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Intralesional  Mycobacterium bovis bacillus Calmette–Guérin (BCG) has long been a 
relatively inexpensive therapy for inoperable cutaneous metastatic melanoma (CMM), 
although intralesional BCG skin mechanisms remain understudied. We analyzed intral-
esional BCG-treated CMM lesions combined with in vitro studies to further investigate 
BCG-altered pathways. Since macrophages play a pivotal role against both cancer 
and mycobacterial infections, we hypothesized BCG regulates macrophages to pro-
mote antitumor immunity. Tumor-associated macrophages (M2) infiltrate melanomas 
and impair antitumor immunity. BCG-treated, in vitro-polarized M2 (M2-BCG) showed 
transcriptional changes involving inflammation, immune cell recruitment, cross talk, 
and activation pathways. Mechanistic network analysis indicated M2-BCG potential to 
improve interferon gamma (IFN-γ) responses. Accordingly, frequency of IFN-γ-producing 
CD4+ T  cells responding to M2-BCG vs. mock-treated M2 increased (p  <  0.05). 
Moreover, conditioned media from M2-BCG vs. M2 elevated the frequency of granzyme 
B-producing CD8+ tumor-infiltrating lymphocytes (TILs) facing autologous melanoma 
cell lines (p < 0.01). Furthermore, transcriptome analysis of intralesional BCG-injected 
CMM relative to uninjected lesions showed immune function prevalence, with the 
most enriched pathways representing T  cell activation mechanisms. In vitro-infected 
MM-derived cell lines stimulated higher frequency of IFN-γ-producing TIL from the same 
melanoma (p  <  0.05). Our data suggest BCG favors antitumor responses in CMM 
through direct/indirect effects on tumor microenvironment cell types including macro-
phages, T cells, and tumor itself.

Keywords: cutaneous metastatic melanoma, intralesional bacillus calmette–guérin, melanoma microenvironment, 
antitumor immunity mechanisms, T cell response

Abbreviations: BCG, bacillus Calmette–Guérin; CMM, cutaneous metastatic melanoma; ELISPOT, enzyme-linked immuno-
Spot; FCS, fetal calf serum; GO, Gene Ontology; GrB, granzyme B; IFN-γ, interferon gamma; IL, interleukin; IPA, Ingenuity 
Pathway Analysis; M1, classically activated Mϕs; M2, alternatively activated Mϕs; Mϕs, macrophages; PCA, principal com-
ponent analysis; REVIGO, REduce and VIsualize Gene Ontology web server; RPKM, reads per kilobase per million mapped 
reads; TILs, tumor-infiltrating lymphocytes; TLR, toll-like receptor.
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inTrODUcTiOn

Cutaneous melanoma is predicted to cause approximately 9,700 
deaths from metastatic disease in the United States in 2017 
(1). In-transit melanoma, metastasis is a pattern of lymphatic 
disease spread occurring in approximately 7% of patients (2). 
Most patients with in-transit melanoma can suffer significant 
locoregional toxicity due to painful, bleeding, or necrotic 
lesions, which may become superinfected. Moreover, they can 
develop stage IV systemic recurrence within 12–18 months (3). 
The diagnosis of distant metastatic disease carries a poor prog-
nosis, with median survival rates less than 8 months prior to 
the era of checkpoint blockade inhibitors (4). Mycobacterium 
bovis bacillus Calmette–Guerin (BCG) is the best known agent 
for intralesional therapy of cutaneous melanoma metastases 
(5) and is a recommended therapeutic option in version 
1.2017 NCCN Guidelines for inoperable stage III in-transit 
melanoma (6). Up to 90% of injected tumors regress (7–10) and 
surprisingly, up to 40% of patients receiving intralesional BCG 
experience regression of their non-injected tumors (Figure S1 
in Supplementary Material) (11). The use of BCG in cancer is 
not limited to melanoma; in fact, instillation of BCG is used as 
an intravesical therapy for superficial bladder cancer (12) and 
as an adjuvant in some cancer vaccines (13).

When given intralesionally, BCG certainly encounters the 
tumor microenvironment, where tumor cells and their fate are 
dependent upon interactions with a variety of cells such as fibro-
blasts, endothelial cells, and immune cells (14). As core effectors 
of adaptive immunity, T cells play a key role in tumor immune 
surveillance within the tumor microenvironment, influencing 
melanoma patients’ survival (15, 16). For example, interferon 
gamma (IFN-γ)-expressing Th1 CD4+ T  cells contribute to 
antitumor immunity by blocking neoangiogenesis (17) and 
promoting recruitment of tumor-killing cells including CD8+ 
T and NK cells (18). In addition to T cells and NK cells, mac-
rophages (MΦs) are another important component of the tumor 
microenvironment (19), able to differentiate into a continuum 
of phenotypically and functionally different subpopulations in 
response to microorganisms and host mediators (20). For exam-
ple, classically activated (M1) MΦs protect through tumoricidal 
activity, secretion of proinflammatory mediators and produc-
tion of reactive nitrogen and oxygen species (21). In contrast, 
alternatively activated (M2) MΦs facilitate tumor progression 
by releasing anti-inflammatory mediators (22) and promoting 
angiogenesis (23). Indeed, the presence of M2-MΦs (resemblants 
of myeloid-derived suppressor cells (24) and tumor-associated 
MΦs-TAMs (19) found in  vivo) or their markers is associated 
with decreased survival in melanoma patients (25, 26). Among 
these M2-MΦs markers is CD163, a member of the scavenger 
receptor cysteine-rich family class B that binds and internalizes 
hemoglobin–haptoglobin complexes (27). CD163 also works 
as erythroblast adhesion receptor, receptor for tumor necrosis 
factor-like weak inducer of apoptosis (TWEAK), and receptor 
for different pathogens, triggering signaling cascades that lead to 
secretion of immunomodulatory molecules (28).

