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Inflammation is a part of the initial process leading to atherosclerosis and cholesterol 
crystals (CC), found in atherosclerotic plaques, which are known to induce comple-
ment activation. The pentraxins C-reactive protein (CRP), long pentraxin 3 (PTX3), 
and serum amyloid P component (SAP) are serum proteins associated with increased 
risk of cardiovascular events and these proteins have been shown to interact with the 
complement system. Whether the pentraxins binds to CC and mediate downstream 
complement-dependent inflammatory processes remains unknown. Binding of CRP, 
PTX3, and SAP to CC was investigated in  vitro by flow cytometry and fluorescence 
microscopy. CRP, PTX3, and SAP bound to CC in a concentration-dependent manner. 
CRP and PTX3 interacted with the complement pattern recognition molecule C1q on CC 
by increasing the binding of both purified C1q and C1q in plasma. However, CRP was 
the strongest mediator of C1q binding and also the pentraxin that most potently elevated 
C1q-mediated complement activation. In a phagocytic assay using whole blood, we 
confirmed that phagocytosis of CC is complement dependent and initiated by C1q-
mediated activation. The pathophysiological relevance of the in vitro observations was 
examined in vivo in human atherosclerotic plaques. CRP, PTX3, and SAP were all found 
in atherosclerotic plaques and were located mainly in the cholesterol-rich necrotic core, 
but co-localization with the terminal C5b-9 complement complex was only found for 
CRP. In conclusion, this study identifies CRP as a strong C1q recruiter and complement 
facilitator on CC, which may be highly relevant for the development of atherosclerosis.

Keywords: atherosclerosis, complement activation, cholesterol crystals, c-reactive protein, pentraxin 3,  
serum amyloid P component, c1q, membrane attack complex, c3

Abbreviations: CCs, cholesterol crystals; CRP, C-reactive protein; CR3, complement receptor 3; C4BP, C4b-binding protein; 
hsCRP, high-sensitivity CRP; MBL, mannose-binding lectin; NLRP3, nod-like receptor pyrin domain-containing 3; PRM, 
pattern recognition molecule; SAP, serum amyloid P component; UCS, umbilical cord serum.
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inTrODUcTiOn

Vascular diseases caused by atherosclerosis are the leading 
cause of death and morbidity worldwide, with ischemic heart 
disease and stroke accounting for 15 million deaths in 2015 
(1). Atherosclerosis is a chronic inflammatory disease, where 
lipids and cholesterol builds up in the arterial wall, causing the 
formation of a plaque. A hallmark of atherosclerotic plaques, also 
found in early atherosclerotic lesions, is deposition of solid phase 
cholesterol crystals (CCs) (2). CCs are known to induce inflam-
mation via activation of the complement system (3–6) leading 
to a subsequent cytokine release and activation of the nod-like 
receptor pyrin domain-containing 3 (NLRP3) inflammasome  
(2, 7–9). The complement system is an important part of the innate 
immune system. The complement system is initiated through 
three pathways; the classical pathway, the lectin pathway, and the 
alternative pathway and is initiated when pathway-specific pattern 
recognition molecules (PRMs) recognize pathogen-associated 
molecular patterns or damage-associated molecular patterns. 
CCs are known to activate all three pathways (6, 8). Activation 
initiates a cascade reaction leading to the cleavage of C3 into C3a 
and C3b and eventually the cleavage of C5 into C5a and C5b and 
the formation of a terminal C5b-9 complement complex (TCC). 
Activation results in opsonization and phagocytosis of pathogens 
or damaged self-structures through deposition of C3b, and pro-
inflammatory signaling induced by C3a and C5a (10).

The pentraxins are a family of proteins consisting of the 
long pentraxin 3 (PTX3) and the short pentraxins C-reactive 
protein (CRP) and serum amyloid P component (SAP) (11). 
CRP and PTX3 are acute-phase proteins in humans and are 
expressed in response to inflammatory stimulation, whereas SAP 
is constitutively present in human blood in a concentration of 
30–50 mg/L (12). CRP is predominantly expressed in the liver 
and in response to systemic inflammatory mediators, mainly 
IL-6, CRP median blood concentration increases from 0.8 mg/L 
to more than 500 mg/L (13). PTX3 is expressed in the tissue by 
macrophages, dendritic cells, and endothelial cells and is released 
from neutrophil intracellular granules at sites of infection upon 
primary inflammatory stimuli, e.g., TLR engagement, TNFα, 
and IL-1β (14–18). In healthy individuals, plasma PTX3 levels 
are below 2 µg/L, but increase rapidly upon inflammatory stimuli 
to more than 100 µg/L (11). The pentraxins interact with several 
complement PRMs as well as complement regulators. PTX3, 
CRP, and SAP are able to recruit the classical pathway PRM 
C1q, thereby inducing complement activation and phagocytosis 
(19–22), and have also been shown to interact with lectin pathway 
PRMs mannose-binding lectin (MBL) and the Ficolins (23–26). 
Furthermore, PTX3 and CRP bind the complement regulators 
factor H and C4b-binding protein (C4BP) (27–30) and SAP 
binds C4BP (31). Both CRP and PTX3 are not only biomarkers 
of inflammation but have also been associated with increased 
risk of cardiovascular disease. High-sensitivity CRP (hsCRP) is 
an established risk biomarker of myocardial ischemia and infarc-
tion, unstable angina, and chronic atherosclerotic disease and 
is used as a risk biomarker of first and recurrent cardiovascular 
events (32–40). PTX3 is associated with severity and mortality 
of acute myocardial infarction and cardiovascular outcomes, and 

risk of cardiac events in patients with heart failure (41–48). Also, 
increased levels of SAP have been associated with cardiovascular 
disease (49). Previously PTX3, CRP and SAP have been found 
in human atherosclerotic plaques (50–53) and CC, similar to 
those found in atherosclerosis, and are known to activate the 
complement system and induce inflammation. The pentraxins 
are known to interact with the complement system, especially 
C1q, but whether they interact with CC is unknown.

