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Owing to its memory and plasticity, the immune system (IS) is capable of recording 
all the immunological experiences and stimuli it was exposed to. The combination of 
type, dose, intensity, and temporal sequence of antigenic stimuli that each individual is 
exposed to has been named “immunobiography.” This immunological history induces a 
lifelong continuous adaptation of the IS, which is responsible for the capability to mount 
strong, weak or no response to specific antigens, thus determining the large heteroge-
neity of immunological responses. In the last years, it is becoming clear that memory 
is not solely a feature of adaptive immunity, as it has been observed that also innate 
immune cells are provided with a sort of memory, dubbed “trained immunity.” In this 
review, we discuss the main characteristics of trained immunity as a possible contributor 
to inflammaging within the perspective of immunobiography, with particular attention to 
the phenotypic changes of the cell populations known to be involved in trained immunity. 
In conclusion, immunobiography emerges as a pervasive and comprehensive concept 
that could help in understanding and interpret the individual heterogeneity of immune 
responses (to infections and vaccinations) that becomes particularly evident at old age 
and could affect immunosenescence and inflammaging.
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iNTRODUCTiON: THe iMMUNe SYSTeM (iS) AS A COMPLeX 
SYSTeM

Life is a continuous exposure to a large variety of threatening and potentially damaging agents col-
lectively indicated as stressors, which can be divided into two basic categories: external and internal 
stressors. The first category includes not only all sorts of bacteria, viruses, fungi, and parasites 
but also nutrients that are basically foreign material that are ingested as a source of energy. The 
second category includes all types of material produced by living organisms as a consequence of 
cell turnover and metabolism, i.e., cell components or debris, metabolites, and molecular aggregates 
resulting from incomplete degradation or non-enzymatic reactions, considered as “molecular 
garbage” (1). All along the evolution, animals from invertebrates to vertebrates have developed 
adaptive strategies to recognize and neutralize such complex and dynamic combination of stressors 
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FiGURe 1 | General scheme of a bow-tie architectural module. This 
operational module is schematized as a bow tie due to the fact that it is 
composed by a conserved and relatively rigid core (“knot”) of elements and 
by two wings of inputs and outputs (fan in and fan out, respectively). The 
core can accept a wide range of inputs that are integrated according to rules 
and protocols specific for every bow-tie, yielding a wide variety of outputs. 
These features confer flexibility, robustness, and evolvability to the system. 
Adapted from Ref. (7).
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that all together represent the “ecospace” where each animal lives 
(2). On the basis of studies on the evolution of stress response, 
from invertebrates to mammals (3), we argued that an integrated 
set of immune–neuro-endocrine responses co-evolved to cope 
with internal and external stressors (4, 5). It is important to note 
that, according to this conceptualization, “antigens” can be con-
sidered as a particular type of stressors (6). The IS is composed of 
cells and receptors devoted to the recognition of, and response to 
antigenic stressors, and is considered a paradigmatic example of 
complex system. As such, it is characterized by specific features, 
such as degeneracy (the capability of a single receptor to recognize 
a variety of molecular patterns); networking (the capability of IS 
cells to interact and cross-talk with each other); plasticity (the 
capability to adapt to different situations); and finally, the so-
called bow tie architecture has been conceptualized to integrate 
all these characteristics of the IS. This latter is an organizational 
module that foresees a core of elements that can integrate dif-
ferent input signals and produce a range of output signals (7) 
(Figure 1). The way the IS ages and what are the changes that 
accompany and characterize this aging process have been the 
subject of intense studies in the last decades. In year 2000, our 
group proposed to call inflammaging the chronic, low-grade, 
sterile, inflammation that is almost universally present in old 
age and seems to be a hallmark of immunosenescence (6). The 
origins and sources of inflammaging are still matter of debate. 
In this review, we will discuss the possible involvement for the 
development and maintenance of inflammaging of a relatively 
newly described immunological phenomenon, i.e., innate 
immune memory or trained immunity. Trained immunity 
entails a cross-protection from different pathogens, and the first 
antigenic contact appears to be important in determining what 

kind of protection will be evoked. Therefore, it appears evident 
that type, intensity, and temporal sequence of antigens we are 
exposed to during the whole life are of extreme importance in 
determining the type of trained immunity that will rise up. More 
in general, the same concept is valid also for all the responses 
of the IS as a whole. The combination of these elements (type, 
intensity, and temporal sequence of antigens) is called “immuno-
logical biography” or immunobiography, and it can be considered 
unique for each individual. This uniqueness can explain how the 
same antigenic molecule, depending on the immunobiography 
of the host, can become either a strong or weak antigen or can 
induce tolerance. We will use the concept of immunobiography 
as a fil rouge of this review.