Tumor microenvironment can influence MΦ phenotypes 
by providing M2-MΦ-polarizing conditions (29). In fact, some 

antitumor therapies aim to overcome these inhibitory conditions 
(30–33). Although the precise tumor elimination mechanisms 
triggered by intralesional BCG are unclear, there is rationale for 
immune-mediated events involving T cell participation (34, 35).

MΦs are the primary target for mycobacterial infections 
(36), may contribute to tumor regression and progression  
(37, 38), and have malleable phenotypes (39). On these basis, 
we hypothesized that intralesional BCG therapy might also alter 
M2-MΦ phenotypes to become better effectors of antitumor 
immunity. To explore intralesional BCG-promoted mechanisms 
of antitumor immunity, we investigated the phenotypic and 
functional changes induced by BCG on in vitro-polarized MΦs, 
in combination with transcriptome analysis of injected and unin-
jected melanoma lesions from patients undergoing intralesional 
BCG therapy. Our findings indicate that intralesional BCG may 
stimulate the melanoma tumor microenvironment to promote 
antitumor immune responses by altering macrophage and T cell 
activities at the site of disease.

MaTerials anD MeThODs

healthy Blood Donors and intralesional 
Bcg Melanoma Patients
For this study, peripheral blood was acquired from healthy human 
donors enrolled in Alpha IRB- and Western IRB-approved pro-
tocols (Study ID LEED-HEALTHYVOLUNTEERS). For intral-
esional BCG melanoma patients, punch biopsies were obtained 
from in-transit metastases of melanoma patients enrolled in 
Alpha IRB-approved study (Study ID BCG_J 001) and receiving 
intralesional BCG (Table S4 in Supplementary Material). In all 
cases, written informed consent was obtained for all procedures. 
All subjects gave written informed consent in accordance with 
the Declaration of Helsinki.

reagents and antibodies
Mycobacterium bovis TICE strain (Organon Teknika Corporation, 
Durham, NC, USA) is used by John Wayne Cancer Institute (JWCI) 
surgical oncologists for treating patients with intralesional BCG 
and was also used in all in vitro experiments. Generated in 1934 
as a substrain from Pasteur Institute’s BCG, TICE is considered 
a “late strain” belonging to the tandem duplication-2 group IV 
strains, which also exhibit a deletion in the Region of Difference-2 
(40). Strains in this group exhibit the highest levels of virulence in 
SCID mice and are also the more effective in protection against 
Mycobacterium tuberculosis challenge in BALB/c mice (41).

The following monoclonal antibodies were used: 215927 
(anti-CD163, R&D Systems, Minneapolis, MN, USA), TuK4 
(anti-CD14, Invitrogen, Waltham, MA, USA), 1-D1K and 
7-B6-1 (anti-IFN-γ, Mabtech, Nacka Strand, Sweden), GB10 and 
GB11 (anti-GrB, Mabtech), 508A4A2, 508A7G8, and 508A3H12 
(anti-IL1-β, Invitrogen), and appropriate isotype controls (R&D 
Systems and Invitrogen).

MΦ Differentiation and Treatment
Peripheral blood mononuclear cells (PBMCs) were isolated from 
whole blood of healthy adult volunteers using Ficoll-Hypaque 
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gradient centrifugation. CD14+ monocytes were enriched from 
PBMCs using negative selection (EasySep Human Monocyte 
Enrichment Kit, Stem Cell Technologies, Vancouver, BC, Canada). 
Monocytes (7.5 × 105 cells/ml) were cultured in media [10% fetal 
calf serum (FCS) in RPMI 1640] supplemented with either rh-
granulocyte macrophage colony-stimulating factor (GM-CSF) 
(50 U/ml) or rh-M-CSF (50 ng/ml) to induce differentiation into 
M1- or M2-MΦ, respectively, as previously described (42). On 
day 6 of culture, cells were infected with BCG at 0.18 MOI. Cells 
were harvested and washed 24  h after infection using warmed 
PBS-1 mM EDTA.

lPs-stimulated cytokine Production
Concentration of harvested macrophages was adjusted to 
105  cells/ml. Triplicates of 200  μl of cells/well were plated for 
each condition in 96-well microtiter plates, in the presence 
of 10  ng/ml LPS or media alone. Cytokine production (IL10, 
IL12p40; human antibody pairs from Invitrogen) was measured 
from 24  h supernatants by ELISA following manufacturer’s 
instructions.

T cell culture/enrichment and enzyme-
linked immunospot (elisPOT) assay
In parallel with MΦ differentiation and treatment, another ali-
quot of PBMCs was cultured (2 × 106/ml) in media (10% pooled, 
heat inactivated human serum in RPMI 1640) supplemented 
with tetanus toxoid (5 µg/ml) and costimulatory reagent (CD28-
CD49d, 20 µl/ml). On day 4, lymphoblasts were enriched using 
Ficoll-Hypaque gradient centrifugation and cultured for 3 more 
days with 8% FCS–2% human serum in RPMI 1640 supplemented 
with rhIL-2 (1 nM). On day 7, CD4+ T cells were enriched from 
the culture using negative selection (EasySep Human CD4+ 
T cell Enrichment Kit, Stem Cell Technologies, Vancouver, BC, 
Canada). These T  cells were assayed in ELISPOT experiments 
with autologous MΦ.