Thus, the purpose of this study was to investigate the binding of 
PTX3, CRP, and SAP to CC in vitro and to study their interaction 
with C1q on the surface of the CC. Furthermore, we wanted to 
investigate the pentraxins in CC-induced complement activation 
both in vitro and by studying their co-localization with comple-
ment deposition in atherosclerotic plaques. This would support 
our hypothesis that binding of the pentraxins to CC could be 
a key link between complement activation, inflammation, and 
atherosclerosis.

MaTerials anD MeThODs

Materials
Reagents
Ultrapure cholesterol (C8667), 1-propanol (279544), human 
serum albumin (HSA) (A9731), RPMI 1640 medium (R5886), 
and bovine serum albumin (BSA) (A2153) were purchased from 
Sigma-Aldrich. EDTA (324503), SAP purified from human serum 
(565190), and CRP purified from human ascites (236600) were all 
from Calbiochem. Purified human C1q (A099) were purchased 
from Complement Technology, Lysing buffer (S2364) was from 
DAKO, ProLong® Diamond Antifade Mountant (P36965) was 
from Molecular Probes by Life Technologies, TSA amplification 
kit was from Perkin Elmer, and True-Black quencher was from 
Biotium.

Commercial Antibodies
Rabbit anti-human SAP polyclonal antibody (pAb) (565191, 
Calbiochem), rabbit anti-human CRP pAb (235752, 
Calbiochem), rabbit anti-human C1q pAb (A0136, Dako), 
mouse anti-human complement component C5b-9 mono-
clonal antibody (mAb) (IgG2a) (011-01, Antibody Shop), 
mouse IgG1 isotype control (BD Biosciences), mouse IgG2a 
isotype control (BD Biosciences), rabbit IgG isotype con-
trol (Invitrogen), FITC-conjugated goat anti-rabbit pAb 
(F1262, Sigma-Aldrich), FITC-conjugated goat anti-mouse 
pAb (F0479, Dako), mouse anti-human CD45 FITC/CD14 
PE (342408, BD Biosciences), mouse anti-human CD11b 
APC-Cy7 (560914, BD Biosciences), Alexa-555-conjugated 
goat anti-mouse IgG (A-21424, Thermo Fischer), biotinylated 
goat anti-rabbit IgG (BA-1000, Vector Laboratories), or bioti-
nylated goat anti-mouse IgG (BA-9200, Vector Laboratories) 
are the commercial antibodies.

In-House-Produced Antibodies
Mouse anti-PTX3 mAbs clone 11-19-20, 11-19-66, 11-19-
61, and 11-19-73 are in-house Abs produced as previously 
described (54).
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Complement Inhibitors
C3 inhibitory peptide; Compstatin Cp40 (55), C5 inhibitor; 
Eculizumab (Soliris, Alexion Pharmaceuticals), C1q inhibi-
tory mouse anti-human C1q mAb clone 85 (IgG1) (MW1828, 
Sanquin) are the complement inhibitors.

cc Precipitation
Cholesterol crystals were generated essentially as described by 
Samstad et al. (8). 2 mg/mL ultrapure cholesterol was dissolved 
in 1-propanol. CCs were precipitated by adding distilled water 
(1:1.5). The solution was left undisturbed for 15  min for the 
crystals to stabilize. CCs were collected by centrifugation and 
the remaining 1-propanol was removed by evaporation. All 
steps were performed at room temperature (RT). The CC were 
resuspended in phosphate-buffered saline (PBS) with 0.05% HSA 
and stored at 4°C in the dark.

Production of recombinant PTX3 (rPTX3)
Recombinant PTX3 was produced as previously described  
(54, 56). In short, PTX3 was expressed in CHO-DG44 cells  
cultivated in RPMI 1640 medium supplemented with 10% heat-
inactivated fetal calf serum (FCS), 100 U/mL penicillin, 0.1 mg/mL  
streptomycin, 2  mM l-glutamine, and 200  nM methotrexate. 
Culture supernatant was harvested from stable transfected 
CHO cells. rPTX3 was purified from culture supernatant by 
affinity chromatography using a mixture of in-house-produced 
anti-PTX3 mAbs (clone 11-19-20, 11-19-61, 11-19-66, 11-19-
73). Western blot of purified rPTX3 is found as Figure S1 in 
Supplementary Material.

collection of Plasma and serum samples
A pool of normal human plasma (NHP) or normal human serum 
(NHS) was obtained by drawing venous blood from six healthy 
donors (three male and three female donors) into hirudin vials 
or vials with no additive, respectively. Plasma was collected 
immediately from the hirudin blood samples by centrifugation at 
3000 × g for 15 min. Blood samples for serum collection were left 
at RT for 2 h, before the serum was collected by centrifugation at 
3000 × g for 15 min. Serum samples from three individuals with 
systemic inflammation were collected and stored as individual 
serum samples until further analysis. A pool of umbilical cord 
serum (UCS) was obtained from umbilical cord blood collected 
from three individuals. Plasma and serum samples were stored at 
−80°C until further analysis.