iMMUNOBiOGRAPHY AND THe 
PLASTiCiTY OF THe iS

As mentioned above, a basic characteristic of the IS as a whole 
is plasticity (8), which means that the cells of the IS are not only 
able to recognize external and internal stressors but also to 
adapt and modify according to the variety of stimuli they are 
exposed to. To this regard, a large body of literature [reviewed 
in Ref. (8)] suggests that not only the type of molecular stimuli 
and their doses are critical but also their temporal sequence. 
The combination of these factors is integrated into a bow tie-
shaped core (i.e., IS cells) to produce a variety of outputs (strong 
response, weak response, anergy, tolerance, memory, etc.). This 
integration occurs at every contact with an antigen/stressor. The 
whole history of antigenic encounters (and consequent integra-
tions into bow tie architectural modules) or immunobiography 
can be represented as a Waddington Landscape (8) (Figure 2). 
Immunobiography starts in  utero and continues lifelong since 
the very first day of life and is thus strongly influenced by early 
life events, as illustrated in Figure 2. In the event, the immune 
responses of each individual will be unique, owing to his or her 
immunological “history,” i.e., the summation (“immuneΣ”) and 
interaction of all the immunological experiences/stimuli. We 
argue that temporal and geographical dimensions, as well socio-
economic and psychological status, nutrition (oral tolerance and 
gut microbiota), and new potential source of unexpected epitopes 
produced by proteasome splicing (9) are integral component of 
immunobiography and could impinge upon the IS, thus inducing 
its continuous reshaping.

In conclusion, a variety of testable predictions derives from 
this conceptual framework, the most straightforward, suggest-
ing that the immune responses to potentials antigens, including 
pathogens, food, and vaccines, will be quantitatively and quali-
tatively different according to the overall immune-biographical 
background of the host, including age, sex, lifestyle, socioeco-
nomic and psychological status, and geography/genetics.

iMMUNOBiOGRAPHY AND 
iNFLAMMAGiNG

We surmise that immunobiography is the best conceptual 
framework to understand the immune heterogeneity among 
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FiGURe 2 | The lifelong personal history of antigenic exposure (Immunobiography), represented as a Waddington Landscape, modulates the immune response to 
specific antigens. The response to every single antigenic molecule depends on the conditions of immune system (IS) when it meets the antigen. A variety of 
conditions, including socioeconomical status and antigenic ecospace, impinge upon the IS. The antigens can be met during life under different environmental 
conditions that can shape the immune response (i.e., what slope the ball will follow in its path). It is surmised that these environmental conditions act and are 
integrated as “fan in” signal by a bow tie-like module of conserved elements. These conditions include both early life and adult-late life events. As a whole, this 
process can lead to the creation at population level of a large heterogeneity of immune responsiveness to specific antigens.
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individuals, including the difference in immune responses 
between men and women, and among different populations, 
whose genetics and IS have been molded by their evolutionary 
ecosystems and cultural habits (2). Moreover, the concept of 
immunobiography could explain the increased immune het-
erogeneity of old individuals and the age-related changes of the 
IS (i.e., immunosenescence and inflammaging). In fact, the IS 
undergoes a profound remodeling with age, contributing to the 
increased risk of infections, cancer, and autoimmune diseases 
(10). This remodeling affects both the innate and adaptive arms 
of the IS (11), and in general, it is thought to be a phenomenon 
associated with loss of functions and activities. However, this 
is not always true, as some features of the innate immunity 
seem to be preserved or even increased in immunosenescence  
(12, 13). In particular, inflammation is not dampened with age, 
and a low-grade, chronic, sterile inflammation (inflammaging) 
seems to be an almost universal phenomenon associated with 
advanced age (6, 14, 15).

The hyperproduction of innate immunity cytokines in elderly 
donors, including IL-6, TNF-α, and IL-1β, was first demon-
strated in in vitro stimulated peripheral blood mononuclear cells 

(PBMCs) from aged people (16). The age-related activation of 
innate immunity was further confirmed in terms of blood levels 
of cytokines (17, 18) and chemokines (19–21). Accordingly, the 
age-related increase of pro- and anti-inflammatory mediators in 
peripheral blood was recently demonstrated on a large longitu-
dinal cohort of Italians aged 20–102 years (22), underlying both 
the activation of innate immunity with age and the simultane-
ous activation of anti-inflammatory molecules, such as IL-10. 
Importantly, the presence of anti-inflammatory compensatory 
mechanisms was previously shown to be present also in centenar-
ians (14), thus highlighting possible pathways of adaptation that 
likely favor longevity.