For IFN-γ ELISPOT assays, Multiscreen-IP filter plates (96 
wells; Millipore) were coated with anti-IFN-γ (1-D1K, 5 µg/ml)  
according to the manufacturer’s instructions. M1, M2, or 
M2-BCG were harvested and cultured (104) in the plate overnight 
with autologous CD4+ T cells (5 × 104), in the presence or the 
absence of Tetanus toxoid (10 µg/ml).

For BCG-infected melanomas, 104 melanoma cell lines and 104 
tumor-infiltrating lymphocytes (TILs generated at JWCI using 
state-of-the-art techniques for adoptive cell transfer therapy (43) 
and kindly provided by Hitoe Torisu-Itakura) were incubated 
overnight in the plate (in all cases final volume per well was 
200  µl). TILs had been previously enriched for CD8+ T  cells 
from the TILs bulk culture by negative selection (EasySep Human 
CD8+ T cell Enrichment Kit, Stem Cell Technologies, Vancouver, 
BC, Canada). Cells were removed from the plate, and biotinylated 
detecting Ab was added (7-B6-1, 1 µg/ml) for 4 h. After wash-
ing, streptavidin-peroxidase conjugate (Pierce) was added to the 
plate for 1  h. To visualize cytokine-producing cells, substrate 
(3-amino-9-ethylcarbazole, Vector Labs) was added according 
to manufacturer instructions, and plates were incubated in the 
dark for 15 min. After washing and drying, ELISPOT plates were 

digitally scanned on an ImmunoSpot Series 3A Image Analyzer 
(Cellular Technology).

For granzyme B (GrB) ELISPOT assays, anti-GrB (GB10, 
5 µg/ml) and biotinylated anti-GrB (GB11, 1 µg/ml) were used as 
coating and detecting antibodies in Multiscreen-IP filter plates, 
respectively. Melanoma target cells (5 ×  103) and effector TILs 
(104) were incubated in the plates for 4 h. Remaining procedures 
and reagents were the same as for IFN-γ ELISPOT.

Flow cytometry
Aliquots of 105 cells were blocked with a 1:1 mixture of human 
serum and 2% FCS in PBS, then stained using fluorescent labeled 
antibodies against different cell surface markers. A total of 10,000 
gated events were acquired on a BD Biosciences FACSVerse flow 
cytometer and analyzed with FCS Express 4 software (De Novo 
Software, Los Angeles, CA, USA).

rna isolation
For in vitro cell cultures, after removing cell culture supernatants, 
uninfected and BCG-infected macrophages were harvested in 
trizol. Chloroform (0.2 parts) was added; total RNA in upper 
phase of partition was precipitated with Isopropanol and washed 
with 80% ethanol. Further isolation steps for total RNA were con-
tinued using Qiagen RNeasy mini kit, according to manufacturer 
instructions. All isolated samples yielded RNA Integrity Number 
values ≥8 using an Agilent Technologies 2100 Bioanalyzer.

For melanoma tissue, skin biopsies from previously reported 
intralesional BCG-treated patients were processed as formerly  
described (44).

cDna library Preparation and rnaseq
cDNA libraries were prepared using TruSeq RNA Library 
Preparation Kit v2 (RS-122-2001) according to the “TruSeq RNA 
Sample Preparation v2 Guide.” Briefly, purification of poly-A 
containing mRNA molecules from 300  ng of total RNA was 
performed using poly-T oligo attached magnetic beads. After 
fragmentation into small pieces using divalent cations under 
elevated temperature, the cleaved RNA fragments were copied 
into first strand cDNA using reverse transcriptase and random 
primers. Second strand cDNA synthesis was achieved using DNA 
Polymerase I and RNase H. These cDNA fragments went through 
further end repair process, single “A” base addition, and adapters 
ligation. The products were then purified and enriched with PCR 
to create the final cDNA library. Libraries were sequenced on 
Illumina HiSeq2000 at 50 million reads per sample and 1 × 50 
read length. These procedures were performed by the UCLA 
Technology Center for Genomics and Bioinformatics (TCGB).1

rnaseq Data Processing and analysis
The reads obtained by RNASeq were processed and analyzed 
with specific tools piped together on Ubuntu operating system. 
Quality assurance of reads (GC content, adaptors and PHRED 

1 http://pathology.ucla.edu/tcgb.