Flow cytometry
Samples were analyzed by flow cytometry using a Gallios flow 
cytometer (Beckman Coulter) and analyzed using Kaluza soft-
ware (Beckman Coulter).

Binding of PTX3, CRP, SAP, and C1q to CC
Cholesterol crystals were incubated with rPTX3, purified CRP 
(pCRP), purified SAP (pSAP), purified C1q (pC1q), and plasma 
or serum samples diluted in Barbital buffer (5  mM Barbital 
sodium, 145 mM NaCl, 2 mM CaCl2, 1 mM MgCl2, pH 7.4) with 
0.5% BSA (Barbital/BSA) ± 10 mM EDTA for 30 min at 37°C. 

Antigen binding to CC was detected by incubating CC with 
antigen-specific antibodies or isotype controls: mouse anti-PTX3 
mAb 11-19-66 (5 µg/mL), rabbit anti-CRP pAb (0.1 µg/mL), rab-
bit anti-SAP pAb (0.05 µg/mL), rabbit anti-C1q pAb (0.5 µg/mL), 
mouse IgG1 (5 µg/mL), or rabbit IgG (0.05, 0.1, or 0.5 µg/mL) for 
30 min at 4°C. CCs were then incubated with secondary antibod-
ies; FITC-conjugated goat anti-mouse IgG or FITC-conjugated 
goat anti-rabbit IgG. CCs were washed in Barbital buffer with 
0.5% FCS (Barbital/FCS) by centrifugation (5  min, 500  ×  g) 
between each step.

Enhanced Binding of PTX3, CRP, or SAP by 
Preincubation of CC with C1q
Cholesterol crystals were preincubated with pC1q diluted in 
Barbital/BSA for 30  min at 37°C. CCs were then washed in 
Barbital/BSA and incubated with rPTX3, pCRP, or pSAP for 
30 min at 37°C. PTX3, CRP, and SAP binding to CC were detected 
as described above.

Enhanced Binding of C1q by Preincubation of CC 
with PTX3, CRP, or SAP
Cholesterol crystals were preincubated with rPTX3, pCRP, or 
pSAP diluted in Barbital/BSA for 30 min at 37°C. CCs were then 
washed in Barbital/BSA and incubated with pC1q, 5% NHP, or 
5% UCS for 30 min at 37°C. C1q binding to CC was detected as 
described above.

Increased Complement Activation on CC by 
Preincubation with PTX3, CRP, or SAP
Cholesterol crystals were preincubated with rPTX3, pCRP, or 
pSAP diluted in Barbital/BSA for 30 min at 37°C. CCs were then 
washed in Barbital/BSA and incubated with 5 or 10% NHP or 
UCS for 30 min at 37°C. Complement activation was inhibited 
by preincubating NHP or UCS with C1q inhibitory antibody and 
mouse anti-human C1q clone 85 (IgG1) or a mouse IgG1 isotype 
control. C5b-9 deposition on CC was detected using mouse 
anti-human complement component C5b-9 mAb followed by 
FITC-conjugated goat anti-mouse IgG.

Phagocytosis of CC
Hirudin whole blood was collected from three healthy donors 
and preincubated for 5  min at RT with 20  mM C3 inhibitor; 
Compstatin, Cp40, 50 µg/mL C5 inhibitor; Eculizumab, 50 µg/mL  
C1q inhibitory antibody; and mouse anti-human C1q clone 85 
(IgG1) or a mouse IgG1 isotype control. Whole blood was then 
stimulated with PBS or CC for 30 min at 37°C. Cells were stained 
with anti-CD45-FITC/CD14-PE and anti-CD11b APC-Cy7 for 
20 min at RT in the dark. Red blood cells were lysed with DAKO 
lysing buffer for 15 min at RT and cells were washed three times 
in PBS with 0.5% FCS before analysis. Phagocytosis was deter-
mined as percentage of cells phagocytosing CC, determined 
as a shift in side scatter, and by the expression of complement 
receptor 3 (CR3/CD11b) measured as median fluorescence 
intensity. Granulocytes and monocytes were gated based on 
CD14 expression.
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Microscopy of ccs
Cholesterol crystals were incubated with rPTX3, pCRP, pSAP, and 
plasma or serum samples diluted in Barbital/BSA for 30 min at 
37°C. Antigen binding to CC was detected by incubating CC with 
antigen-specific antibodies or isotype controls: mouse anti-PTX3 
mAb 11-19-66 (5  µg/mL), rabbit anti-CRP pAb (0.1  µg/mL),  
rabbit anti-SAP pAb (0.05 µg/mL), mouse IgG1 (5 µg/mL), and 
rabbit IgG (0.05 or 0.1 µg/mL) for 30 min at 4°C. CCs were then 
incubated with secondary antibodies: FITC-conjugated goat 
anti-mouse IgG or FITC-conjugated goat anti-rabbit IgG. CCs 
were then washed in Barbital/FCS with centrifugation (5  min, 
500  ×  g) between each step. CCs were placed on slides with 
centrifugation for 5  min at 500  ×  g (cytospin) and mounted 
with ProLong® Diamond Antifade Mountant. Microscopy was 
performed using a Zeiss Axio Observer through a 63×/1.40 oil 
DIC Plan-Apochromat objective. Imaging conditions were kept 
constant when acquiring images to be compared.