Since its very beginning, inflammaging was pigeonholed 
within an evolutionary framework where a central role of the 
macrophage was foreseen. This cell is indeed able to perform 
not only phagocytosis of foreign pathogens but also to produce 
a variety of soluble mediators, mainly but not exclusively pro-
inflammatory (6, 23). The activation of this versatile cell (that 
is, now recognized to possess also a form of memory, see next 
paragraphs) likely accounts for the so-called physiological 
inflammation postulated since the beginning of the twentieth 
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century by the great immunologist Il’ja Metchnikoff (24). Now, 
the available data indicate that other cell types (not neces-
sarily belonging to the IS) can contribute to the setting up of 
the inflammaging, such as adipose and skeletal muscle cells. 
Moreover, an important contribution to inflammaging can arrive 
from senescent cells (1, 15), which are provided with a specific 
senescence-associated secretory phenotype characterized by the 
production of pro-inflammatory cytokines such as IL-6, IL-1β, 
IL-8 and chemokines such as CXCL1, CXCL2, matrix metal-
loproteinases, serine proteases, and regulators of plasminogen 
activators (PAI-1, PAI-2), etc. (25, 26). If the innate immune 
cells do not efficiently clear out these senescent cells, they can 
accumulate and contribute to the creation of a pro-inflammatory 
environment.

We have recently proposed that an age-related increase in the 
production of danger-associated molecular patterns (DAMPs) 
can impinge upon the level of inflammaging more importantly 
than pathogen-associated molecular patterns (PAMPs), through 
innate immune cells receptors, leading to innate inflamma tory 
response (1). These DAMPs include, among others, high-mobility 
group B1 (HMGB1) protein, sodium monourate and uric acid 
crystals, oxidized fatty acids, and proteins. In particular, evi-
dence exists for some specific molecules such as oxidized LDL, 
HMGB1, and uric acid. Oxidized LDL can train monocytes to 
secrete more pro-inflammatory cytokines (27, 28) (IL-6, IL-8, 
TNF, and MCP-1) and to express more pattern recognition 
receptors (PRRs) and LDL receptors (28). Mouse splenocytes that 
had been pretreated with HMGB1 responded with significantly 
higher TNF production when restimulated with PAMPs such as 
Pam3Cys, lipopolysaccharide (LPS), CpG, or other DAMPs like 
S100A12 (29). Finally, also uric acid appears to be able to prime 
the production of Il-1β and other pro-inflammatory cytokines in 
PBMC or monocytes (30).

The lifelong interaction between the gut microbiota and the 
IS could contribute to inflammaging. As recently summarized, 
host genetics, prenatal environment, and delivery mode can 
shape the newborn microbiome at birth (31). Moreover, a vari-
ety of other postnatal events such as antibiotic treatment, diet, 
exposure to infectious agents, among others can impinge upon 
and modify the development of the infant’s microbiome and IS, 
with long-term effects (risk for several diseases) in adult life. 
The age-related trajectory of the gut microbiota composition, 
from young adults to centenarians, and its possible contribu-
tion to inflammaging has been recently described (32, 33).  
A complex, lifelong remodeling of such a complex ecosystem 
emerged, where the decrease of potentially beneficial species 
and the increase of potential pathobionts related to systemic 
inflammation (32) is continuously counteracted by the increase 
of sub-dominant species, some of which likely exert a protective 
effects (33).

Inflammaging appears to be associated with decreasing health, 
but is also compatible with longevity, being present in centenar-
ians. This apparent paradox can be understood in the light of 
immunobiography. According to this concept, a clini cal history 
or an environmental circumstance could shape the IS to coun-
teract inflammaging by setting up effective anti-inflammatory 
responses.

iMMUNOBiOGRAPHY, TRAiNeD 
iMMUNiTY, AND THe MeMORieS  
OF THe iS

A paramount feature of the IS (and of immunobiography too) is 
memory, i.e., the capacity to give rise to a more rapid and efficient 
response at the second contact with a previously met antigen. 
Until few years ago, a tenet in immunology was that memory 
was an exclusive feature of the adaptive IS of vertebrates. A 
classic example reported since many years is the phenomenon 
of the “original antigenic sin” (34), which influences the type of 
response to a second challenge with a pathogen. Upon a primary 
response toward a pathogen (e.g., a virus), a subsequent exposure 
to the same pathogen elicits a secondary amplified and quicker 
response. However, if the second pathogen is very similar but not 
identical to the first, the IS can mistakenly identify the second 
pathogen as the first one encountered and progress to a classical 
memory response, which may be ineffective toward the second 
pathogen.

