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Monoclonal antibodies are among the most clinically effective drugs used to treat can-
cer. However, their target repertoire is limited as there are relatively few tumor-specific 
or tumor-associated cell surface or soluble antigens. Intracellular molecules represent 
nearly half of the human proteome and provide an untapped reservoir of potential ther-
apeutic targets. Antibodies have been developed to target externalized antigens, have 
also been engineered to enter into cells or may be expressed intracellularly with the aim 
of binding intracellular antigens. Furthermore, intracellular proteins can be degraded 
by the proteasome into short, commonly 8–10 amino acid long, peptides that are 
presented on the cell surface in the context of major histocompatibility complex class I  
(MHC-I) molecules. These tumor-associated peptide–MHC-I complexes can then be 
targeted by antibodies known as T-cell receptor mimic (TCRm) or T-cell receptor (TCR)-
like antibodies, which recognize epitopes comprising both the peptide and the MHC-I 
molecule, similar to the recognition of such complexes by the TCR on T cells. Advances 
in the production of TCRm antibodies have enabled the generation of multiple TCRm 
antibodies, which have been tested in vitro and in vivo, expanding our understanding of 
their mechanisms of action and the importance of target epitope selection and expres-
sion. This review will summarize multiple approaches to targeting intracellular antigens 
with therapeutic antibodies, in particular describing the production and characterization 
of TCRm antibodies, the factors influencing their target identification, their advantages 
and disadvantages in the context of TCR therapies, and the potential to advance 
TCRm-based therapies into the clinic.

Keywords: T-cell receptor mimic antibody, intracellular antibody, intrabody, MHC class i presented peptide, T-cell 
epitope, cancer immunotherapy, therapeutic antibody, T-cell receptor-like antibody

iNTRODUCTiON

Historically the consensus in the immunotherapy field has been that antibody therapy is amenable 
to targeting only extracellular antigens that are accessible for antibody binding. This is due to the 
fact that the high molecular weight of antibodies prevents them from crossing the cell membrane to 
access intracellular targets. Consistent with this train of thought, the targets of approved antibody 
therapies are predominantly extracellular antigens (1). By contrast, small molecules have been 
used to target those intracellular antigens with a functionality that is suitable for drug screening. 
In comparison to antibodies, small molecules tend not to be as selective for their targets. They can 
exhibit unpredictable off-target activities, which consequently lead to adverse side effects and may 
require a more individualized clinical development pipeline.
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More recently, there are three broad approaches whereby 
antibodies have been used to target intracellular antigens.

 (1) It is possible for antibodies (or their derivatives) to target 
antigens that are normally intracellular but become external-
ized (for example, during disease).

 (2) It is also possible to engineer antibodies or antibody frag-
ments that penetrate into cells, or those that are directly 
expressed within cells using a gene therapy style approach.

 (3) Antibodies can also be generated that bind cell surface major 
histocompatibility complex class I (MHC-I)-presented pep-
tides that are derived from intracellular proteins.

With further developments in this field, it is becoming 
clear that the dichotomy between the antibody targeting of 
intracellular and extracellular targets is not as rigid as originally 
thought. Antibodies with novel mechanisms of action are chal-
lenging this belief and are re-defining the selection of suitable 
targets for antibody therapy. Antibodies that target intracellular 
antigens could open the door to a whole new realm of thera-
peutic targets, with potentially immense clinical benefits. While 
antibodies targeting intracellular antigens have broad clinical 
potential, this review will focus primarily on their application 
for cancer therapy.

ANTiBODieS TARGeTiNG eXTeRNALiZeD 
ANTiGeNS

Intracellular antigens can become externalized on the cell 
surface or secreted and can, therefore, be targeted by antibod-
ies. The Zeng group has further explored the possibility of 
developing antibodies to intracellular oncoproteins. After 
an initial proof-of-concept study investigating intracellular 
proteins targeted by both antibody and vaccine therapy, they 
focused on phosphatase of regenerating liver 3 (PRL-3) and 
developed a humanized anti-PRL-3 antibody (2, 3). PRL-3 is a 
cancer-related phosphatase (4) that is reported to be involved in 
malignant transformation and metastasis, as well as its expres-
sion correlating with poor prognosis (5). It is undetectable in 
most normal human tissues, is involved in colorectal cancer and 
uveal melanoma, and is overexpressed in 85% of gastric cancers 
(but not patient-matched normal gastric tissue), which is the 
cancer model that has been further studied (3). Importantly, 
intracellular PRL-3 can be externalized by tumor cells, thus 
enabling its targeting using classical antibody technology.

It is not the first time that secreted or externalized intracel-
lular proteins have been observed on cancer cells or within the 
tumor microenvironment and identified as potential therapeutic 
targets. One such example is the intracellular melanosomal 
membrane glycoprotein, gp75, which is normally expressed in 
the melanosome, a specialized organelle present in melanocytes. 
In melanoma, gp75 is expressed on the cell surface of malig-
nant melanocytes and can be targeted by antibodies in mouse 
melanoma models (6). In addition, heat-shock proteins 70 and 
90 are chaperone proteins, which are further examples of targets 
that are intracellular in normal cells but become presented on 

the cell surface, or secreted into the extracellular environment, 
in transformed cells (7, 8). Tumor cells have been previously 
shown to shed intracellular material into the tumor micro-
environment and extracellular space. This is believed to be a 
consequence of the inflammatory reaction that surrounds tumor 
tissues, where immune surveillance can provoke apoptosis and 
necrosis of tumor cells, thus releasing intracellular components 
into the extracellular space (9). It has also been suggested that 
typically intracellular antigens can also be externalized through 
unconventional secretion pathways (10). This is corroborated by  
the observation that antibodies against gp75 can reject tumors 
where there is no necrosis, suggesting an alternative pathway 
enabling antigen externalization (6). It is the restricted expression 
profile and the secretion and externalization of PRL-3, by cancer 
cells, that make it possible to selectively target this oncoprotein 
with antibody therapy. In this context, it is possible to target an 
intracellular oncoprotein, which has become externalized onto 
the cell surface, with an antibody in the same manner as targeting 
a classical cell surface target.

