation of reactive oxygen species 

(107), which in turn can lead to changes in the composition 
and diversity of the intestinal microbiota (108), increased 
mucosal permeability (73), and increased immune stimula-
tion, thus forming a vicious cycle. Nevertheless, more studies 
are required to elucidate the mechanism of the bidirectional 
regulation between the microbiota and host immune response 
under specific conditions (109, 110). An example of how spe-
cific microbes induce intestinal inflammation and influence 
the pathogenesis of IBD was reported by Bloom et al. (111). 
In their study, commensal Bacteroides species were isolated in 
IL-10r2- and Tgfbr2-deficient mice (111). Despite the colo-
nization of the isolated bacteria in both IBD-susceptible and 
non-susceptible mice, IBD induction was exclusively observed 
in susceptible animals, thus providing an important insight 
into the role of intestinal dysbiosis in IBD induction (112). 
Considering that commensal Bacteroides species are present 
in abundance in the mammalian intestine and have beneficial 
effects on the host through the breakdown of complex dietary 
carbohydrates, modulation of mucosal glucosylation, and 
immune maturation (46), classically beneficial bacteria 
might have detrimental effects under specific conditions and 
could contribute to IBD (112). These data also support the 
critical role of genetic factors in the development of IBD via 
regulation of intestinal bacterial composition and diversity as 
well as immune responses in the GI tract. It should be kept 
in mind that the susceptibility alleles are not sufficient on 
their own to trigger IBD. The evidence thus far indicates that 
the development of IBD is a combined effect of both genetic 
and non-genetic factors, which act together and lead to 
changes in the structure and function of the human intestinal  
microbiota (113).

environmental Factors Affecting the 
interactions between intestinal Microbiota 
and Host immune Response in iBD
The composition of the intestinal flora is affected by various 
environmental factors, such as diet, stress, age, and antibiotic 
treatment (114). In this section, we will mainly focus on diet 
and stress as well as their effects on the interactions between the 
intestinal microbiota and host immune response.

Diet
It is well known that dietary components affect the structure and 
activity of intestinal bacteria (115, 116). Western food intake 
(high sugar/fat and low dietary fibers, fruits, and vegetables) is 
associated with the altered structure and function of commensal 
flora in the gut (113, 117), which might favor an increased inci-
dence of IBD (6, 8, 118). In a recent study, David et al. reported 
that the short-term (5  days) consumption of animal-based 
foods is associated with an increased abundance of bile-tolerant 
microorganisms (Alistipes, Bilophila, and Bacteroides) and 
reduced Firmicutes that metabolize dietary plant polysaccharides, 
demonstrating the rapid modulatory effect of dietary nutrients 
on intestinal bacteria (116). Considering that the production 
of H2S by Bilophila wadsworthia, a sulfite-reducing bacterium, 
might trigger inflammatory responses in the intestine (119), these 
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data provide a plausible explanation for the higher prevalence of 
IBD in Western populations. Similar results were observed when 
switching from a plant-based diet to a typical Western diet for 
1 day (115), thus highlighting the possibility of restoring the gut 
microbiota in IBD by nutritional interventions.