Actually, several observations have challenged this tenet, as 
examples of memory involving the innate branch of the IS were 
already reported since many decades (35). To this regard, it is 
known since long time that in plants and invertebrates, which 
only display innate immunity mechanisms, memory charac-
teristics are present in the response to pathogens. In plants, a 
phenomenon called systemic acquired resistance (SAR) is well 
documented (36–38). This sort of primitive immunization 
protects plants for long periods of time against infections differ-
ent from the one that elicited SAR, including viruses, bacteria, 
fungi, and oomycetes. In invertebrates, the existence of a form 
of memory where the information on a first encounter with a 
pathogen is stored and rapidly used on demand has now been 
demonstrated in a wide range of species (39, 40). Intriguingly, 
this type of responses can vary in degree and specificity in rela-
tion to different priming. Moreover, a phenomenon similar to 
allograft rejection after tissue transplantation has been demon-
strated in some invertebrates (41, 42). For example, in second 
grafting experiments, leech responses to the second transplant 
were always faster and stronger than those occurring in first set 
grafting experiments. In second set experiments, two cell popu-
lations are evidenced, and some of them expressed CD56 and 
CD8-α and some others CD8-β and TNF-β allowing to postulate 
the existence of a sort of positive immune memory. In addition, 
the presence of CD8β- and TNF-β-positive cells in the graft area 
could suggest the existence of leukocyte-like cells that had previ-
ously responded to antigenic stimulation and have thus become 
able to respond rapidly to subsequent antigenic challenges. As 
a whole, these data support the idea that in invertebrates a sort 
of immunological memory exists even if with different features 
compared to the classical memory of the adaptive immunity pre-
sent in vertebrates. In recent years, an ancestral network of cells 
with a thin, elongated morphology called “telocytes” (TCs) has 
been described in both invertebrates and vertebrates, including 
humans (see Box 1). As detailed in the Box 1, the TC ancestral 
network is able to integrate many different functions shared with 
players involved in trained immunity, such as complex innate 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


BOX 1 | Telocytes (TCs) as possible players in trained immunity.

Recently a new type of cellular system is described as ubiquitous in both 
vertebrates and invertebrates (40, 43–47). These cells named TCs are stromal 
cells strategically spread in various types of tissues from invertebrates up to 
humans. TCs are characterized by a very small spindle-shaped cell body, 
essentially occupied by a large nucleus, from which very long convoluted 
cytoplasmic processes, the telopods, originate. Thanks to these thread-like 
telopods, TCs communicate among themselves, with any other type of cells 
and interact with collagenic bundles, forming a key extensive intercellular 
network. The interaction among these different players take place directly by 
cell–cell contacts and indirectly via the release (in autocrine, paracrine, endo-
crine manner) of microvesicles and exosomes, which can transport a variety 
of soluble factors involved in the regulation of different physiological processes 
(47–51). TCs immunophenotype is quite complex. Apart the specific markers 
(co-expressed CD34/vimentin and Oct-4/c-kit) (44), these cells express 
markers of the immune-surveillance such as Toll-like receptors (TLRs) 4 and 5, 
allograft inflammatory factor-1 (Aif-1 also known as IBA-1) involved in inflam-
matory responses, adrenocorticotropic hormone implicated in the immune 
and neuroendocrine responses, and endogenous pro-inflammatory cytokines 
such as IL-18 (47). TCs respond to chemical or physical stimuli changing their 
morphology and behavior. These cells, by acquiring migratory phenotype, 
numerically increasing and overexpressing the previously mentioned factors, 
are able to rapidly move toward the injured area where they also participate in 
repair and regenerative processes (47, 52). Moreover, it has been observed in 
the leech Hirudo medicinalis that TCs originate from precursor circulating cells 
during the angiogenesis that ensues the graft rejection inflammatory phase. 
These invertebrate/vertebrate cells organized in a 3D network are equipped to 
function as an immune-neuroendocrine system. This evolutionarily conserved 
system is formed by resident cells working as outposts to signal the presence 
of non-self/damaged-self molecules and to alert the internal defenses of the 
organism. Owing to the fact that they are tissue resident, TC networks are able 
to respond promptly and faster than migrating immunocytes that need time to 
reach the stimulated (injected with LPS or injured) area.
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immune responses, regenerative processes in wound healing, 
and secretion, so it is tempting to speculate that it might also 
play a role in trained immunity.

Trained immunity appears to be based on innate immune 
cells that are also present in vertebrates. It was therefore conceiv-
able that also in vertebrates similar phenomena were present. 
Consistently, studies performed in the past indicated the exist-
ence of an innate memory also in mice. In fact, vaccination with 
BCG was reported to protect mice against secondary infec-
tions with Candida albicans or Schistosoma mansoni through 
T cell-independent mechanisms (53), involving activated tissue 
macrophages (54). Moreover, infection with attenuated strains of 
Candida was observed to induce protection not only from rein-
fection with Candida itself but also from other pathogens such 
as Staphylococcus aureus, and this phenomenon was present also 
in athymic animals (55). More recently, it has been demonstrated 
that challenge of mice with CpG confers protection against 
Listeria monocytogenes infection (56). As a whole, it appears that 
in both invertebrates and vertebrates, innate immunity cells are 
provided with a capacity to respond more promptly to a second 
challenge, a feature that resemble the memory reactions typical 
of the adaptive immunity, with the crucial difference that such 
memory seems to be not limited to the specific antigen that trig-
gered the first response. To describe this kind of innate memory, 
the group of Mihai Netea proposed the term “trained immunity” 
(57, 58). Trained immunity is evoked not only by microbial, viral, 