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
http://pathology.ucla.edu/tcgb


4

Lardone et al. Intralesional BCG Favors Anti-Melanoma Response

Frontiers in Immunology | www.frontiersin.org August 2017 | Volume 8 | Article 965

score assessment) was done with FastQC. Trimming to 
remove poor quality reads and adapters was performed using 
Trimmomatic. Read-mapping to the human reference genome 
hg19 and abundance estimation of genes and isoforms were 
done using Bowtie2 aligner within RSEM with default values. 
Estimated RPKM values were used to visualize clustering 
dendrograms, heatmaps, and the ordination plot. Raw counts 
were obtained from resulting BAM files using HTseq. Finally, 
differential gene expression was determined using the Wald 
test in DESeq2 package with raw counts as input. For the 
macrophage data, sample pairing was taken into account in 
the DESeq2 model. RNA sequencing data have been depos-
ited for public access into NCBI’s Gene Expression Omnibus 
database-GEO (45) and Sequence Read Archive-SRA (46) and 
are accessible through accession numbers GSE90748 (GEO) 
and SRP094423 (SRA).

ingenuity Pathway analysis (iPa)
The biological functions, canonical pathways, and networks 
most significantly represented in the different sets of genes were 
found using the “Core Analysis” function of IPA.2 Fold-change 
and p-value cutoffs were used in association with each uploaded 
set. The activation status of the functions/pathways was predicted 
using IPA “Upstream Regulator Analysis” tool by calculating a 
regulation Z-score and an overlap p-value, based on the number 
of known target genes of interest pathway/function, expression 
changes of these target genes and their agreement with literature 
findings. A significant activation (or inhibition) was considered 
with an overlap p-value ≤0.05 and IPA activation Z-score ≥2.0 
(or ≤−2.0).

gene Ontology (gO) enrichment analysis
Enrichment analysis was performed for the lists of differen-
tially expressed genes using the “Gene Ontology Consortium” 
enrichment analysis tool (47). Output list was summarized and 
visualized using the semantic similarity-based treemap tool of 
“REduce and VIsualize Gene Ontology” web server (REVIGO) 
(48). A p-value accounted for the probability that the linking of 
the genes list to each GO term was explained by chance alone. GO 
terms within the same process were grouped and equally colored, 
and the area values were set proportionally to −log10 (multiple 
hypothesis corrected) p-value for each term.

hierarchical clustering and Principal 
component analysis (Pca)
Macrophage or intralesional BCG samples were classified into 
molecular subgroups by unsupervised hierarchical clustering in 
MultiExperimentViewer 4.9 (MeV), using Pearson correlation 
and average linkage. RPKM values were log2 transformed, mean 
centered per gene and clustered by average linkage, using leaf 
order optimization. PCA was used to visualize the differences 
between M1, M2, and M2-BCG samples.

2 http://ingenuity.com.

statistical analyses
Data are presented as means ± SEM unless indicated. We used 
Wilcoxon signed rank test and Mann–Whitney test with Prism 6 
(GraphPad software, La Jolla, CA, USA). p-Values of less than 0.05 
were considered significant. Degrees of statistical significance are 
presented as *p < 0.05; **p < 0.01; or ***p < 0.001.

resUlTs

Bcg infection of In Vitro-Polarized  
M2-MΦs induces Transcriptional 
reprogramming leading to an MΦ with 
altered Phenotype and Functional 
cytokine response
Previous reports have shown that BCG can alter the function 
and surface marker profiles of dendritic cells (49, 50). To deter-
mine whether BCG can alter the phenotype of M2-MΦs, we 
performed transcriptome analyses of polarized MΦs. M2-MΦs 
were infected with BCG (M2-BCG) or left untreated (M2), and 
cells were collected 24 h after infection. Uninfected M1-MΦs 
(M1) were also evaluated for comparison (Figure  1A). BCG 
infection induced broad changes in mRNA profiles, where 
expression of 611 genes was significantly modified at least 
threefold (p  <  0.01, Table S1 in Supplementary Material). 
Unsupervised hierarchical clustering (Figure  1B) and PCA 
(Figure 1C) clearly separated the three different cell popula-
tions. Fivefold reduction of CD163 transcript levels from M2 
upon BCG infection was evident (Figure  1D) and further 
verified by flow cytometry analysis of CD163 surface levels 
(Figures  1E,F). M2-BCG also produced 94% less IL10 and 
500% more IL12p40 in response to LPS compared to M2 
(Figure S2 in Supplementary Material).

M2-Bcg gene signature shows 
enrichment for immune cell recruitment 
and cytokine signaling Pathways
Bacillus Calmette–Guérin reprogramming of M2 was further 
demonstrated by pathway analysis of gene expression profiles 
using GO terms according to the Gene Ontology Consortium 
and REVIGO algorithms (see Materials and Methods). GO 
analysis mapped 312 significantly enriched GO biological 
functions (B-H p < 0.05, Table S2 in Supplementary Material) 
for genes significantly upregulated in M2-BCG compared to 
M2 at 24 h after infection. REVIGO analysis of these functions 
grouped many of them under the “Regulation of response to 
stimulus” term (Figure 2A), which describes changes in state 
or activity (movement, secretion, enzyme production, gene 
expression, etc.) as a result of a stimulus (47). IPA identified 146 
significantly enriched canonical pathways (B-H p < 0.05, Table 
S3 in Supplementary Material). Most of the top-10 canonical 
pathways were related to regulation of cytokine production, 
to recruitment and activation of different immune cells and 
to signaling of various cytokines (Figure 2B). Therefore, BCG 
triggers a change in the functional pathways expressed by 
M2-MΦs.