immunofluorescence of human 
atherosclerotic Plaques
Patients and Sampling Processing
Plaques were obtained from patients undergoing carotid endar-
terectomy referring to department of Vascular Surgery at A. 
Gemelli Hospital during 2013–2015 (57). Immediately after sur-
gery specimens were snap-frozen. The plaques were cut coronally 
in 20-µm sections with a cryostate. Cutting was done at the site of 
the maximal plaque thickening ±1 mm (58). Sections were laid 
on a gelatinized glass and before immunofluorescence, thawed by 
5 min washing with 0.05 M tris-buffered saline at RT, and then 
post-fixated by 15 min incubation with 4% paraformaldehyde.

Immunofluorescence and Confocal Microscopy 
Analysis
After thorough washings with 0.01 M PBS, sections were incubated 
with blocking solution (10% normal goat serum, 0.3% Triton 
X-100) for 1 h at RT and then with primary antibodies in the same 
solution overnight at 4°C. Primary monoclonal antibodies used 
were: mouse anti-human C5b-9 (10 µg/mL), mouse anti-human 
PTX3 11-19-66 (9 µg/mL), rabbit anti-human CRP (70 µg/mL), 
and rabbit anti-human SAP (10 µg/mL). Sections were then incu-
bated with Alexa-555 conjugated secondary antibody goat anti-
mouse IgG (4 µg/mL) for 1.5 h at RT or biotinylated secondary 
antibody goat anti-rabbit IgG or Goat anti-mouse IgG (7.5 µg/mL)  
for 1  h at RT, followed by fluorescent signal coupling with 
streptavidin TSA amplification kit (fluorescein). Sections were 
then incubated with True-Black quencher (1:20 in 70% Ethanol) 
to quench non-specific fluorescent signals. Appropriate negative 
controls without the primary antibodies were performed. None 
of the immunofluorescence reactions revealed unspecific fluores-
cent signal in the negative controls (Figure S4 in Supplementary 
Material). To avoid a cross signal in the double immunofluores-
cence for PTX3 and C5b-9 (both antibodies were developed in 
mouse), we tested different working dilutions of the anti-human 
PTX3 antibody and chose the lowest concentration providing: (1) 
a visible signal with fluorescein at excitation wavelength 488 nm; 
(2) no signal with Alexa-555 at excitation wavelength 532 nm. 

Thus, Alexa-555 fluorescent signal is selectively associated with 
C5b-9 expression (59).

Immunofluorescence was acquired using a scanning sequen-
tial mode to avoid bleed-through effects by an IX81 microscope 
equipped with a confocal scan unit FV500 with three laser lines: 
Ar–Kr (488 nm), He–Ne red (646 nm), and He–Ne green (532 nm, 
Olympus) and a UV diode. High magnification three-dimensional 
images were acquired over a 10 µm z-axis with a 0.46-µm step 
size and processed using Imaris software (Bitplane). Images of the 
whole plaques were acquired at 10× (pixel size of 0.646 µm) with 
an Olympus BX-61 Virtual Stage microscope to have completed 
stitching of the whole plaque. Exclusion images were obtained 
by Fiji software image calculator protocol (“subtract” function). 
Images were finally managed using GIMP software.

ethical approvals
The study was approved by the regional Health Ethics Committee 
in the Capital Region of Denmark (reference no. H2-2011-133). 
Retrospective examination of carotid plaques was approved by the 
local ethical committee Board; Comitato Etico della Fondazione 
Policlinico Universitario A. Gemelli (reference no. 26089/16).

statistical analysis
GraphPad Prism version 6 (Graphpad Software) was used for 
statistical analysis. Statistical analysis was performed on three 
independent experiments or on three individual healthy donors 
(phagocytosis of CC) using two-tailed paired t-test make a direct 
comparison between each experimental setup. A p value <0.05 
was considered statistically significant.