Several observations have been made on the possible mecha-
nisms of action that mediate the therapeutic effect of targeting 
extracellularized antigens with a non-neutralizing antibody.  
It is postulated that, in vivo, the Fc portion of these antibodies 
can be recognized by immune effector cells that have immu-
noglobulin (Ig) receptors (FcRs), such as macrophages, B cells, 
and natural killer (NK) cells (11). Therefore, the mechanisms of 
action could involve a combination of the following:

 (1) antibody-dependent cell-mediated cytotoxicity (ADCC) by 
NK cells,

 (2) antibody-dependent cellular phagocytosis by macrophages,
 (3) secreted antigens bound to antibody can form immune 

complexes that can be processed by dendritic cells, which 
then proceed to activate NK cells (12).

The importance of immune effector cells to the therapeutic 
efficacy and the aforementioned hypotheses are corroborated 
by the Zeng group’s previous findings, which showed that anti-
PRL-3 antibodies have no therapeutic activity in immunocom-
promised SCID mice or in vitro against PRL-3-expressing cancer 
cells where no effector cells are present (2, 13). Such engagement 
with innate immune effectors is a common mechanism of action 
of therapeutic antibodies that do not modify the activity of the 
target antigen, including those against cell surface targets.

iNTRACeLLULAR ANTiBODieS

Intracellular antibodies, which may also be called intrabodies, 
are antibodies that are produced in the cell, and bind an antigen 
within the same cell. This is a different delivery strategy from 
antibodies that are produced extracellularly, and are engineered 
to then penetrate the cell to access their intracellular target.

Antibodies are soluble proteins that are normally found cir-
culating the body within the serum. They are synthesized in the 
endoplasmic reticulum (ER) of B  cells as separate heavy chain 
and light chains, which are then linked by disulfide bonds in the 
mature Ig. However, the full-length antibody is not functional 
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in the cytosol, prior to secretion, due to its reducing conditions, 
which affect protein folding and the intramolecular disulfide 
bonds that are required to maintain the antibody’s conformation 
and stability (14). Fortunately, the complementarity-determining 
regions that endow an antibody with its exceptional target speci-
ficity are located in the variable regions of both the heavy and 
light chains. Therefore, it is possible to use antibody fragments 
incorporating the specificity-providing regions within a single-
chain variable fragment (scFv), which can be further engineered 
for cytosolic stability, to target intracellular antigens (15, 16).  
The scFv is a single polypeptide, which is a favorable characteris-
tic for in vivo expression, and it has been studied as a therapeutic 
for viral infections and cancer, among other diseases.

Furthermore, the variable (V) region domain can be used 
by itself to form a domain antibody or Dab (17). These can be 
engineered from conventional human Igs, or also from those 
from camelids (camel or llama) and cartilaginous fish (carpet 
or nurse sharks), whose immune systems were found to have 
evolved high-affinity V-like domains fused to a conserved 
framework that is reflective of the constant Fc region found in 
human Ig (18, 19). It has been reported that single heavy chain 
V regions or light chain V regions can be expressed inside cells. 
These are referred to as intracellular domain antibodies, which 
do not require intramolecular disulfide bonds for stability, hence 
representing the smallest format of the antibody that retains 
target specificity while minimizing size—a crucial factor for 
intracellular targeting (20).

There are several critical aspects to generating functional 
intracellular antibodies. The first is designing an antibody 
format that will retain its stability and antibody binding capac-
ity within the cell and the second is the ability to introduce or 
express the antibody within cells. Furthermore, as intracellular 
antibody fragments do not possess an Fc region (and full length 
intracellular antibodies cannot recruit extracellular immune 
effector cells from within the cell), different strategies must be 
employed to equip them with effector functions unless they 
have directly neutralizing activity against the target. Examples 
include ER targeting to cause degradation of the target protein, 
antibody–antigen interaction-dependent apoptosis that is used 
to induce programmed cell death through the activation of cas-
pases, and suicide intrabody technology that causes proteolysis 
of the target protein (21, 22).

In cancer, some of the proteins that are key players in signal-
ing pathways leading to malignant transformation have thus far 
been inaccessible to small molecule inhibitors (23). In particular, 
some of these are large, intracellular proteins that act as molecu-
lar scaffolds and function primarily through facilitating protein–
protein interactions (PPIs). Due to their size, small molecules 
cannot physically block the large surface of such proteins, nor 
interfere in the protein–protein interfaces they form, which are 
typically hydrophobic, flat surfaces, presenting few possibilities 
for small molecule anchorage (24). This is where technologies 
that enable the use of antibodies within the cell can bridge the 
gap between small molecule inhibitors and large protein targets. 
In this context, the proteins themselves are not the target, but it 
is the interactions they form with other proteins or nucleic acids 
that are the therapeutic targets as they contribute to the diseased 

state. One example is the use of an anti-RAS intrabody, which is 
composed of a single variable heavy region domain that targets 
activated GTP-bound RAS. This antibody competitively blocks 
RAS-effector functions within the tumor cell and while able to 
prevent in  vivo tumor initiation and further tumor growth in 
murine models, it was not curative (25, 26). Thus, some antibod-
ies may enable control of tumor growth and require combina-
tions with additional agents to potentially achieve a cure.