http://www.frontiersin.org/Immunology/
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FigUre 1 | Bacillus Calmette–Guérin (BCG) infection of in vitro-polarized M2 macrophages elicits a different population of cells. (a) In vitro polarizing scheme used 
to study BCG effect on M2-MФs. Macrophages were polarized, infected, and harvested. From each condition, one fraction was used for RNA isolation and 
sequencing, while the other was assessed for CD163 cell surface expression. (B) Unsupervised hierarchical clustering of genes expressed in uninfected M1-MФs 
(M1), uninfected M2-MФs (M2), and BCG-infected M2-MФs (M2-BCG) at 24 h post infection (data filtered to the 5% of genes with highest variance, mean centering, 
Pearson correlation, and average linkage were used). (c) Principal component analysis plot of RNASeq data for M1, M2, and M2-BCG samples. 96.4% of variance 
in the combined dataset is captured in the analysis (88.7% in PC1—X axis, 5.7% in PC2—Y axis, and 2% on PC3—Z axis). (D) CD163 transcript levels (in RPKM) 
from M2 were reduced upon BCG infection. (e) Representative plot showing BCG-induced downregulation of CD163 surface levels on M2. (F) Summary of data 
from n = 6 healthy donors.
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FigUre 2 | Bacillus Calmette–Guérin (BCG)-induced extensive transcriptional changes on in vitro-polarized macrophages. (a) Most highly enriched Gene Ontology 
(GO) terms according to Gene Ontology Consortium and REduce and VIsualize Gene Ontology web server algorithms (see Materials and Methods) for genes 
significantly upregulated in M2-BCG compared to M2 at 24 h after infection. GO terms are represented by tiles, grouped and colored according to semantic 
similarities to other GO terms. Tile areas are proportional to −log10 p-value for each term. (B) Top-10 canonical pathways identified by Ingenuity Pathway Analysis 
from the list of differentially expressed genes at 24 h after infection. Pathways are ranked by multiple hypothesis corrected p-values.
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Mechanistic network from Upstream 
regulator analysis connects Bcg-
induced gene expression changes  
with iFn-γ
Upstream regulator analysis by IPA identified the upstream 
transcriptional regulators that explain the gene signature 
upregulated upon BCG. The top upstream activated regulator 
predicted was “Triggering receptor expressed on myeloid cells 
1” (TREM1), a macrophage/neutrophil receptor that amplifies 
inflammation induced by stimulation of pattern-recognition 
receptors. In addition to TREM1, inflammatory cytokine genes 
such as TNF and IL1β were also identified as important upstream 
regulators (Figure 3A). Consistently, IL1β protein levels were 
much more elevated (~4,700 pg/ml) in M2-BCG than in M2 
(~300  pg/ml) culture supernatants (p  <  0.01). Mechanistic 
networks for the top five upstream regulators (comprising a 
majority of innate immunity-related components) contained 
IFNG (Figures  3B–F). IFN-γ, a very important mediator in 
antitumor immunity (51), suggested a potential link between 
innate and adaptive immunity.

Bcg-Treated Macrophages Promote iFn-γ 
Production
To determine whether M2-BCG could increase IFN-γ pro-
duction from T  cells, we evaluated T  cell responses using an 
IFN-γ-based ELISPOT assay in which autologous T-cells 
were cocultured with different MΦs populations (Figure 4A). 
T cells cultured with autologous M2-BCG had a 100% higher 
frequency of IFN-γ producing cells than those cultured with 
M2, in a non-antigen-specific manner (Figure  4B). Live and 
heat-killed (30′ at 75°C) BCG caused similar effect (data not 

shown). Differences were not attributable to BCG-vaccination 
status, since MΦs and T  cells from BCG non-vaccinated and 
BCG-vaccinated individuals showed similar IFN-γ responses 
(Figure  4C). When T  cells were cultured with autologous 
M1-BCG the frequency changes on IFN-γ producing cells were 
even greater (Figure  4D). Previous BCG vaccination did not 
seem to favor this effect (Figure 4E).

supernatants from M2-Bcg cell cultures 
Promote Tils release of grB in response 
to Tumor cells
Since M2-BCG upregulated several cytokine genes, we hypoth-
esized BCG infection of M2 may result in secretion of soluble 
factors that enhance T cell antitumor responses. M2 were infected 
with BCG and their supernatants collected at 24  h. After add-
ing these supernatants to cocultures of autologous TILs and 
melanoma tumor cells previously isolated from metastatic 
melanoma, GrB release was measured by ELISPOT (Figure 4F). 
Using two different pairs of TILs and autologous melanoma cells  
(see Materials and Methods), we found that supernatants from 
seven different M2-BCG donors enhanced GrB release from TILs 
by ~25% in response to their autologous tumor cells (Figure 4G). 
These changes were also observed when testing M1-BCG super-
natants (Figure 4H).