resUlTs

Binding of recombinant, Purified, and 
native PTX3, crP, and saP to ccs
We investigated the binding of the pentraxins: PTX3, CRP, or 
SAP to CC in vitro by flow cytometry (Figure 1) and fluorescence 
microscopy (Figure 2). rPTX3, pCRP, and pSAP bound to CC 
in a concentration-dependent manner (Figure  1A); however 
100-fold higher concentrations of rPTX3 were necessary to 
obtain binding than for pCRP and pSAP. Binding of rPTX3 was 
not inhibited by EDTA, whereas binding of pCRP and SAP was 
highly calcium dependent and was completely inhibited by addi-
tion of EDTA (Figure  1B). Binding of native PTX3, CRP, and 
SAP was investigated by incubating CC with 5% NHP, NHS, or a 
pool of serum from three individuals with systemic inflammation 
(Figures 1C–E). As expected, no binding of PTX3 to CC meas-
ured by flow cytometry was detected from NHP or NHS with 
PTX3 concentrations below detection limit (<2 µg/L) in ELISA 
(Figures  1C,D). Binding of native PTX3 to CC was observed 
from a pool of serum from individuals with systemic inflamma-
tion (mean PTX3 concentration of 33.0 µg/L) (Figure 1E). It is 
noteworthy that the binding of native serum PTX3 required a 
substantially smaller amount of protein compared to the binding 
of rPTX3 where no serum factors were present (Figure 1A). Native 
CRP bound to CC from NHP, NHS, and a pool of serum from 
three individuals with systemic inflammation (Figures  1C–E). 
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FigUre 1 | Binding of recombinant, purified, and native pentraxin 3 (PTX3), C-reactive protein (CRP), or SAP to CCs. (a) Concentration-dependent binding of 
recombinant PTX3 (rPTX3), purified CRP (pCRP), and purified SAP (pSAP) to CC. Binding was assessed by flow cytometry as MFI and data are given as 
mean ± SEM (n = 3). (B) Binding of rPTX3, pCRP, or pSAP to CC ± 10 mM EDTA (black/gray). (c–e) Binding of native PTX3, CRP, or SAP from 5% NHP (c), NHS 
(D) or a pool of serum from three individuals with systemic inflammation (e) diluted in Barbital/BSA ± 10 mM EDTA (black/gray). Isotype controls are shown as white 
histograms. Histograms represent one of three independent experiments. CCs, cholesterol crystals; NHP, normal human plasma; NHS, normal human serum; MFI, 
median fluorescence intensity.
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Binding of CRP was increased in serum from individuals with 
systemic inflammation (mean CRP concentration of 99.5 mg/L) 
compared to NHP (CRP concentration of 0.88  mg/L) or NHS 
(CRP concentration of 0.93 mg/L). Native SAP bound to CC from 
NHP, NHS, and serum from individuals with systemic inflam-
mation (Figures 1C–E). Binding of native PTX3, CRP, and SAP 
to CC was not completely inhibited by EDTA (Figures 1C–E). 
Altogether, data show that PTX3, CRP, and SAP bind specifically 
to CC as recombinant proteins, purified native proteins and non-
purified proteins in plasma or serum samples. Plasma and serum 
concentrations of PTX3 and CRP in the different samples meas-
ured by ELISA or established CRP and hsCRP assays are found in 
Table S1 in Supplementary Material. Binding of PTX3, CRP, and 
SAP with/without calcium to CC from the three individuals with 
systemic inflammation is found as Figure S2 in Supplementary 
Material.

PTX3, crP, and c1q interact on the 
surface of ccs
To further elucidate the role of the pentraxins in CC-mediated 
inflammation, we investigated their interaction with the comple-
ment PRM C1q. Interactions between rPTX3, pCRP, pSAP, and 
pC1q were characterized by ELISA before use in flow cytom-
etry experiments with CC to validate the functionality of the 

recombinant and purified proteins (Figure S3 in Supplementary 
Material). Preincubation of CC with pC1q significantly increased 
the binding of rPTX3 (2.5 µg/mL) but had no significant effect 
on the binding of pCRP (0.02 µg/mL) or pSAP (0.02 µg/mL) to 
CC (Figure 3A). Experiments where CC were preincubated with 
pC1q was also performed using 0.1, 0.5, and 1  µg/mL CRP or 
SAP, obtaining similar results (data not shown). Preincubation 
of CC with rPTX3 or pCRP significantly increased the binding of 
pC1q and native C1q from 5% NHP (Figures 3B,C). It has previ-
ously been shown that C1q binds to CC via IgM (6); therefore, 
we investigated the C1q/pentraxin interactions in UCS because 
here IgM is present in a concentration of 5–20% of normal adult 
values (60). Preincubation with pCRP significantly increased the 
binding of native C1q, which was not the case for PTX3 and SAP 
(Figure 3D). These data show that both PTX3 and CRP interact 
with C1q on CC, but in a different manner; PTX3 likely depends 
on the presence of IgM to recruit C1q, whereas CRP alone is 
an effective C1q recruiter. This led us to investigate the effect of 
PTX3 and CRP on C1q-mediated complement activation.

Binding of crP to ccs increases c1q-
Mediated complement activation in Ucs
CC-induced complement activation, measured as terminal C5b-9 
complement complex deposition, was assessed by incubation of 
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FigUre 2 | Binding of pentraxin 3 (a), C-reactive protein (B), or SAP (c) to cholesterol crystals assessed by fluorescence microscopy. Imaging conditions were 
kept constant when acquiring images to be compared. Results are representative of three independent experiments. NHP, normal human plasma.
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CC with 10% NHP (Figure 4A) or UCS (Figure 4B). CCs were 
preincubated with rPTX3, pCRP, or pSAP and in some experi-
ments C1q-mediated complement activation was inhibited by 
preincubation of NHP or UCS with a C1q inhibitory antibody. 
Preincubation with rPTX3, pCRP, or pSAP did not increase 
C5b-9 deposition on CC incubated with NHP (Figure  4A). 
Preincubation of CC with pCRP significantly increased the C5b-9 
deposition from UCS (Figure 4B), corresponding to the signifi-
cantly increased C1q binding from UCS to CC preincubated with 
pCRP (Figure 3D). The increased complement activation medi-
ated by CC preincubated with pCRP was significantly inhibited by 
the C1q inhibitory antibody, indicating that the increase in C5b-9 
deposition on CC was due to increased C1q binding (Figure 4B). 
All experiments were also conducted using 5% NHP, NHS, or 
UCS obtaining similar results (data not shown).