Dietary fibers can be converted to SCFAs by anaerobic 
bacteria (Bacteroidetes and Firmicutes) fermentation in the 
intestine, which in turn could regulate the expression of genes 
involved in the proliferation, differentiation, and apoptosis 
of intestinal epithelial cells and affect the composition of 
the gut microbiota and host inflammatory response (65). 
Various studies have reported decreased SCFA production or 
decreased SCFA-producing bacteria (Roseburia hominis and 
Faecalibacterium prausnitzii) in IBD-affected patients (64, 
65, 120, 121), suggesting a role for SCFAs in inflammatory 
responses in IBD. The beneficial therapeutic effects of SCFAs 
have also been observed following the administration of 
SCFAs or prebiotics in animal models or UC-affected patients 
(122–126). The effect of SCFAs on IBD is predominantly medi-
ated by regulating both the innate immune response and adap-
tive immune response (127). In addition, several metabolites 
produced by intestinal bacteria have been identified to have the 
ability to affect host metabolism and immunity in experimental 
colitis or IBD patients (128). The aryl hydrocarbon receptor 
(AhR) is a transcription factor that resides in the cytoplasm 
of the intestinal epithelium, macrophages, B cells, T cells, and 
dendritic cells (129). Kynurenine, a metabolic product derived 
from the essential amino acid tryptophan, has been identified 
as an endogenous AhR ligand (130) that regulates the expan-
sion of intraepithelial lymphocytes, innate lymphoid cells, and 
immune and inflammatory reactions, and maintains normal 
mucosal function in the gut (131). In the GI tract, diet-derived 
AhR ligands promote local IL-22 production, which in turn 
stimulates the production of antimicrobial peptides and mucin 
(132), thus conferring pathogen resistance and mucosal pro-
tection (132). CARD9 null mice have been reported to have 
impaired immune responses to Citrobacter rodentium as shown 
by the decreased production of colonic IL-6 and IL-17A as well 
as fewer IL-22-producing innate lymphoid cells in the colon 
lamina propria (133). In a recent study, Lamas et  al. showed 
that microbiota dysfunction and susceptibility to IBD in 
CARD9 knockout mice are mainly attributed to their inability 
to metabolize tryptophan into metabolites that act as AhR 
ligands. By contrast, the addition of tryptophan-metabolizing 
Lactobacillus strains can attenuate intestinal inflammation in 
CARD9 null mice (96). These data suggest that tryptophan 
metabolites are bioactive mediators that regulate the crosstalk 
between the host immune response and intestinal microbiota 
ecosystem (134).

Stress
Stress is thought to be another risk factor in the development 
of IBD (135). Data from preclinical and clinical studies have 
revealed that stress reduction is associated with decreased 
relapse in patients with UC or CD (136, 137). This effect of 
stress on IBD is mainly mediated by corticotropin-releasing 
factor (CRF) signaling (138). In response to stress, CRF is 

synthesized and released from multiple brain regions including 
the paraventricular nucleus and hypothalamus. The released 
CRF stimulates the production of adrenocorticotropic hormone 
from the pituitary gland, which is transported to the adrenal 
cortex to induce the synthesis and secretion of cortisol in 
response to stress (139). CRF signaling can act in peripheral 
tissues, including the stomach, pancreas, small intestine, and 
lymphocytes (139–142). Our study and others have shown 
that CRF signaling can be activated by stress in the intestines 
of rodents and pigs (143, 144). Importantly, the activation of 
corticotropin-releasing hormone has been reported to be asso-
ciated with inflammation of the colonic mucosa and increased 
intestinal permeability in patients with CD or UC (145–147), 
thus suggesting the involvement of stress in the pathophysiology 
of IBD through several mechanisms. First, CRF activation can 
lead to TNF-α release and protease secretion (hallmarks of IBD) 
from mast cells, which in turn act on epithelial cells and result 
in bacterial translocation and over-activation of the immune 
response due to increased permeability (11, 41, 148). Second, 
stress-induced HPA activation, alterations in neurotransmitters, 
and immune function activation can modulate the intestinal 
microbiota composition and metabolism as well as permeability 
(149–151). Considering the effect of stress-induced microbiota 
dysfunction in the pathophysiology of IBD, CRF antagonistic 
or anti-TNF-α agents have been found to result in favorable 
outcomes in IBD patients (152). In our recent study, we dem-
onstrated that glutamine supplementation attenuates the stress-
induced downregulation of tight junction proteins, increase in 
permeability, and release of CRF in intestinal tissues (144, 153). 
Considering the essential role of tight junction proteins in the 
maintenance of the intestinal barrier and prevention of bacterial 
translocation, glutamine might be a promising adjuvant in IBD 
therapeutics. Taken together, environmental factors are emerg-
ing as critical contributors to the development of IBD through 
complex interactions between intestinal bacteria and the host. 
In addition to dietary factors, the intake of drugs and antibiotics, 
age, and other environmental factors can influence the intestinal 
microbiota by interacting with commensal microorganisms 
(154–157).