Intrabodies can also be used to characterize the expression of 
their target proteins and study the in vivo knockdown of protein 
function, and can represent an alternative to generating gene 
knockout animal models. There are different types of intrabodies 
that can be tailored to target proteins within subcellular com-
partments, primarily the cytoplasm or the ER, but the addition 
of a signal peptide also allows targeting to the mitochondria or 
the nucleus. This can be used to confer additional subcellular 
specificity on their intracellular targeting. Importantly, anti-
bodies retained in the ER do not experience the problems with 
conformation that are caused by the reducing conditions within 
the cytosol and can be active without neutralizing function 
against their target (27). For example, using intrabodies targeted 
to the ER (using a “KDEL” or “SEKDEL” sequence) allows the 
knockdown of proteins that are passing through the ER, thus 
abrogating their downstream function in a similar way to RNA 
interference and providing an alternative strategy for silencing 
gene products. It has also been proposed that ER-targeting 
intrabodies may maintain silencing more effectively than short 
interfering RNA (siRNA) and their specificity may be easier to 
predict than the off-target effects of an siRNA. An intradiabody 
that simultaneously enabled the knockdown of VEGF-R2 and 
Tie-2 was able to reduce both tumor growth and angiogenesis 
in  vivo (28). Intrabody technology is overviewed in depth by 
recent reviews including Marschall and Dübel (29).

Delivery of Antibodies to the intracellular 
Compartment
Despite the general consensus that antibodies can only be used 
to target extracellular or secreted antigens, the cellular uptake of 
antibodies (by processes such as endocytosis) has been observed 
both clinically and experimentally in the case of autoimmune 
disease. It has been reported that once autoantibodies bind their 
intracellular target, they can cause apoptosis of the cell (30–32). 
Therefore, the idea of using intracellular antibodies therapeuti-
cally represents a logical expansion of such observations.  
At present, the use of intracellular antibodies is still limited by 
the technology needed for antibody delivery and they are used 
primarily as research tools. A number of different methods are 
being investigated for the delivery of antibodies to the intracel-
lular compartment within target cells. Some of these strategies 
are illustrated in Figure 1 and they fall into two broad strategies:

 (1) The first is a type of “gene therapy” approach using vectors 
that enable expression of the intracellular antibodies within 
the target cell—these can be either viral vectors or plasmids.

 (2) The second is direct administration of the antibody-based 
therapeutic—either alone, using electroporation or with 
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FiGURe 1 | Strategies for targeting intracellular tumor antigens with antibody therapy. Some of the methods for targeting intracellular tumor antigens are illustrated. 
(A) Intracellular antigens can be externalized on the cell surface or secreted, allowing targeting by antibodies. (B) Plasmids or viral vectors can be used to deliver 
antibody-encoding genes into the cell. Once internalized, the DNA is transcribed into the targeting antibody, which can be designed to translocate to the nucleus, 
mitochondria, endoplasmic reticulum (ER), or cytoplasm. (C) Nanoparticles, dendrimers, or liposomes can be used to deliver an antibody or an expression vector 
encoding the intracellular antibody into the target cell. (D) Antibodies can be fused to cell-penetrating peptides, which allow internalization of the antibody. (E) T-cell 
receptor mimic (TCRm) antibodies can be used to target peptides bound to major histocompatibility complex class I (MHC-I) molecules on the cell surface. The 
peptides are derived from intracellular proteins, which have been degraded by the proteasome into short peptides. Peptides are loaded onto MHC-I molecules in  
the ER, transported through the Golgi apparatus, and finally presented on the cell surface. (F) The antibody depicted on the diagram could represent a full-length 
IgG, a Fab fragment, scFv or a single domain antibody.
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dendrimers, liposomes, nanoparticles, or by fusing the 
antibody to protein-transduction domains that enable it to 
penetrate the cell (33).

Viral vectors that can be used to deliver the genetic infor-
mation for expression of intracellular antibodies include 
adenovirus, adeno-associated virus (AAV), and retrovirus 
(including lentivirus), which have all been studied extensively 
in the pre-clinical setting as gene therapy delivery vehicles 
(34). Retroviruses integrate the antibody fragment expression 
cassette into the host genome, allowing long-term expression 
of the intracellular antibody fragment. Despite this advantage,  
a safety concern with the use of lentiviruses is the risk of integra-
tion of the expression cassette in the proximity of an oncogene 
in the host genome, thereby triggering secondary cancers.  
By contrast, AAV releases the DNA as an episome, avoiding such 
safety concerns, however, there is always the possibility of loss 
of expression, which means relatively shorter term expression.