Phagocytosis of ccs by granulocytes and 
Monocytes in Whole Blood is complement 
Dependent and Depends on c1q Binding
We investigated the role of C1q in the phagocytosis of CC. Human 
whole blood was preincubated with complement inhibitors 
Compstatin (a C3 inhibitory peptide), Eculizumab (a C5 inhibi-
tory antibody), a C1q inhibitory antibody, or mouse IgG as control 
and then stimulated with PBS or CC. Compstatin, Eculizumab, 
and the C1q inhibitory antibody significantly reduced the per-
centage of granulocytes internalizing and/or binding to CC. The 
inhibitors also reduced the cell surface expression of the comple-
ment receptor 3 (CR3/CD11b) on both granulocytes (Figure 5A) 

and monocytes (Figure  5B). Compstatin, Eculizumab, and 
the C1q inhibitory antibody also reduced the percentage of 
monocytes internalizing and/or binding CC, although only the 
reduction using Compstatin was statistically significant. These 
results confirm previous reports: C1q-mediated complement 
activation on CC is highly important for the phagocytosis of CC 
by granulocytes and monocytes.

PTX3, crP, and saP are Found in human 
atherosclerotic Plaques and co-localize 
with c5b-9
To investigate the clinical relevance of the in vitro findings, we 
analyzed the presence of PTX3, CRP, and SAP in human ath-
erosclerotic plaques that were surgically removed from patients 
with critical stenosis (above 70%) (57). The three proteins were 
found mainly in the plaque necrotic core (Figure 6), a region 
rich in cholesterol clefts and fat-laden macrophages (Figure 
S5 in Supplementary Material), where the complement activa-
tion product C5b-9 was also mainly located. We confirmed 
the protein location after deletion of the collagen-associated 
unselective signal, which is visible in all three color channels 
used (exclusion image, Figure 6) and here CRP seemed to be the 
only pentraxin overlapping with C5b-9. Next, confocal imaging 
using high magnification was performed to study co-localization 
of the pentraxins and C5b-9. PTX3, CRP, and SAP were found 
to surround black non-fluorescent areas in the necrotic core, 
likely corresponding to cholesterol deposits (Figure S6 in 
Supplementary Material), where CRP partially co-localized 
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FigUre 3 | Pentraxin 3 (PTX3), C-reactive protein (CRP), and C1q interact on the surface of CCs. C1q binding to CC increase binding of PTX3 (a) and binding of 
PTX3 or CRP increase the binding of purified C1q (pC1q) and native C1q from plasma or serum samples (B–D). (a) Binding of recombinant PTX3 (rPTX3)  
(2.5 µg/mL), purified CRP (pCRP) (0.02 µg/mL), or purified SAP (pSAP) (0.02 µg/mL) to CC preincubated with 0, 1, or 4 µg/mL pC1q. (B) Binding of pC1q (2 µg/mL) 
to CC preincubated with rPTX3 (0, 1.25, 2.5 or 5 µg/mL), pCRP (0, 0.01, 0.04, or 1 µg/mL), or pSAP (0, 0.01, 0.04, or 1 µg/mL). (c) Binding of C1q from 5% NHP 
to CC preincubated with rPTX3 (0, 1.25, 5 or 10 µg/mL), pCRP (0, 0.01, 0.04, or 1 µg/mL), or pSAP (0, 0.01, 0.04, or 1 µg/mL). (D) Binding of C1q from 5%  
UCS to CC preincubated with rPTX3 (0, 1.25, 5, or 10 µg/mL), pCRP (0, 0.01, 0.04, or 1 µg/mL), or pSAP (0, 0.01, 0.04, or 1 µg/mL). Binding was assessed by MFI 
and data are given as mean ± SEM (n = 3). *p < 0.05, **p < 0.01 compared with buffer or as otherwise indicated. CC, cholesterol crystals; NHP, normal human 
plasma; UCS, umbilical cord serum; MFI, median fluorescence intensity.
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with C5b-9 (Figures  7A–C). PTX3, CRP, and SAP were to a 
lesser extent present in the tunica media, a region with fewer 
cholesterol deposits. Even so, CRP appeared to co-localize with 
C5b-9 (Figures 7Á –C΄).

DiscUssiOn

Pentraxins are not only a family of acute-phase proteins expressed 
in response to inflammatory stimuli or tissue damage, but they 
have also been associated with the development of cardiovascular 
diseases including atherosclerosis. The pentraxins PTX3, CRP, and 
SAP interact with PRMs from the complement system, especially 
C1q. In the present study, we report a novel link between the 
presence of pentraxins in atherosclerotic lesions and the known 
complement activation and inflammatory response induced by CC.