gene expression Profiles from Bcg-
injected cutaneous Metastatic Melanoma 
(cMM) show comparatively higher 
expression of T cell activation signatures
To investigate the effects of intralesional BCG therapy on CMM 
in  vivo, we analyzed the transcriptome of BCG-injected vs. 
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FigUre 3 | Mechanistic networks for the most significant upstream regulators identified in M2-bacillus Calmette–Guérin (BCG) indicate a potential for influencing 
T cells. (a) Top-10 upstream regulators predicted by Ingenuity Pathway Analysis from the list of differentially expressed genes in M2-BCG compared to M2. 
Regulators are ranked by multiple hypothesis corrected overlap p-values. Predicted activation status is shown in orange (for activated) or in blue (for inhibited). S. 
enterica LPS, Salmonella enterica serotype abortus equi lipopolysaccharide; U0126, succinonitrile bis(amino(o-aminophenylthio)methylene); PD98059, 2′-amino-3′-
methoxyflavone. (B–F) Mechanistic networks for the top five most significant upstream regulators: (B) triggering receptor expressed on myeloid cells 1 (TREM1);  
(c) S. enterica serotype abortus equi lipopolysaccharide; (D) lipopolysaccharides; (e) TNF; (F) IL1B. A potential for influence on T cells is indicated by the predicted 
presence of IFNG (dotted circle) in all five networks. Nodes and edges are represented according to their predicted activation status.
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FigUre 4 | Bacillus Calmette–Guérin (BCG)-treated macrophages induce greater activation on T cells in the absence of antigen, and their supernatant can 
condition tumor-infiltrating lymphocytes (TILs) to improve antitumor immunity. (a) In vitro polarization, infection, and enzyme-linked immunoSpots (ELISPOTs). 
Macrophages were polarized, infected, and harvested as explained in the Section “Materials and Methods.” Meanwhile, another fraction of peripheral blood 
mononuclear cells (PBMCs) was cultured for 7 days in 10% fetal calf serum media-RPMI (in the presence of tetanus toxoid) and subsequently enriched for CD4+ 
T cells by negative selection. These T cells were assayed in ELISPOT experiments with macrophages. (B) M2-BCG (blue bars) increased significantly the frequency 
of interferon gamma (IFN-γ)-producing autologous T cells in an antigen non-specific manner. (c) The response was observed regardless of BCG vaccine status 
(*p < 0.05, **p < 0.01, Wilcoxon signed rank test). (D) M1-BCG (green bars) induced an even greater enhancement on the frequency of IFN-γ-producing autologous 
T cells, an effect not favored by previous BCG vaccination (e). (F) Supernatants from polarized, BCG-infected macrophages were used to condition TILs before 
targeting autologous melanoma cells. (g) Supernatants from M2-BCG enhanced granzyme B (GrB) release from TILs in response to autologous tumor cells.  
(h) Likewise, M1-BCG supernatants also increased GrB release. Number of GrB SFU from independent experiments with supernatant sets from seven different 
donors are shown as the mean ± SEM. Results with two different pairs of TILs and autologous tumor cells are shown (**p < 0.01, ***p < 0.001, Wilcoxon signed 
rank test). SFU, spot forming units. Error bars indicate SEM.
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uninjected CMM lesions. Unsupervised hierarchical clustering 
separated the tissues in accordance to whether they had been 
injected or not (Figure 5A, see legend for parameter details). 
BCG-injected tumors showed significantly higher expression of 
175 genes at least twofold (p < 0.01, Table S5 in Supplementary 
Material). Pathway analysis using GO exploration mapped 403 
significantly enriched GO biological functions in injected vs. 
uninjected tumors (B-H p < 0.05, Table S6 in Supplementary 
Material). REVIGO analysis of the top 200 GO functions 
grouped many of them under the “immune response” and 
“immune system process” terms (Figure 5B). IPA identified 72 
significantly enriched canonical pathways (B-H p < 0.05, Table 
S7 in Supplementary Material). The top-10 canonical pathways 
were largely representative of T  cell activation mechanisms, 

such as “Th1 and Th2 Activation Pathway,” “iCOS-iCOSL 
Signaling in T Helper Cells” and “Phospholipase C Signaling” 
(Figure 5C). Consistently, BCG-injected lesions presented sig-
nificantly higher transcript levels (in RPKM) of genes involved 
in these mechanisms, such as HLA-A (Figure  5D), IFNG 
(Figure 5E), PD1/PDCD1 (Figure 5F), and 4-1BB/TNFRSF9 
(Figure 5G). To determine whether T cells generate a stronger 
immune response against BCG-treated melanoma cell lines, 
we cultured HLA-A2+ melanoma cell lines with BCG in vitro 
and after 24 h, washed the tumor cells and cultured them with 
TILs isolated from an HLA-A2+ patient’s CMM (Figure 5H). 
We found that autologous (MEL9) and allogeneic (SKMel5) 
melanoma cell lines treated with BCG stimulated 14–62% more 
TILs clones to secrete IFN-γ (Figures 5I,J, respectively). The 
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FigUre 5 | Continued  
Intralesional BCG therapy on melanoma patients. (a) Unsupervised hierarchical clustering of RNASeq data for genes differentially expressed in bacillus Calmette–
Guérin (BCG)-injected vs. uninjected melanoma lesions biopsied from different intralesional BCG patients (data filtered to the 1,121 most differentially expressed 
genes by fold change ≥2 or ≤−2 and p-value <0.01; mean centering, Pearson correlation, and average linkage were used). Responders (orange) and non-
responders (yellow) to intralesional BCG treatment are indicated for each sample (see Table S4 in Supplementary Material for full detail). (B) Most highly enriched 
Gene Ontology (GO) terms according to Gene Ontology Consortium and REduce and VIsualize Gene Ontology web server algorithms (see Materials and Methods) 
for genes significantly upregulated in BCG-injected lesions. GO terms are represented by tiles, grouped and colored according to semantic similarities to other GO 
terms. Tile areas are proportional to −log10 p-value for each term. (c) Top-10 canonical pathways identified by Ingenuity Pathway Analysis from the list of 
differentially expressed genes. Pathways are ranked by multiple hypothesis corrected p-values. (D) HLA-A transcript levels (in RPKM) from BCG-injected lesions 
were significantly higher than uninjected ones. (e) A similar finding was observed for interferon gamma (IFN-γ) transcript levels (in RPKM). Consistently, increased 
levels (in RPKM) of T cell activation marker transcripts (F) PD1 and (g) 4-1BB were also verified. The horizontal line represents the population mean (h) simplified 
in vitro scheme used to study BCG-mediated changes in melanoma cell recognition by tumor-infiltrating lymphocytes (TILs). HLA-A2+ tumor cells infected with BCG 
(0.18 MOI) were harvested and washed after 24 h of infection (to remove unbound BCG), then used as target cells in IFN-γ-enzyme-linked immunoSpot (ELISPOT) 
plates paired with HLA-A2-restricted TILs (effector-to-target ratio of 2:1). (i) BCG infection of autologous HLA-A2+ melanoma cell line (Mel9) enhances IFN-γ 
production on HLA-A2-restricted TILs (Til9) from a melanoma patient. (J) Similar effect was observed when using a heterologous HLA-A2+ cell line (SKMel5) as 
target for the same HLA-A2-restricted TILs. IFN-γ spot forming units (SFU) are shown as the mean ± SEM from eight (autologous melanoma) or three (SKMel5) 
independent IFN-γ ELISPOT experiments (*p < 0.05, **p < 0.01, Wilcoxon signed rank test). (K,l) BCG increased levels of HLA-A2 on melanoma cells, which may 
account for the enhanced IFN-γ production.