A non-viral strategy for delivering genes or proteins to the 
intracellular compartment involves the encapsulation of DNA 
or proteins in cationic lipid structures called liposomes (35–37). 
Liposomes form a closed, spherical particle that is amphiphi lic 
and composed of one or more lipid bilayers with an aqueous 
center. In addition to delivering antibodies, they can also be 
coated with antibodies that bind cell surface proteins on the 
target cells (38). Thus, they are targeted to a specific cell type and 

can deliver an antibody, or an expression vector encoding the 
intracellular antibody, to the target cell without employing a viral 
delivery method. Liposomes are internalized via endocytosis fol-
lowing interaction with the plasma membrane, which is based on 
multiple factors, including particle size and charge interactions 
(39). Nanoparticles are an alternative non-viral method for deliv-
ering DNA or antibodies intracellularly (40, 41). They are made 
of polymers such as poly lactic-co-glycolic acid (PLGA), which is 
an FDA-approved polymer that has been studied extensively for 
therapeutic applications (42). PLGA-based nanoparticles have 
been used to improve the endocytic cellular uptake of antibody 
fragments such as 3D8 scFv (43). Similarly, antibody-coupled 
delivery can be used, wherein the expression vector DNA is 
coupled to the C-terminus of an antibody that binds a cell surface 
target. The vector DNA is internalized upon internalization of 
the delivery antibody, and the therapeutic antibody it encodes 
is then expressed intracellularly (44). Expression vectors and 
antibodies can also be conjugated to dendrimers (synthetic 
polymers with a branching tree-like structure) for delivery into 
target cells (45).

Fusion to cell-penetrating peptides may be an alternative 
method for delivering antibody fragments into cells through 
protein transduction. Antibodies that have cell-penetrating 
peptides fused to them can be referred to as TransMabs (46). 
The first TransMab that was generated was composed of an 
anti-caspase-3 antibody fused to a 17 amino acid peptide that 
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could translocate the antibody across the plasma membrane of 
target cells (47). This then blocked events related to apoptosis, 
such as caspase-3 activity and DNA fragmentation. Using this 
method, the antibody–peptide fusion protein enters the cell 
through endocytosis (48). However, it is difficult to predict 
whether sufficient macrodrug will enter the cell in order for it 
to mediate a therapeutic effect. Particularly as cell-penetrating 
peptides fused to macromolecules have been reported to be at 
risk of being trapped within endosomes (49). Another disad-
vantage of this method is that antibody fragments will undergo 
degradation in the intracellular compartment, as would any 
protein, therefore, continuous re-administration would be 
required to maintain any therapeutic activity. A cell-penetrating 
IgG1 antibody targeting activated GTP-bound RAS (RT11) has 
recently been shown to block oncogenic signaling and inhibit 
tumor growth in mouse xenograft models with mutated but 
not wild type Ras. This iMab (internalizing and PPI interfering 
monoclonal antibody) has successfully blocked the activity of 
a highly desirable oncogenic target that lacks effective small 
molecule inhibitors (50).

T-CeLL ReCePTOR MiMiC (TCRm) 
ANTiBODieS

Immunotherapies targeting intracellular proteins can also 
exploit the immune system’s own intracellular surveillance 
mechanism. Intracellular proteins are degraded by the protea-
some to form short peptides of specific lengths. These peptides 
are then presented on the cell surface of most nucleated cells, 
in a complex with MHC-I molecules (51). CD8+ T  cells rec-
ognize peptide–MHC-I complexes through their clonotypic 
T-cell receptor (TCR) and become activated to kill malignant 
or virus-infected cells that present tumor or viral peptides  
(51). Significantly these MHC-presented peptides do not have 
a functionality that would make them suitable targets for small 
molecule drug screening.

Antibodies targeting disease-associated peptide–MHC-I 
complexes, the so-called TCRm antibodies or TCR-like antibod-
ies, are similar to the TCR in that they bind both the peptide 
and the MHC-I molecule and, therefore, their binding is both 
peptide-specific and MHC-restricted (52, 53). TCRm antibodies 
have expanded the range of targetable antigens to include intracel-
lular proteins without the delivery complications associated with 
intracellular antibodies. Another advantage of TCRm antibodies 
is that they combine the intricate tumor specificity of TCRs with 
the biological properties of antibodies, which do not succumb 
to immune regulatory mechanisms that obstruct T-cell function 
in the tumor microenvironment (54). Like conventional mono-
clonal antibodies, TCRm antibodies have been shown to cause 
tumor killing through antibody-dependent mechanisms such as 
cell-mediated cytotoxicity (ADCC) and complement-dependent 
cytotoxicity (CDC) (55, 56). Furthermore, studies have shown a 
TCRm antibody to cause apoptosis in breast cancer cells through 
a caspase-dependent pathway (55). In addition to the success of 
using naked TCRm antibodies, there have also been reports of 
anti-tumor activity when they are conjugated to toxins (57, 58). 
The ability of TCRm Abs to target intracellular antigens has also 

been applied to cellular therapies in the development of chimeric 
antigen receptor T cells (59, 60).

TCRm Antibodies Published to Date
Since the advent of the necessary techniques and technolo-
gies, there has been an increase in the production of TCRm  
antibodies and constructs derived from them. The target pep-
tides of such reagents have typically derived from either viral 
antigens (including HIV and Hepatitis B antigens) or cancer 
antigens, and they are commonly presented by either the HLA-
A*0201 or the HLA-A*2402 MHC-I haplotype (61, 62). While 
TCRm antibodies can be used for therapeutic purposes, they 
are also widely used as research tools for the study of antigen 
presentation and recognition, as well as for structural studies. 
Some of the TCRm antibody therapeutics have shown promise 
in both in  vitro and in  vivo studies, however, none of them 
have advanced to clinical studies. Information on the TCRm 
and TCR-like antibodies generated to date is summarized  
in Table 1.