The non-glycosylated CRP (61, 62) and the glycoprotein SAP 
(63, 64) are composed of are composed of protomers organized 
in a pentameric structure, where five subunits are arranged with 
radial symmetry (65), whereas the long pentraxin PTX3 has a 
fourfold symmetry, consisting of two disulfide-linked tertiary 
rings forming a complex octameric structure (66). PTX3, CRP, 
and SAP bind to a wide range of ligands including pathogens 
and altered/damaged self (12). CRP and SAP binding is mostly 
calcium dependent due to a calcium-binding pocket found in the 
proteins. PTX3 does not contain this calcium-binding pocket and 
it has previously been described that purified PTX3 does not bind 
calcium (20), which might explain some of the different binding 
specificities of the pentraxins (11). In the binding experiments on 
CC, binding of purified and native CRP from serum/plasma was 
calcium dependent, whereas CRP in the systemic inflammation 
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FigUre 4 | Binding of C-reactive protein (CRP) to CCs increases C1q-mediated complement activation in UCS. Complement activation was measured as C5b-9 
deposition on CC and assessed by flow cytometry. (a) C5b-9 deposition on CC incubated with 10% NHP ± C1q inhibitory antibody (C1q Inhib Ab). CC were 
preincubated with recombinant PTX3 (rPTX3) (0 or 10 µg/mL), purified CRP (pCRP) (0 or 1 µg/mL), or purified SAP (pSAP) (0 or 1 µg/mL). (B) C5b-9 deposition on 
CC incubated with 10% UCS ± C1q Inhi Ab. CC were preincubated with rPTX3 (0 or 10 µg/mL), pCRP (0 or 1 µg/mL), or pSAP (0 or 1 µg/mL). Binding was 
assessed by MFI, and data are given as mean ± SEM (n = 3). *p < 0.05, **p < 0.01, ***p < 0.001 compared with buffer or as otherwise indicated. CC, cholesterol 
crystals; NHP, normal human plasma; UCS, umbilical cord serum; MFI, median fluorescence intensity.
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FigUre 5 | Phagocytosis of CCs by granulocytes (a) and monocytes (B) in whole blood is complement dependent and depends on C1q binding. Hirudin whole 
blood, preincubated 5 min with the C3 inhibitor Compstatin, Cp40, the C5 inhibitor Eculizumab, a C1q inhibitory antibody (C1q Inhib Ab), or a mouse antibody as 
control (Ms IgG). Whole blood was stimulated with PBS or CC. Phagocytosis was determined as percentage of cells phagocytosing CC determined as a shift in side 
scatter and by the expression of CR3 measured as MFI. Granulocytes and monocytes were gated based on CD14 expression. Data are given as mean ± SD (n = 3 
healthy donors). *p < 0.05, **p < 0.01 compared with CC or as otherwise indicated. CC, cholesterol crystals; CR3, complement receptor 3; MFI, median 
fluorescence intensity; PBS, phosphate-buffered saline.
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serum pool was not. Also, pSAP bound in a calcium-dependent 
manner, while SAP in serum/plasma and inflammation serum 
showed only partially calcium dependency. For PTX3, the 
opposite was seen—binding of rPTX3 was calcium independ-
ent, whereas the native PTX3 was partially calcium dependent. 
The calcium dependency of native PTX3 could be a result of 
synergistic interaction with endogenous/native PRMs, e.g., C1q 
where globular head interactions with ligands are clearly calcium 
dependent. The possible synergistic interaction with other serum 
molecules could also explain why a higher amount of rPTX3 
compared to native serum PTX3 was required for CC binding. 
Regarding CRP, our experiments indicate that CRP binding 
becomes less affected by EDTA when the concentration of CRP 
increases: NHS vs. inflammation serum and moreover patient 1 
(<5 mg/L CRP) vs. 2 and 3 (>100 mg/L CRP) shows that elevated 
CRP decreases EDTA interference with the binding. It can be 
speculated whether this is a result of a corresponding increase in 
calcium-dependent CRP complexes reducing the level of available 
EDTA to chelate calcium, or whether CRP binding is stabilized 
by a calcium-independent factor present during inflammation.

Pentraxin 3, CRP, and SAP have previously been shown to 
interact with the complement PRM C1q. CRP and SAP bind C1q 
in a highly calcium-dependent manner and interact mainly with 
the globular head domains of C1q, leading to C1q-mediated 
complement activation (67, 68). PTX3 binds the globular heads 
of C1q independent of calcium leading to increased C1q-
mediated complement activation (21). Fluid phase interaction 
of PTX3 with C1q on the other hand inhibits C1q-mediated 
complement activation, suggesting a dual role for PTX3 in the 
interaction with the complement system (21). The interaction 
between rPTX3, pCRP or pSAP, and pC1q used in the binding 
experiments with CC was characterized in ELISA before use. In 
agreement with previous literature, our ELISA results showed 
that C1q binds immobilized PTX3, CRP, and SAP independ-
ent of calcium. But, CRP does not bind to immobilized C1q as 
PTX3 and SAP do (21). Interestingly, our CC binding studies 
showed that CRP recruits pC1q much more potently to the 
surface of CC than PTX3 does. Also in UCS, where the level 
of IgM is much lower than in normal serum, C1q binding was 
highly increased via CRP, but not PTX3. Hence, it appears that 
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FigUre 6 | Pentraxin 3 (PTX3) (a), C-reactive protein (CRP) (B), and SAP (c) are found in human atherosclerotic plaques. PTX3, CRP, and SAP (green) deposited 
mainly in the necrotic core (dashed areas) where C5b-9 (red) was also mostly found. The exclusion images showed the specific signal for each of the proteins 
obtained after deletion of the collagen-associated unselective fluorescence. Images are representative of four plaques analyzed per marker. Scale bars = 1 mm.
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CRP can work as an adaptor for C1q in exchange for IgM on the 
CC. Our previous study supports this finding as we showed that 
C1q binding to CC is mediated by IgM and not by IgG on the  
crystal surface (6). The complement activation experiments 
correspondingly showed that CRP, and not PTX3, increased 
C5b-9 via C1q in UCS. This is central since CRP levels can 
increase dramatically during inflammation and possibly surpass 
the IgM-derived complement activation. The concentration of 
CRP in the complement activation experiment was rather low in 
order to mimic low grade inflammation. Higher concentrations 
would possibly have a more potent effect that could mimic acute 
inflammation in  vivo. PTX3 increased the binding of C1q in 
normal serum/plasma and not UCS. Considering the low IgM 
level in UCS compared to normal serum, this could mean that 
PTX3 has a positive effect on C1q/IgM complexes. However, it 
cannot be excluded that an unknown factor found in UCS blocks 
the interaction between PTX3 and C1q causing the difference 
between normal serum and UCS.