or fungal challenges (e.g., β-glucans, LPS) but also by molecules 
that are contained in vaccine adjuvants. Actually, adjuvants 
include TLR agonists such as monophosphoryl lipid A, CpG 
oligonucleotides, aluminum phosphate, or hydroxide salts. 
These adjuvants act mainly by inducing mild local inflammatory 
reactions that can boost the adaptive immune response toward 
the challenging antigen(s) (59). It has been shown that trained 
immunity is responsible for non-specific effects of vaccines such 
as BCG, OPV, and MMR (60, 61). It is known actually that these 
vaccines offer a protection from overall mortality that is not 
explained simply by the protection against the targeted patho-
gens (62). It is possible that this non-specific protection could be 
accounted for by the capability of adjuvants of inducing trained 
immunity responses (63).

At present, there is evidence that macrophages and NK cells 
are the main innate immune cells provided with this memory 
(64–66); however, also other cell types of both myeloid and 
lymphoid lineages (such as γ/δ T cells) seem to display similar 
features (67, 68), including NK-like CD8+ T  cells, invariant 
NKT cells, and innate lymphoid cells (ILCs), even if more data 
are needed to clarify the underpinning mechanisms (see also next 
paragraph).

The basic molecular mechanisms involved in and responsible 
for the trained immunity memory appear to be of epigenetic 
nature. In fact, one of the mechanisms responsible of macrophages 
and dendritic cells (DCs) trained immunity is the capability to 
undergo epigenetic modifications following exposure to PAMPs 
or DAMPs (69). As it will be described in detail in Box 2, these 
epigenetic modifications induce high concentrations of inflam-
matory cytokines, including IL-1, IL-12, IL-18, and IL-23, which 
promote IL-17 and IFN-γ production by innate lymphocytes, 
including γδT cells, innate lymphoid cells (ILCs), and NKT cells, 
that exert protective effector functions against the second patho-
gen (58, 69, 70).

The clear-cut distinction of innate and adaptive immunity 
based of the presence of memory is now much more blurred, and 
memory appears to be a shared property of the two branches of 
the IS, even if the memory of innate immunity (trained immu-
nity) has different features. Therefore, the IS has at least two ways 
to remember previously encountered antigens. If and how these 
two “memories” do interact with each other is still unclear. They 
could act synergistically, or, on the contrary, trained immunity 
could dampen the adaptive one. This interaction could explain 
at least in part the heterogeneity of immune responses observed 
in the elderly. Urgent studies are needed to clarify this point. 
However, it is not known how trained immunity can change dur-
ing aging and what contribution these possible changes can give 
to immunosenescence and inflammaging.

CeLLS AND ReCePTORS iNvOLveD iN 
TRAiNeD iMMUNiTY DURiNG AGiNG

In this paragraph, we will briefly discuss the present knowledge 
on the changes that occur with age in cells and their receptors 
presently known to be involved in trained immunity such as 
monocytes/macrophages, NK, and γδT cells.
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BOX 2 | Trained immunity and epigenetics.

There is evidence that trained immunity, at variance with adaptive immu-
nity, does not imply genetic recombination, but relies upon epigenetic 
remodeling that influences gene expression profile without changing the 
DNA sequence of the cells. The first evidence that trained immunity is 
largely dependent from epigenetic mechanism derives from studies on 
plants (71).

Even though epigenetic changes tend to be maintained over time, they 
are less stable than the genetic rearrangement that occurs in adaptive immu-
nity, and for this reason, trained immunity duration is shorter than adaptive 
immunity (that relies on clonal expansion of memory lymphocytes with specific 
receptors originated by genetic recombination). In general, the mechanism 
behind trained immunity can be recapitulated as follows: innate immunity 
cells, such as monocytes, macrophages, and NK cells, respond to antigenic 
stimuli by undergoing a shift in energy metabolism; this in turn causes an 
epigenetic rewriting that remains stable over time and have the potential to be 
inherited during cell differentiation. In particular, a shift of glucose metabolism 
from oxidative phosphorylation to aerobic glycolysis, increased glutamine 
metabolism, and cholesterol synthesis have been observed to play a crucial 
role in determining the establishment of the epigenetic modifications typical of 
the trained immunity phenomenon (72). Such epigenetic modifications lead 
to transcriptional programs that rewire the intracellular signaling of innate 
immune cells and induce an increase in the capacity to respond to the stimuli. 
A shift from phosphorylation to glycolysis has been observed in β-glucan-
trained monocytes (70). There are different mechanisms by which a change 
in energy metabolism can impinge upon epigenetic setting. As an example, 
glycolysis results in higher ratios of NAD+/NADH, and this has been shown to 
activate Sirtuin 1 and 6 (73). Furthermore, it has been demonstrated that end 
products of glycolysis can inhibit histone deacetylases, thus causing genes to 
be more accessible (74).