Production of TCRm Antibodies
T-cell receptor mimic antibodies are not as commonly available 
as traditional antibodies; this may be a consequence of the dif-
ficulty of their production in addition to the technology being 
less established. Recently, there has been an increase in the gen-
eration of TCRm antibodies targeting a variety of cancer or viral 
T-cell epitopes due to advances in the necessary technologies 
and techniques. TCRm antibodies have been produced either by 
immunization or by phage display, with both strategies present-
ing their respective pros and cons. One of the main limitations 
in the production of TCRm antibodies by both strategies was the 
correct refolding of recombinant peptide–MHC complexes and 
their purification (53). Recombinant peptide–MHC complexes 
are made by using bacterial expression to generate inclusion 
bodies containing the extracellular domains of the heavy chain 
of human leukocyte antigen (HLA) and β2-microglobulin. These 
are then refolded with the MHC-restricted peptide to generate 
correctly refolded monomers of high purity, in quantities that 
are sufficient for downstream applications. The correct refolding 
can be verified by structural and functional experiments, and the 
monomers can then be biotinylated for specificity and affinity 
characterization, and for antibody isolation (86–88).

Initially, TCRm antibodies were produced using hybridoma 
technology. The immunization methods used in these experi-
ments limited the successful generation of TCRm antibodies. 
Antigen-presenting cells harboring immunogenic peptides in 
the groove of their MHC molecules were used as immunogens 
(89, 90). Obtaining TCRm antibodies of the correct specific-
ity by employing this method yielded very few antibodies and 
many efforts proved to be unsuccessful (91). Since then, more 
successful attempts have been made by using recombinant pep-
tide–MHC complexes, such as tetramers, in the immunization 
protocol, followed by high-throughput screening in order to 
isolate specific TCRm antibodies out of a pool of thousands of 
clones (62, 71, 81). This requires stable peptide–MHC-I binding 
and has resulted in the production of TCRm against tumor and 
viral T-cell epitopes.
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TABLe 1 | TCRm antibodies for cancer immunotherapy.

Target epitope sequence MHC haplotype TCRm antibody name isotype/format Cancer indications 
investigated

isolation 
method

Reference

MAGEA1 EADPTGHSY HLA-A*0101 Fab-G8 Fab Melanoma Phage (63)
MAGEA1 EADPTGHSY HLA-A*0101 Fab-Hyb3 Fab Melanoma Phage (64)
GP100 KTWGQYWQV HLA-A*0201 G2D12, G3G4 Fab Melanoma Phage (65, 66)
GP100 IMDQVPFSV HLA-A*0201 1A9, 1C8, 1A11, 1A7 Fab Melanoma Phage (65, 66)
GP100 YLEPGPVTV/A HLA-A*0201 2F1, 2B2, 2C5, 2D1 Fab Melanoma Phage (65, 66)
GP100 IMDQVPFSV HLA-A*0201 G1 scFv-PE38 Melanoma Phage (57)
GP100 ITDQVPFSV HLA-A*0201 GPA7 sdAb-CAR Melanoma Phage (60)
hTERT ILAKFLHWL HLA-A*0201 4A9, 4G9 Fab Melanoma, prostate Phage (67)
hTERT RLVDDFLLV HLA-A*0201 3H2, 3G3 Fab Melanoma, prostate Phage (67)
MUC1 LLLTVLTVV HLA-A*0201 M2B1, M2F5, M3A1, M3B8, 

M3C8
Fab Breast Phage (68)

NY-ESO-1 SLIMWITQC HLA-A*0201 3M4E5 Fab Melanoma Phage (69)
MAGE3 FLWGPRALV HLA-A*0201 7D4, 8A11, 2G12, 9E6 – – Hybridoma (70)
hCGβ GVLPALPQV HLA-A*0201 RL4B/3.2G1 mIgG2a Ovarian, colon, breast Hybridoma (71)
hCGβ GVLPALPQV HLA-A*0201 1B10 IgG1 Ovarian, colon, breast Hybridoma (72)
hCGβ TMTRVLQGV HLA-A*0201 3F9 IgG1 Ovarian, colon, breast Hybridoma (72)
Her2/Neu KIFGSLAFL HLA-A*0201 1B8 IgG1 Breast, colon Hybridoma (73)
Melan-A/MART-1 EAAGIGILTV/ELA HLA-A*0201 Fab Melanoma Phage (74)
Melan-A/MART-1 EAAGIGILTV HLA-A*0201 CAG10, CLA12 Fab-PE38 Melanoma Phage (58)
TARP FLRNFSLML HLA-A*0201 Fab-D2 Fab-PE38 Breast, prostate Phage (75)
p53 LLGRNSFEV HLA-A*0201 I3.M3-2A6 – – Hybridoma (76)
p53 RMPEAAPPV HLA-A*0201 T1-116C IgG1 Breast Hybridoma (56)
p53 RMPEAAPPV HLA-A*0201 T1-29D, T1-84C IgG1, IgG2b – Hybridoma (77)
p53 GLAPPQHLIRV HLA-A*0201 T2-108A, T2-2A, T2-116A IgG1, IgG2a, IgG1 – Hybridoma (77)
Tyrosinase YMDGTMSQV HLA-A*0201 TA2 Fab Melanoma Phage (78)
p68 YLLPAIVHI HLA-A*0201 RL6A mIgG2a Breast Hybridoma (79)
MIF FLSELTQQL HLA-A*0201 RL21A IgG2a Breast Hybridoma (80)
Proteinase 3 VLQELNVTV HLA-A*0201 8F4 IgG2a AML Hybridoma (81)
WT1 RMFPNAPYL HLA-A*0201 ESK1 hIgG1 Mesothelioma, leukemia, 

ovarian, colon
Phage (82)