10

Lardone et al. Intralesional BCG Favors Anti-Melanoma Response

Frontiers in Immunology | www.frontiersin.org August 2017 | Volume 8 | Article 965

observed increase in HLA-A2 levels of BCG-treated melanoma 
cells (Figure  5K, Mel9; Figure  5L, SKMel5) can account (at 
least in part) for this behavior. Active mechanisms by live BCG 
did not seem necessary for IFN-γ enhancement, since Mel9 
treated with heat-killed BCG exerted a similar effect, as did 
ligands for two well-established BCG-engaging receptors, 
TLR2 and TLR9 (Supplementary Figure S3 in Supplementary 
Material).

DiscUssiOn

In the late 1800s, Coley pioneered intralesional immunotherapy 
of sarcomas using bacterial components (52). Decades later, 
Coley’s vision inspired Morton and colleagues to use intralesional 
BCG for metastatic melanoma treatment (9). Regimens at that 
time used high BCG doses and triggered adverse side effects that 
weakened enthusiasm for the therapy (53, 54). Efforts from lim-
ited number of centers continued to refine the approach that lead 
to current therapeutic benefits observed with much lower doses 
and with mild adverse events (55, 56). However, the mechanisms 
by which intralesional BCG contributes to tumor regression in 
CMM remain unclear, demanding additional investigation. Thus, 
we investigated the role of BCG on MΦs and T cells, two key 
immune cell types present in the tumor microenvironment. We 
found that BCG reprogrammed M2-MΦs (a cell type linked to 
poor survival in several tumors, including melanoma) to become 
a transcriptionally and functionally distinct cell population. 
Mechanistic network analysis unveiled a connection between 
these changes and IFN-γ. Interestingly, we found M2-BCG was 
able to enhance IFN-γ production from CD4+ T cells. Finally, 
transcriptional analysis of BCG-injected vs. uninjected mela-
noma lesions from intralesional BCG patients’ biopsies indicated 
enrichment in T  cell activation pathways, a feature we could 
also verify on a simplified in vitro scheme for BCG treatment of 
tumor cells.

A growing body of epidemiologic, clinical, and immunologic 
evidence indicates that certain microorganisms can exert benefi-
cial non-specific effects against other pathogen/disease/malignan-
cies, by potentiation of mechanisms like innate immune memory 
(through epigenetic remodeling of innate immunity, or “trained 

immunity”) and cross-reacting lymphocytes (57). Indeed, innate 
immune pathways are activated sooner than adaptive immune 
cell-mediated responses upon exposure to BCG (58), leading to 
epigenetic reprogramming of circulating monocytes exhibiting 
an enhanced and lasting phenotype (59). Consistently, we found 
extensive transcriptional changes in M2-BCG compared to M2. 
Although M2-BCG gene expression signatures were distinct from 
M1 and M2, when compared to M2 they showed comparatively 
higher expression of M1 genes such as cytokines TNF, IL6, 
IL1B, chemokines CXCL8, the chemokine receptor CCR7, and 
regulators FOS/JUN, EGR1, and EGR3 (60). This is relevant in 
light of recent observations by Falleni and coworkers (26) where 
M2-recruited TAMs overwhelm M1 accumulation in all stages 
of MM progression, thus suggesting immune cancer therapies 
should focus on conversion of protumorigenic M2 macrophage 
characteristics into M1 (or somewhat similar) antitumoral phe-
notype. However, it is also possible that M1 macrophages present 
in the lesions may also become activated upon intralesional BCG 
and contribute to the antitumor response. Although for our study 
the scarce amount of punch biopsy tissue obtained after pathol-
ogy evaluation was exhausted during RNA isolation for RNASeq 
experiments, further studies on new samples are warranted to 
address the effect of BCG on M1 and M2 macrophage markers in 
the context of intralesional BCG.