POTeNTiAL THeRAPeUTiC 
eXPLOiTATiON BY TARGeTiNG 
iNTeSTiNAL MiCROBiOTA

It is increasingly evident that a delicate balance between the gut 
microbiota and intestinal immune system is required to protect 
against pathogenic bacteria and contribute to intestinal homeo-
stasis and functions (84). Recent studies in both animal models 
and clinical patients have highlighted the critical role of the intes-
tinal microbiota in initiating, maintaining, and determining the 
severity of IBD (72). Restoration of the diversity and composition 
of the commensal microbiota is emerging as a novel therapeutic 
intervention for microbial imbalance involved GI diseases, 
including IBD and IBS (72). Manipulation of the gut microbiota 
can be achieved by antibiotics, fecal microbiota transplantation 
(FMT), or probiotics.
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Antibiotics
The rationale for antibiotic therapy in IBD is based on evidence 
showing that intestinal microbes, including luminal bacteria, 
have an important role in the pathogenesis of IBD (27, 73, 158). 
Antibiotic treatment can decrease the abundance of pathogenic 
bacteria to favor the growth of beneficial bacteria (159, 160). 
Although antibiotics are commonly used in clinical practice to 
improve the life quality of patients, their benefits have not been 
well-established in carefully designed clinical trials with patients 
affected with IBD (159, 161). Moreover, antibiotic treatment has 
also been reported to have adverse outcomes due to currently 
unknown reasons or lead to various side effects in fetuses and 
children affected by IBD (162). A meta-analysis has demon-
strated that long-term exposure to antibiotics is associated with 
a higher incidence of CD because of their interfering effect on 
the intestinal flora (163). Moreover, antibiotic intervention early 
in life might influence the development and maturation of the 
intestinal immune system of the host (164). Another concern 
regarding antibiotic treatment for IBD is the development  
and spread of bacterial resistance to antibiotics as well as the 
rebound of intestinal bacteria after the cessation of therapy 
(162). Although antibiotics are potent in regulating microbiome 
ecological diversity, these issues should be carefully addressed  
for IBD treatment in the future.

Fecal Microbiota Transplantation
Fecal microbiota transplantation, also known as “fecal bacterio-
therapy” or “fecal infusion,” is the transfer of intestinal bacteria 
from a healthy donor to restore the intestinal microbiota of a 
diseased individual (165, 166). FMT has been adapted in clinical 
practice for CDI, which cannot be eliminated with antibiotics 
alone, and has been proven to be more effective than antibiotic 
treatment (166, 167). Thereafter, FMT has been evaluated in 
several microbiota-driven diseases, including IBD (168, 169) 
and metabolic syndrome (170), and has gained interest as a 
novel therapy option. In contrast to the impressive results of 
treatment for CDI (92%) (171), FMT has been reported to 
reduce symptoms in about 20% of IBD patients (172). This 
huge difference might be attributed to several reasons. First, the 
severity and duration of symptoms in clinical trials may influ-
ence the outcome; thus, positive outcomes are observed only 
in some patients enrolled in the clinical trials (173). Second, 
IBD is a chronic disease associated with various factors, such as 
gut microbiota impairment and genetic and/or environmental 
factors; thus, the development of IBD is a synergetic effect of 
multiple factors instead of a single one (4, 169). Third, the 
immune system of IBD patients is upregulated due to chronic 
inflammation (174), which might affect the therapeutic effect 
of FMT. Fourth, the composition of the gut microbiota from 
donors is different (175) and might affect the clinical outcome. 
Fifth, the FMT protocol used in each trial (including the crite-
rion for donor selection, patient preparation, the number and 
composition of bacteria infused, and route of administration) 
is different for each patient (172), which will result in different 
therapeutic effects. All these factors could contribute to a lower 
clinical outcome compared with that of CDI. Nevertheless, 
it is too early to draw conclusions on the potential of FMT 

therapy. Additional clinical studies using a standard protocol 
are required to evaluate its efficacy and safety before prescribing 
it for IBD patients (173).