Depending on the nature of the stimuli and the type of epigenetic modi-
fications, cells maintain a hyperactivated phenotype for weeks or months. 
Accordingly, the specificity of the hyperactivation in response to the activating 
signal/agent is correlated with the epigenetic modification involved in the first 
response (58). Data obtained on monocytes indicate that upon vaccination 
with BCG, trained immunity was induced through the NOD2 receptor and 
mediated by increased histone 3 lysine 4 trimethylation (75). Epigenetic 
modifications can be triggered even in bone marrow precursors of immune 
cells. To this regard, a study on mice showed that bone marrow epigenetic 
remodeling of DC progenitors can be also stimulated by the gut microbiota 
(76). These data are of the utmost interest as they open a new perspective on 
the relationship between trained immunity, chronic inflammation, and a wide 
range of physiological and pathological conditions such as aging, obesity, and 
type 2 diabetes, where consistent changes in GM composition have been 
reported (32, 33, 77).

Beside histone modification, that is the prominent epigenetic mechanism 
involved in the trained immunity acquisition, other mechanisms are involved, 
such as DNA methylation and miRNA expression. DNA methylation was 
correlated with trained immunity after CMV infection (78, 79). In these studies, 
NK  cells underwent large changes in the overall methylation profile, which 
altered profoundly their secretory capacity (78, 79). This result is particularly 
interesting when considering trained immunity under the perspective of aging, 
since it is known that the DNA methylation structure undergoes profound 
changes with age in all the tissues and organs (80). Accordingly, it will be of 
great interest to investigate the effect of such age-related modifications on 
trained immunity efficacy and plasticity.

A specific contribution is also played by microRNAs. They are short 
RNAs that play a critical role in influencing gene expression by silencing 
genes hierarchically high in the expression cascade of specific pathways. 
A critical characteristic of microRNAs is their long life in cells, thus provi-
ding a concrete contribution to the trained immunity setup (81). Among all 
the microRNAs, miR-155 is of particular interest, since its upregulation in 
response to external agents has been correlated with the activation of mye-
loid cells (82). Moreover, miR-155 constitutes a direct link between trained 
immunity and inflammaging since is one of the microRNAs involved in the 
regulation of inflammation (the so-called inflamma-mir) active in the aging 
process (83, 84).
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Monocytes/macrophages are perhaps the most characterized 
cells involved in trained immunity, and it is well established 
that a great heterogeneity within this cell type does exist. Three 
different populations based on the differential expression of 
the LPS (CD14) and the FcIII (CD16) receptors (85) have been 
identified. This circulating monocyte pool dynamically changes 
during aging. In particular, CD14+ D16+ non-classical monocyte 
subset increases with age in healthy adults (21) but, importantly, 
displays reduced HLA-DR surface expression in elderly donors, 
suggesting a decline of antigen presentation function. Further, 
many data suggest that TLR expression and signaling efficiency 
in monocytes and DCs is modified during aging. A highly 
significant increase in TLR5-induced production of IL-8 from 
monocytes of older individuals has been reported along with an 
incomplete activation of NF-κB in response to TLR5 signaling 
(86). Moreover, in a large cohort of healthy human donors, 
peripheral blood monocytes from elderly donors showed a 
decreased expression and function of TLR1 (87). Similarly, 
reduced TLR levels and signaling responses in DCs were found 
(88). Interestingly, dysregulation of TLR3 in macrophages and 
lower production of IFN by DCs from elderly donors after infec-
tion with West Nile virus was reported (89). In addition, Metcalf 
et al. (90) have recently showed in a small cohort of donors that 
PBMCs from old subjects exhibited a slower immune response 
to TLR4, TLR7/8, and RIG-I agonists compared to cells from 
adult individuals. This was evident by the rapid induction of 
the IFN-signaling pathway in PBMCs from adults treated with 
different PRR agonists, including LPS among others. However, 
old subjects did produce higher levels of CCL1 in response to 
LPS and analogs.

Of note, TLR4, the receptor for LPS, is downregulated in 
macrophages that have been challenged with repeated exposures 
to low doses of LPS, a process known as endotoxin tolerance (91). 
Recently, it has been reported that the expression and activation 
of TLR4 induced by exposure to Mycobacterium leprae was 
downregulated upon the previous exposure to BCG (92). This 
suggests that trained immunity could involve TLR4 and that this 
involvement does not always entail activation, but also possible 
phenomena of tolerance. In particular, TLR4 and TLR2 can be 
responsible for tolerance, while other receptors like NOD2 and 
Dectin-1 can be responsible for trained immunity (30).