WT1 RMFPNAPYL HLA-A*0201 F2, F3 Fab Leukemia Phage (59)
WT1 RMFPNAPYL HLA-A*0201 Clone45 scFv Leukemia Phage (83)
HA-1H VLHDDLLEA HLA-A*0201 #131 scFv, scFv-CAR Leukemia Phage (84)
PRAME ALYVDSLFFL HLA-A*0201 Pr20 hIgG1 Leukemia, lymphoma, 

melanoma, breast, colon
Phage (85)

Published TCRm antibodies targeting cancer antigens are summarized.
PE38, 38 kDa immunotoxin, which is a truncated form of Pseudomonas exotoxin that can be conjugated to a TCRm Ab. sdAb, single domain antibody that has a single antigen 
binding domain originating from llama VHH. CAR, chimeric antigen receptor.
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While the traditional strategy for making TCRm antibod-
ies is hybridoma technology, in the mid 1990s, it was shown 
that phage display technology could also be used to isolate 
antibodies (87). In this method, libraries of phage particles are 
generated, where each phage displays a unique antibody (a scFv 
or a Fab fragment) as a fusion protein on their surface. Each 
phage particle has the genes that encode the particular antibody 
that is expressed on its cell surface. Therefore, it is possible to 
select different phage particles by assessing whether they bind 
a target and thereby isolate the antibodies that have the desired 
specificity. The bound phages are then eluted and amplified in 
bacteria. Phage display technology has been used to isolate vari-
ous TCRm antibodies against cancer antigens (63, 69, 92, 93).

Most TCRm antibodies published thus far have used phage 
display libraries for antibody production. Investigators argue that 
the main advantage of phage display is that it is efficient while 
being a relatively fast method (53). On the other hand, hybri-
doma technology is a relatively slower strategy, and it requires 
the immunogenic peptide and the MHC complex to bind with 
high affinity and form a very stable complex in order for the 

complex to persist throughout the immunization and in vivo IgG 
maturation. Nevertheless, the advantages of hybridoma technol-
ogy include the isolation of antibodies that have a high affinity 
(in the low nanomolar range) for the peptide–MHC complex. 
This is due to the fact that antibodies undergo multiple antigen 
challenges and affinity maturation in vivo. Whereas affinities of 
TCRm antibodies produced through phage display tend to lie  
in the moderate nanomolar range (≈50–300  nM) and many 
require further in vitro affinity maturation (94, 95).

Furthermore, the antibodies produced through hybridoma 
technology are bivalent IgG isotype antibodies, whereas anti-
bodies isolated using phage display are either scFv or Fab frag-
ments (i.e. in the monovalent form with no Fc region). The Fc 
portion of the antibody is crucial in recruiting components of the 
immune system for cytotoxic effects mediated through ADCC 
and CDC. Antibodies in the monovalent form have reduced avid-
ity (functional affinity) and increased turnover rates, which are 
undesirable when targeting epitopes that may be expressed at low 
densities, such as epitopes on tumor-associated peptide-MHC 
complexes (53). To circumvent this difficulty, further engineering 
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can be undertaken to address these limitations. For example, scFv 
or Fab tetramers can be generated through biotinylation, thereby 
increasing their avidity or antibodies can be engineered to have 
a classical Fc region. On the other hand, monovalent antibody 
fragments are ideal for studies of epitope presentation and struc-
ture, as well as being used as the targeting moieties that deliver a 
conjugated toxin to target cells. One advantage over immuniza-
tion of mice to generate antibodies (unless using those genetically 
engineered to have a human B-cell repertoire) is the possibility to 
generate fully human antibodies from display libraries.

Considerations for Selecting TCRm 
Antibody Targets
The ideal target for a TCRm antibody would be a disease-specific 
peptide–MHC complex that is present at high density on the 
target cell surface while being absent from other normal cells. 
When considering TCRm antibodies against tumor targets, such 
peptides are most likely to arise from overexpressed proteins, 
which have a short half-life and, hence, a high turnover rate (96). 
Targeting an antigen with a functional role in tumor biology will 
also help avoid loss of the antigen under subsequent therapeutic 
selection pressure. The peptides must also have a high affinity  
for the patient’s MHC and form a stable complex that persists  
on the cell surface, allowing recognition by TCRm antibodies.

Antigens that could be promising therapeutic targets include 
peptides processed from mutated proteins, which are tumor 
specific, such as KRAS G12V/D or oncogenic fusion proteins 
(97, 98). Over-expressed genes, cancer testis antigens, and re-
expressed oncofetal proteins are also potential tumor targets, 
for example, CEA and WT1 (99). The expression of these targets 
on normal healthy tissues must be considered when developing 
these as therapeutics (100). TCRm antibodies could also have 
use in targeting cells of the tumor microenvironment, such as 
regulatory T cells, tumor-associated macrophages, or cells with a 
role in angiogenesis (101, 102).