Probiotics
Probiotics are living microorganisms that exert beneficial 
effects on the host by modulating the intestinal microflora 
(176, 177). Lactobacillus and Bifidobacterium species, two of 
the most common probiotic bacteria, have been found not 
only to improve immune system responses but also to exert a 
positive effect on the preexisting microflora stability, to inhibit 
pathogen colonization, and to enhance mucosal trophic effects 
by stimulating intestinal epithelial cell barrier responses (178, 
179). Tao et  al. showed that the probiotic Lactobacillus GG 
releases soluble factors, which in turn stimulate the synthesis 
of heat-shock proteins through the p38 MAPK pathway, thus 
exerting a cytoprotective effect on intestinal epithelial cells 
(180). In a randomized study, 39 UC patients were treated 
with L. rhamnosus GG daily, while the remaining patients 
(N = 78) were not treated; the progression of UC was inhibited 
by probiotic administration, demonstrating the significant 
clinical benefit of probiotics (181). In another study, VSL#3, a 
high-potency probiotic medical food containing eight differ-
ent strains, could induce remission and prevent the relapse of 
inflammatory disease in patients with mild to moderately active 
UC (182–184). Other probiotics, such as Bifidobacterium bifi­
dum, L. acidophilus (185), and L. reuteri ATCC 55730 (186), have 
also been reported to be associated with beneficial effects in IBD  
patients.

The effects of probiotics are mediated by modulating 
the mucosal inflammation system, enhancing competitive 
exclusion to pathogenic bacteria, regulating the secretion of 
cytokines involved in the development of IBD, or modulating 
intestinal permeability (109, 178) (Figure 3). It is well known 
that probiotics express pathogen-associated molecular pat-
terns; they can mimic the function of commensal bacteria by 
engaging and/or activating the pattern recognition receptors 
on epithelial mucosal surfaces, thus regulating the expression 
of genes involved in the host immune response (178). In addi-
tion, the beneficial effects of probiotics have been attributed 
to the restoration of the number and function of goblet cells 
and the stimulation of the mucosal immune system to secrete 
protective immunoglobulins, such as secretory IgA, protec-
tive defensins, and bacteriocidins in the intestinal tract (187). 
Although the practical application of probiotics has been 
encouraged by positive results in clinical trials involving UC 
patients, clinical trials involving CD patients have not inspired 
much enthusiasm (178, 188). Further studies on the efficacy, 
safety, and underlying mechanisms of action are required before 
probiotics may be recommended for the treatment of IBD  
patients (188).

PeRSPeCTive

The role of the interaction between the intestinal microbiota and 
host immune response in the pathogenesis of IBD has attracted 
much attention because of the application of next-generation 
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sequencing technology and the availability of genetically engi-
neered animal models. Intestinal dysbiosis is emerging as a risk 
factor because of its functional role in the maintenance of intestinal 
homeostasis, activation of the immune response of the intestinal 
epithelium, and its crosstalk with other factors through genetic 
or epigenetic mechanisms. Based on advances in our understand-
ing of the microbiota in IBD pathogenesis, several therapeutic 
interventions have been investigated for restoring the commensal 
microecology, and some of them have shown impressive results 
in clinical trials or experimental animal models. However, vari-
ous questions need to be addressed. The intestinal microbiota is 
subjected to changes in both host and exogenous factors, and it is 
largely unknown how dysbiosis is triggered and leads to chronic 
inflammation. Furthermore, an imbalance in bacterial popula-
tions is associated with various diseases; the pathogenic implica-
tions of specific microbes in CD or UC, as well as underlying 
mechanisms, remain to be determined. Despite the occurrence 
of dysbiosis in patients with CD and UC, it is unclear whether 
alterations in the intestinal flora contribute to the development of 
IBD or are instead a consequence of this disorder. The treatment of 
dysbiosis through FMT or prebiotic administration has produced 
favorable results in clinical trials involving IBD patients; however, 
both their safety and efficacy have to be determined before they 
can be considered as a therapeutic strategy. Additional studies on 

the interplay between the microbiota and intestinal epithelium 
are of great importance to advance our understanding of the 
role of the microbiota in the pathogenesis of IBD and to identify 
potential therapeutic strategies by manipulating the intestinal 
microbiota.
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