As far as NK cells, age-associated changes in phenotype and 
function have been described (93–95). First, NK  cells express 
different functional TLRs (96, 97) recognizing bacterial PAMPs 
and activating their response (98–100). Other molecules, such 
as natural cytotoxicity receptors (NCRs), including NKp30 and 
NKp44, are key receptors in the recognition and the killing of 
virally infected or tumor cells. The recent identification of the cel-
lular ligands for NKp44 and NKp30 such as exosomal proliferat-
ing cell nuclear antigen implicates that NCRs may also function as 
receptors for DAMPs (101). Therefore, the activation of NK cells 
could be amplified during aging due to the increased availability 
of DAMPs, according to the Garb-aging hypothesis (1). Further, 
immunosenescence is associated with the increase of CD56dim 
NK cell subset, which expresses a mature phenotype, character-
ized by the augmented expression of markers such as CD57 (102) 
and KLRG1 (103, 104). The CD57 antigen (HNK-1, LEU-7) is 
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also used to identify terminally differentiated “senescent” T cells 
with reduced proliferative capacity and altered functional proper-
ties as recently reviewed (105), but it seems to have a different 
expression pattern in NK cells. In fact, CD57 characterizes two 
typical NK subsets, i.e., the CD16+CD56dim cytotoxic NK  cells 
and the CD16+CD56− inflammatory NK  cells, whereas the 
CD16−CD56bright regulatory NK cells do not express this marker 
even during chronic infections (102, 106). To this regard, infection 
with viruses including HIV and CMV could drive the expansion 
of CD57+NKG2Chigh NK cells (107, 108). It has been proposed 
that CD57+NKG2Chigh NK  cells might represent human CMV-
specific “memory” NK  cells, thus highlighting the “adaptive 
characteristics” of NK cells (109). Remarkably, CD57+NKG2C+ 
NK  cells expansion was observed in patients positive for both 
CMV and HIV, reaching levels >70% of all circulating NK cells, 
in comparison with patients who were positive only for either 
CMV or HIV (110). These data suggest that this NK subset may 
be trained by CMV and likely undergoes a great expansion when 
CMV reactivation occurs, a condition more frequently found in 
HIV-infected individuals. Hypothetically, a reactivation of latent 
virus can occur many times during aging and could stimulate 
CD57+NKG2Chigh NK cells, therefore triggering expansion of this 
cell subset.

At variance, the subset of CD56dim KLRG1high NK  cells is 
expanded in the elderly, displaying impaired cytotoxicity and 
proliferation as well as other features of senescence (103). 
Interestingly, KLRG1 or the killer cell lectin-like receptor G1 is 
also considered a marker for T  cell senescence (111, 112) like 
CD57 molecule (113).

As a whole, these data suggest a convergence of adaptive and 
innate immunity during immunosenescence (114). A progres-
sion toward terminal differentiation (or senescence) of CD8+ 
T  cells appears in fact to be associated with the acquisition 
of the hallmarks of innate-like T  cells and the use of recently 
acquired NK  cell receptors. These phenotypic, functional, and 
transcriptional changes would be a sort of compensation for 
functional deficits of conventional NK  cells and T  cells (115). 
Different health and environmental conditions, such as autoim-
munity, inflammation, viral antigen re-exposure, or the presence 
of persistent tumor antigens, have been shown to allow the dif-
ferentiation or “adaptation” of NK-like CD8+ T cells, as recently 
reviewed (116).

As far as γ/δ T cells, these cells can be activated independently 
from TCR and APCs. Receptors used by γ/δ T  cells include 
NOTCH (117), NKG2D, and TLRs. To this regard, almost all 
TLRs were found in human γ/δ T cells (118). No data are cur-
rently available on age-related changes in expression or function 
of these receptors, even if it is known that a decline of total 
peripheral blood γ/δ T cell frequency occurs with age, along with 
changes in phenotype and TCR repertoire (95, 119), phenomena 
accentuated by CMV infection (120, 121). Interestingly, some data 
show that peripheral blood Vδ2(neg) γ/δ T cells are significantly 
increased in CMV-seropositive healthy individuals compared to 
CMV-seronegative controls in all age groups (122), thus reinforc-
ing the idea that persistent antigenic load may modulate T cell 
repertoire with important effects also on innate immunity and 
inflammation (123).