A key factor that needs to be considered when choosing a 
target antigen for TCRm antibody therapy includes the epitope 
expression on the cell surface. It is important to consider that 
it is the presentation of the epitope, and not expression of the 
antigen per se, that will determine the availability of antibody 
binding sites. Epitope density of TCRm antibody targets has 
been reported to be as low as 100–1,000 sites per cell, which 
is significantly lower than some epitope densities reported for 
traditional mAb cell surface targets at 20,000–500,000 sites per 
cell. Nevertheless TCRm can activate ADCC against low-density 
targets (82, 103, 104). Before being presented on the MHC 
molecule, the peptide undergoes various steps of processing 
from its original protein. Therefore, events at any of these steps 
could affect the epitope density observed at the cell surface, 
including the level of protein expression and its half-life, the 
peptide processing, the MHC levels, and the presentation of the 
peptide in the context of MHC at the cell surface. Proteins must 
be stable and translated in sufficient quantities to allow peptide 
processing, and it has been shown that proteins with shorter 
half-lives are more likely to be presented than ones with longer 
half-lives (105). Furthermore, it has been reported that tumors 
downregulate their surface MHC expression as an immune 

evasion mechanism, suggesting that such tumors will be less 
susceptible to TCRm therapy (106, 107). The possibility of this 
evasion mechanism must be considered when selecting both 
target antigens and disease indications.

Target epitope Discovery
Progress in our understanding of peptide processing and presenta-
tion on MHC has facilitated the discovery and evaluation of novel 
peptide–MHC epitopes. Initially, expression profiling was used 
to identify epitopes on tumor-associated antigens (TAAs) found 
on tumor cells—a process also called “direct immunology.” Using 
this method, the isolation of tumor-specific CTLs from melanoma 
patients led to the discovery of the first tumor-specific CTL epitope, 
which was encoded by the MAGE-1 gene. A cDNA library of the 
melanoma was generated, and melanoma-specific CTLs were 
used to identify the cDNA that encoded the CTL epitope (108, 
109). Since this initial discovery, the use of direct immunology has  
led to the identification of other epitopes, including ones from  
the MAGE, BAGE, and GAGE families, as well as Melan-A/
MART-1, tyrosinase, and gp100.

Bioinformatics techniques using algorithms to predict pep-
tide binding to specific MHC molecules are often used to predict 
TAA epitopes. This process is known as “reverse immunology” 
and is a systematic method of identifying TAA epitopes from a 
defined antigen that has emerged from the recent progress in 
genome sequencing and in silico techniques. It involves a predic-
tion phase, where potential epitopes are predicted in silico using 
algorithms. The prediction of epitopes is based on proteasome 
processing, binding to MHC and TAP translocation. This is 
followed by the validation phase, where the predicted epitopes 
must then be verified by MHC-I peptide binding assays or mass 
spectrometry to confirm that they are found on the cell surface 
(110).

There are a significant number of peptides that while being 
capable of binding MHC-I are either not presented on cancer 
cells or are altered, for example, by post-translational modifica-
tion. Thus, there has been considerable interest in performing 
cancer HLA peptidome analysis to identify MHC-I bound pep-
tides within both normal and malignant cells and tissues (111). In 
this approach, the HLA-complexes are immunoaffinity purified, 
the bound peptides are isolated and then analyzed by mass spec-
trometry. By comparing the MHC-I bound peptides in normal 
and diseased tissues, it is possible to prioritize those epitopes 
that are most suitable for therapy. Interestingly a meta-analysis 
of the HLA peptidomes from 83 mass spectrometry-based data-
sets from four major hematological malignancies found very 
few common “pan-leukemia” epitopes and these exhibited low 
presentation frequencies within each cohort of patients (112). 
Thus, in hematological malignancy, the epitopes selected for 
therapy are likely to be disease specific and, thus, multiple TCRm 
antibodies will be needed to exploit this therapeutic approach.

TCRm Antibodies and TCR-Based 
Therapies
Both TCRm antibodies and recombinant TCRs can bind 
MHC-I presented peptides. Traditionally, those employing 
TCR-based therapies have compared their technology to the 
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desirable qualities of antibodies but commented on the inability 
of antibodies to target intracellular antigens. Those generating 
TCRm/TCR-like antibodies have promoted antibodies hav-
ing higher affinity and specificity than TCRs (82, 113) and an 
easier development route and lower cost than TCR-targeted 
cellular therapies. However, advances in the engineering and 
production of soluble high-affinity TCRs and the production of 
TCRm antibodies have now made these approaches much more 
interchangeable.

T-cell receptor mimic antibodies can be used in place of a 
TCR as the targeting moiety for cellular therapies, such as CAR 
T cells (59, 60). Alternatively, a TCR can be fused to an Ig Fc 
region to enable TCR-directed antibody-dependent cytotoxic-
ity (114). ImmTACs (immune-mobilizing monoclonal TCRs 
against cancer) are engineered high-affinity soluble TCRs bispe-
cifically linked to anti-CD3 that can drive an anti-tumor T-cell 
response (115). Some studies have reported that the orientation 
of binding is similar for TCRs and TCRm antibodies, with 
both binding their peptide–MHC target in a diagonal orienta-
tion (116, 117). TCRm antibodies can also bind in additional 
conformations, gaining access to epitope regions that are not 
naturally targeted by TCRs (94, 118).

It seems likely that both TCRm antibodies and TCRs will 
be used to effectively target intracellular antigens using both 
soluble drugs and cellular therapies. The specificity of binding of 
high-affinity TCRs and TCRm antibodies to the target peptide 
presented by MHC-I is likely to be a crucial determinant of 
the suitability of individual reagents for therapy. Comparative 
studies using TCRs to the tumor-associated antigen survivin 
effectively highlighted the importance of specific peptide bind-
ing. High-affinity TCRs against a survivin peptide presented by 
HLA-A2 isolated from an allogeneic HLA-mismatched TCR 
repertoire lacked the ability to distinguish high levels on tumor 
cells from low expression in normal tissues. This included acti-
vated T cells, leading to fratricide when the engineered T cells 
targeted each other for destruction. However, an autologously 
derived TCR to the same survivin peptide targeted tumor cells 
but did not cause fratricidal toxicity (119). Molecular modeling 
of TCR–peptide–HLA complexes and alanine scanning of the 
survivin peptide demonstrated that maximal peptide recogni-
tion was critical for TCR selectivity for tumor cells. Thus, the 
specificity of the peptide–MHC binder could be as critical as the 
choice of target peptide.