Preincubation of CC with C1q did not increase the binding 
of CRP on the CC most likely because the interaction happens 
via the C1q globular head domains. In general, SAP had no 
effect. Overall these data demonstrate that among the pen-
traxins, especially CRP may function as an important sensor 
molecule for the complement system on CC in atherosclerotic 
plaques. The pentraxins have also been shown to interact 
with the lectin pathway PRMs ficolin-1, ficolin-2, and MBL 
(23–26); MBL and ficolin-2 have been shown to activate the 
complement system on CC and could be a subject for future 
research (6).

Cholesterol crystals are known to be phagocytosed by granu-
locytes and monocytes by complement-dependent mechanisms; 
opsonization of CC by C3b/iC3b leads to phagocytosis via CR3 
and by binding of PRM to specific receptors (8). Here, we verify 
previous findings that phagocytosis of CC depends on C1q-
mediated complement activation. The pentraxins could have a 
potential role in directing C1q-mediated complement activation 
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FigUre 7 | High magnification confocal images showing co-localization of pentraxin 3 (PTX3) (a,a′), C-reactive protein (CRP) (B,B′), and SAP (c,c′) with C5b-9 in 
human atherosclerotic plaques. In the necrotic core (a–c), PTX3, CRP, and SAP (green) surrounded black areas (arrows) likely corresponding to cholesterol clefts, 
and partially co-localized with C5b-9 (red). In the tunica media (a′–c′), PTX3, CRP, and SAP were present to a lesser extent than in the necrotic core, and showed 
scarce co-localization with C5b-9. Images in (a′–c′) showed the specific signal for each of the proteins obtained after deletion of the collagen-associated 
unselective fluorescence typical of the tunica media. Images are representative of four plaques analyzed per marker. Scale bars = 20 µm.
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to the CC, in a similar way as natural IgM, leading to removal of 
CC from atherosclerotic plaques.

In the present study, the interaction between the pentraxins 
and C1q on the surface of CC was shown by in vitro experiments 
using purified proteins, plasma/serum samples or a whole blood 
model. To further explore the pathophysiological relevance of 
these observations, we examined human atherosclerotic plaques 
for deposition of PTX3, CRP, SAP, and complement activation 
product C5b-9. PTX3, CRP, and SAP have previously been found 
in human atherosclerotic lesions (50–53). PTX3 has been shown 
to be localized in advanced human atherosclerotic lesions, where 
it was produced by the major cellular components of atheroscle-
rotic plaques macrophages and endothelial cells and to a minor 
extent by smooth muscle cells (50). CRP has been found in early 
lesions, co-localized with the complement activation product 
C5b-9 (51). We found deposition of PTX3, CRP, and SAP in 
human atherosclerotic plaques, especially in the necrotic core of 
the lesions, an area rich in cholesterol clefts, but indeed only CRP 
showed a co-localizing pattern with C5b-9. This strongly supports 

the idea that CRP-mediated complement activation on CC might 
be relevant in relation to atherosclerotic processes. Previous 
studies suggested that CRP-mediated activation of complement 
is restricted to the early steps of the cascade with little activation 
of the final product C5b-9 and the inflammatory mediator C5a 
(69). Bound CRP may also provide a binding site for the soluble 
control protein factor H, thereby regulating the alternative path-
way amplification and C3 convertase. Our results show that CRP 
co-localizes with C5b-9. However, it is unknown if the C5b-9 in 
our experiments is indeed activated by CRP or if the factors that 
under normal circumstances restrict CRP-mediated complement 
activation to early steps are absent from atherosclerotic plaques.

In conclusion, this study identifies CRP as a strong mediator 
of complement activation on CC. Since CRP increases vastly 
during inflammation, complement may exacerbate this condition 
through CRP and thus play a role in the pathophysiology of ath-
erosclerosis. On the other hand, C1q also mediates phagocytosis 
of CC and in this way CRP may benefit clearance of CC from the 
inflamed area. However, in atherosclerosis, immune homeostasis 
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is impaired and likely complement is inappropriately activated, 
thus contributing negatively to the disease.
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