Among the top enriched pathways observed in M2-BCG was 
“HMGB1 signaling.” Dying cells can expose various intracel-
lular molecules like HMGB1 (61), calreticulin (62), phosphati-
dylserine (63), and nucleic acids and their degradation products 
(64), in a cell death mechanism known as “immunogenic cell 
death” (ICD) (65). ICD stimulates an immune response against 
these dead-cell antigens acting as damage-associated molecular 
patterns to engage various pattern-recognition receptors (PRR) 
and activate myeloid and lymphoid immune cells (66). BCG 
can trigger mechanisms that mimic HMGB1 effect: by inducing 
caspase-independent cell death in tumor cells, together with 
release of HMGB1 (67), and also by displaying ligands that pre-
dominantly bind to human TLR2 and TLR4 (49). Meanwhile, 
mechanistic network analysis of M2-BCG gene signatures 
predicted that the top upstream regulator activated by BCG 
was TREM1. This receptor, which sustained expression can be 
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induced by BCG cell wall components (68), is known to interact 
with (or to be part of) toll-like receptor (TLR) 4 complex, and to 
amplify its signaling (69). All these findings are consistent with 
the ability of M2-BCG to positively influence IFN-γ responses 
on T  cells (suggested by mechanistic network analyses and 
confirmed in  vitro), resembling M1 antitumor ability (39). 
Interestingly, we found this enhancement in IFN-γ response 
occurred regardless of BCG-vaccination status of the donors. 
This phenomenon, also reported when transcriptionally profil-
ing skin biopsies of tuberculin skin test across individuals with 
or without prior BCG vaccination (70), indicates the observed 
response might not be dependent upon classical memory 
immune responses.

Another interesting finding was that the soluble fraction 
produced by M2-BCG enhanced the release of the cytolytic 
molecule GrB from T cells responding to autologous melanoma 
cells. IL1β has been described to increase proportion of GrB-
expressing CD8 T cells (71, 72). Although we found IL1β levels 
increased in supernatants from M2-BCG, blocking of IL1β did 
not prevent M2-BCG conditioned medium from increasing 
GrB release in our TILs-melanoma short-term cocultures (not 
shown). Further work is warranted to determine the relevant 
soluble factors involved in promoting antitumor activities of 
TIL, as it has been suggested for others (e.g., IL6 on long term 
in vitro settings) (73).

Intratumoral presence of activated, cytokine-producing TILs 
and preserved HLA class I expression have been associated with 
favorable outcome and prolonged patient survival in melanoma 
(74–76). Although examining different time points, the modi-
fications we observed in an in vivo setting such as injected vs. 
uninjected melanoma lesions of patients receiving intralesional 
BCG were consistent with the findings obtained in  vitro. 
BCG injection promoted transcriptional differences largely 
represented by enrichment in T  cell activation mechanisms. 
BCG-injected lesions presented increased transcripts levels 
of (among others) HLA-A, IFNG, PD1, and 4-1BB, a finding 
compatible with the enhanced production of IFN-γ observed 
on HLA-A2-restricted TILs challenged with HLA-A2+ tumor 
cells preexposed to BCG in  vitro. Research in bladder cancer 
shows BCG attachment to tumor cells, internalization, process-
ing of the mycobacterium, and presentation of BCG antigens to 
T cells would play a crucial role in activation of BCG-mediated 
antitumor activity (77, 78). Whether or not melanoma cells also 
internalize BCG remains an open question that warrants further 
investigation. Nevertheless, BCG treatment made melanoma 
cells able to better activate T cells, showing increased expression 
of HLA-A2 and reactivity to ligands of TLRs typically engaged 
by BCG. In a context of immune surveillance activated after 
BCG therapy, immunoselection and elimination of tumor cells 
with increased HLA class I is a likely event. However, this might 
also allow further outgrowth of cancer cells with low levels of 
HLA, as it has been suggested for BCG therapy in bladder can-
cer (79). Although additional studies are required, this provides 
a potential explanation for why some BCG-injected melanoma 
lesions do not regress.

Health-care costs of managing melanoma are set to expand 
quickly, fueled by aging demographics, health price inflation, 

more expensive health services and new technologies (80). 
For example, a new oncolytic viral therapy (talimogene laher-
parepvec, or T-VEC) was recently approved in the USA for local 
treatment of unresectable cutaneous, subcutaneous and nodal 
melanoma lesions. T-VEC is a genetically modified, live, attenu-
ated, herpes simplex virus type 1 that selectively replicates within 
tumors and produce GM-CSF to enhance systemic antitumor 
immune responses (81). However, this costly therapy has not yet 
been shown to improve overall survival or to have an effect on 
visceral metastases (82), unlike intralesional BCG (83). The BCG 
effects observed in different settings shed light on mechanisms 
consistent with intralesional BCG-induced modifications of 
melanoma microenvironment and promotion of antitumor T cell 
responses. Additional contributing mechanisms might involve 
other cell types such as dendritic cells, neutrophils and γδ T cells 
(44, 84, 85). A better understanding of the mechanisms and final 
effector pathways involved in intralesional BCG therapy may sug-
gest novel strategies for improved, less expensive therapies. Some 
of them might include recombinant BCG secreting functional 
cytokines, as it has been tested for murine models of bladder 
cancer (86–88) and melanoma (89).
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FigUre s1 | Intralesional BCG therapy on melanoma patients. Tumors treated 
with intralesional BCG go through macroscopic changes like inflammation, 
flattening, and eventual regression over time.

FigUre s2 | Bacillus Calmette–Guérin (BCG)-induced functional changes on 
in vitro-polarized macrophages. (a) In vitro polarizing scheme used to study BCG 
effect on M2-MΦs. (B) BCG infection decreased IL10 production on M2-MΦ upon 
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or toll-like receptor (TLR) ligands enhance interferon gamma (IFN-γ) production 
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