Future Directions for TCRm Antibodies
T-cell receptor mimic antibodies have not yet entered the clinic, 
although Novartis have partnered with Eureka Therapeutics 
and Memorial Sloan Kettering Cancer Center to develop their 
ESK1 TCRm targeting WT1. Several key factors have the poten-
tial to improve the development of TCRm antibodies further 
with the prospect of undertaking clinical studies and ultimately 
establishing them as cancer therapeutics. These include epitope 
expression, production methodology, specificity validation and 
mechanism of action. It is also important to consider that TCRm 
antibodies may represent theranostics, combining diagnostic 
utility to determine target epitope presentation and therapeutic 
activity within a single agent.

The low epitope density of peptide–MHC complexes on the 
cell surface poses some limitations for TCRm antibody-based 
therapy. This might be addressed by choosing target epitopes 
that do not have low cell surface expression, by increasing 
MHC-I expression in tumors, by making TCRm antibodies 
more sensitive to low density epitopes or by choosing effec-
tor mechanisms that do not require high epitope density for 
cytotoxicity.

High-affinity, peptide-specific TCRm antibodies have proven 
difficult to produce in large numbers by either traditional phage 
or hybridoma approaches. Enhanced display technologies, 
particularly those capable of isolating fully human antibodies 
within a short period of time, offer some exciting opportunities 
to accelerate future TCRm antibody discovery. Having a wider 
array of antibodies for characterization will improve the chances 
of identifying those with the necessary affinity and specificity 
for further development.

It is crucial to ensure that the TCRm antibody does not recog-
nize the MHC-I alone, as this molecule is found on most nucle-
ated cells. Therefore, the TCRm antibody must be specific for 
the peptide–MHC complex, which also highlights that it should 
not cross-react with other processed peptides. As the TCRm 
antibody recognizes only few amino acid residues in the peptide, 
it will be crucial to assess which other processed peptides pos-
sess the same amino acids at those positions and whether there 
would be any risk of cross-reactivity. The importance of this is 
exemplified in a clinical trial of an affinity-enhanced TCR, which 
targeted a MAGE-A3 epitope (120). Following administration 
of the therapy, it was discovered that the TCR also recognized 
an epitope on the unrelated protein titin that is expressed in 
cardiac tissue. The cardiac toxicity led to two patient deaths. 
This cross-reactivity was not observed in normal tissue screen-
ing and the titin peptide was not conserved in mice. However, 
a limitation of in silico screening by amino acid substitution is 
that it may identify a wider variety of potentially cross-reactive 
peptides than can be functionally evaluated. Furthermore, even 
potentially cross-reactive peptides shown to bind MHC-I in 
T2 presentation assays may not be processed endogenously or 
presented on the cell surface in normal tissues.

One of the key limitations of TCRm antibody therapy is the 
MHC-restricted nature of the therapy—although this is crucial 
to enable the recognition of intracellular proteins. Most studies 
to date focus on the HLA-A*0201 haplotype, which is prevalent 
in up to 40% of Caucasians, and in up to 20% of populations 
of different ethnicities, which covers a large proportion of the 
world’s population. There are other dominant HLA alleles 
worldwide, including HLA-A*2402 and HLA-A*1101 in 
Oriental populations. Although TCRm antibodies are HLA-
restricted, it has been proposed that antibodies to three HLA 
alleles for a particular target antigen would cover >96% of 
the world’s population (53). Structural analysis of the TCRm 
antibody ESK1 shows that it binds multiple HLA-A*02 variants 
and not only the HLA-A*0201 subtype, which it is designed to 
target (121). This is due to the fact that ESK1 binds a portion 
of the MHC molecule that is conserved among the various 
HLA-A2 subtypes, thereby suggesting that the certain TCRm 
could target a larger population of patients with a variety of 
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HLA subtypes. In addition, designing TCRm antibodies that 
target different antigens or different epitopes on the same anti-
gen and using a combination of these as a therapeutic regimen 
could increase the chances of successful tumor eradication and 
minimize escape variants.

The manufacture and regulatory approval pathways for 
TCRm antibodies are likely to have similarities to that for 
classical monoclonal antibodies and share commonalities with 
TCR-based therapies. The latter being the lack of availability 
of suitable animal models to study agents targeting a dual 
epitope where potentially neither the MHC-I or target peptide 
is conserved. One opportunity potentially available for TCRm 
antibodies would be to use in vivo imaging studies to study the 
biodistribution of a subtherapeutic dose of the TCRm antibody 
in early clinical safety studies.

CONCLUSiON

The generation of antibodies that can target intracellular anti-
gens offers an unparalleled opportunity to expand the repertoire 
of therapeutic antibodies that are available to treat human 
disease. When coupled with advances in genomic sequencing 

technologies, proteomic investigations and the increasing 
numbers of antibodies being made available to the research com-
munity, new disease-related proteins and their variants (post 
translational modifications, splice variants, mutations, etc.) that 
are suitable for antibody targeting will continue to be identified. 
Further developments in the production technology, delivery, 
and regulatory approval pathways for antibodies targeting intra-
cellular antigens should also contribute to the introduction of 
many new exciting antibodies into the clinic in the future.
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