Finally, it has been observed that also other innate immune 
cells such as group 2 innate lymphoid cells (ILC2s) display 
memory features (124). In the lung, ILC2s are stimulated by 
inhaled allergens and produce Th2-type cytokines inducing 
T cell-independent allergic lung inflammation. After the resolu-
tion of the inflammation, some ILC2s persist as allergen-expe-
rienced cells, can respond to unrelated allergens more potently 
than naive ILC2s, and exhibit a gene expression profile similar 
to that of memory T  cells (124). Nothing is known at present 
on the possible modifications of the activity (and memory) of 
such cells during aging. Moreover, it is possible that also other 
innate immune cell types such as neutrophils or TCs (as proposed 
here) can be provided with memory features. Further studies are 
needed to test this hypothesis.

Overall, a complex scenario emerges for cells and receptors of 
innate immunity: some of them undergo consistent age-related 
impairment, while others are preserved or even  hyper-regulated. 
Thus, trained immunity could dramatically change at advanced 
age due to the fact that some cell types (and their receptors) but 
not others undergo complex reshaping, possibly driven by the 
persistence of specific antigens (such as viral ones) or increased 
availability of DAMPs.

iMMUNOBiOGRAPHY iNTeGRATeS 
iMMUNOSeNeSCeNCe, iNFLAMMAGiNG, 
AND TRAiNeD iMMUNiTY

The heterogeneity inherently present in any population is at the 
basis of a variety of important immunological, largely unclear 
aspects, such as the different responsiveness of individuals to 
various antigenic stimuli, i.e., bacteria, viruses, parasites, and 
vaccines. This heterogeneity also increases with age, thus becom-
ing particularly important not only in immunology but also in 
gerontology and geriatrics, as it affects the risk of developing age-
related diseases. The basic assumption and suggestion proposed 
here is that we have to pay particular attention to immunological 
anamnesis of each individual to reconstruct as accurately as pos-
sible the own immunobiography. Immunobiography goes beyond 
the simple, erratic measurement of immunological parameters 
(e.g., immunoglobulin level and lymphocyte subsets, or antibody 
titer in the blood at a certain time point). We think that an effort 
is required to put all the immunological information regarding a 
single person altogether, in a standardized and easily accessible 
way (chip?). This integrated perspective is at present largely 
neglected, likely because of a lack of standardized tools to collect 
the information necessary to describe the immunobiography 
of each individual. Information regarding the type of delivery 
(natural vs caesarian), of early nutrition (breast vs bottle feeding) 
and diet, the use of antibiotics, the composition of microbiota, 
the different types, sequence and number of infectious diseases 
and vaccinations, to mention only a few, is extremely informa-
tive in order to predict individual’s immune responses. Not less 
important are the data regarding ethnicity, socioeconomic, and 
psychological status that are an integral part of immunobiography.

As discussed all along this review, the knowledge on 
trained immunity in aging is still very scanty; accordingly, new 
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experimental data are necessary to clarify the possible role of 
trained immunity in immunosenescence and inflammaging. At 
present, the available data, summarized in the previous para-
graphs, are compatible with different possible scenarios. Trained 
immunity could undergo a functional impairment/decline with 
age, thus contributing to immunosenescence. However, it is also 
possible that trained immunity is hyperactivated with age, thus 
contributing to inflammaging and exerting deleterious effects 
on the onset of age-related chronic diseases (125, 126). Indeed, 
the main feature of cells of trained immunity is an enhanced  
production of pro-inflammatory cytokines, such as TNF-α, IFN-γ,  
and IL-1β in response to a subsequent challenge (127), and the 
receptors of innate immune cells can bind not only pathogen 
components but also “self ” components (DAMPs) (1). LPS and 
other PAMPs can train monocytes/macrophages to become 
more pro-inflammatory when exposed to a second stimulus, 
but can also be rendered less responsive to pathogen or PAMPs 
through induction of tolerance or immunosuppression. The 
factors that determine whether a pathogen or a PAMP induces 
a state of trained immunity or tolerance/immunosuppression is 
unclear but may be influenced by the dose, timing, and nature 
of the exposure to the pathogen or PAMP. Moreover, factors 
related to immunological history and the life experiences could 
influence the trained immunity favoring one response or the 
other. This observation is particularly interesting for old persons 
characterized by a high heterogeneity that could be at least in part 
explained by different responses of monocytes/macrophages and 
other cells of the innate immunity to stimuli as a consequence of 
the different conditions they have experienced throughout life.

An urgent public health problem is to understand the immu-
nological basis of the unresponsiveness to vaccines observed in a 
consistent percentage of elderly. On the basis of what we have dis-
cussed in this review, we surmise that the response to vaccines, in 
terms of both trained immunity and adaptive memory, is depend-
ing not only on the type/dose of immunological stimuli/vaccines 
that are encountered but also on the host immunobiography that 
shapes the responses of the IS. We surmise that this component, 
if adequately considered, will contribute to understand the poor 
responsiveness to vaccines and to newly encountered pathogens 
observed in a consistent number of elderly.
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