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Resolution agonists, including lipid mediators and peptides such as annexin A1 (ANXA1), 
are providing novel approaches to treat inflammatory conditions. Surgical trauma exerts 
a significant burden on the immune system that can affect and impair multiple organs. 
Perioperative cerebral injury after cardiac surgery is associated with significant adverse 
neurological outcomes such as delirium and postoperative cognitive dysfunction. Using 
a clinically relevant rat model of cardiopulmonary bypass (CPB) with deep hypothermic 
circulatory arrest (DHCA), we tested the pro-resolving effects of a novel bioactive ANXA1 
tripeptide (ANXA1sp) on neuroinflammation and cognition. Male rats underwent 2 h CPB 
with 1 h DHCA at 18°C, and received vehicle or ANXA1sp followed by timed reperfusion 
up to postoperative day 7. Immortalized murine microglial cell line BV2 were treated with 
vehicle or ANXA1sp and subjected to 2 h oxygen–glucose deprivation followed by timed 
reoxygenation. Microglial activation, cell death, neuroinflammation, and NF-κB activation 
were assessed in tissue samples and cell cultures. Rats exposed to CPB and DHCA 
had evident neuroinflammation in various brain areas. However, in ANXA1sp-treated 
rats, microglial activation and cell death (apoptosis and necrosis) were reduced at 24 h 
and 7 days after surgery. This was associated with a reduction in key pro-inflammatory 
cytokines due to inhibition of NF-κB activation in the brain and systemically. Treated 
rats also had improved neurologic scores and shorter latency in the Morris water maze. 
In BV2 cells treated with ANXA1sp, similar protective effects were observed including 
decreased pro-inflammatory cytokines and cell death. Notably, we also found increased 
expression of ANXA1, which binds to NF-κB p65 and thereby inhibits its transcriptional 
activity. Our findings provide evidence that treatment with a novel pro-resolving ANXA1 
tripeptide is neuroprotective after cardiac surgery in rats by attenuating neuroinflamma-
tion and may prevent postoperative neurologic complications.

Keywords: memory, neuroinflammation, nF-κB, postoperative cognitive dysfunction, resolution of inflammation, 
surgery
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inTrODUcTiOn

Resolution of inflammation was once believed to be a passive 
process, but we now know that it involves a cascade of coor-
dinated events that is initiated as inflammation begins (1, 2). 
Defective resolution and non-resolving inflammation contribute 
to a chronic and maladaptive state that characterizes several 
diseases ranging from atherosclerosis to rheumatoid arthritis 
(3). Endogenous mediators, including lipids biosynthesized 
from omega-3 fatty acids, gases such as carbon monoxide, and 
certain proteins, promote resolution of inflammation, and restore 
homeostasis without causing unwanted side effects by optimizing 
the body’s natural chemistry to safely regulate inflammatory mol-
ecules (4). Indeed, novel treatment strategies for inflammatory 
conditions use “resolution agonists” to modulate and enhance 
these endogenous mediators and signaling pathways (5, 6).

Annexin A1 (ANXA1), a 37-kDa glucocorticoid-regulated 
protein, is an exemplary resolution agonist that signals through 
the G protein-coupled receptors FPR2/ALX and FPR1 to regu-
late calcium influx into the cell (7). ANXA1 also exerts potent 
anti-inflammatory actions by regulating leukocyte diapedesis, 
efferocytosis, and pro-inflammatory mediators following infec-
tion or injury (8, 9).

Strategies to activate these endogenous inflammation “stop 
signals” are gaining considerable interest (10). This innovative 
line of research has led to ANXA1 peptidomimetics, which are 
designed to boost activation of naturally occurring pro-resolving 
and anti-inflammatory mechanisms (11). Perretti and colleagues 
first developed a peptide that is modeled on the first 50 amino 
acids in the N-terminal portion of ANXA1 (CR-AnxA12–50), and 
that binds specifically to FPR2/ALX, and exerts key pro-resolving 
actions in different inflammatory conditions (12–14).

Cardiopulmonary bypass (CPB) with deep hypothermic 
circulatory arrest (DHCA) is routinely performed during cardiac 
surgery for repair of thoracic aortic disease or complex congenital 
cardiac defects. Although this procedure remains necessary to 
maintain circulation of blood and oxygen while repairing the 
heart, it contributes to profound perturbations in inflammatory, 
hemostatic, and oxidative stress pathways, collectively implicated 
in the pathogenesis of perioperative cerebral injury (15–17). 
This inflammatory response is specifically activated via several 
pathways: the contact activation by the foreign surface of the CPB 
circuit, surgical trauma as well as the effect of ischemia–reperfu-
sion (I/R) injury, and endotoxemia (18). Further, its effects have 
been related to central nervous system injury, including compli-
cations like delirium and postoperative cognitive dysfunction 
(19). Systemic inflammation after both cardiac and non-cardiac 
surgery can affect the brain via neuroinflammatory processes 
that are amplified by circulating pro-inflammatory cytokines in 
blood and cerebrospinal fluid (20–23) and localized neuronal  
impairments (24, 25).

We previously discovered a novel ANXA1 peptidomimetic 
(ANXA1sp or Ac-QAW) that suppresses human colon cancer 
growth via modulation of NF-κB activation (26). In the current 
study, we tested the effects of ANXA1sp on postoperative neuro-
inflammation and cognitive changes in an established rat model 
of CPB with DHCA and hypothesized that its pro-resolving 

mechanisms following I/R injury are mediated via attenuation of 
microglial activation.

MaTerials anD MeThODs

animals
The experimental protocol was approved by the Duke University 
Animal Care and Use Committee. All procedures were in accord-
ance with the guidelines of the National Institutes of Health for 
animal care (Guide for the Care and Use of Laboratory Animals, 
Health and Human Services, National Institutes of Health 
Publication No. 86-23, revised 1996). Studies were conducted 
on adult male Sprague-Dawley rats (age 14–16  weeks; weight 
400–450 g; Charles River Laboratories, Wilmington, MA, USA). 
Rats were housed (two animals per cage) in a 12-h light/dark 
cycle environment with free access to food and water. Rats were 
acclimated for at least 1 week before starting any experiment.

Drug Treatments
Annexin A1 biomimetic tripeptide (ANXA1sp or Ac-QAW, 
Ac  =  acetyl, MW  =  445.47  Da) was synthesized and purified 
(>98% purity) by GenScript (Piscataway, NJ, USA). The peptide 
was suspended in 100% DMSO. For in  vivo experiments, this 
stock solution was diluted in saline to a final dose of 1  mg/kg 
ANXA1sp and a concentration of 1% DMSO. For in vitro experi-
ments, the ANXA1sp–DMSO stock solution was diluted with 
culture medium to final concentrations ranging from 5 to 100 µM 
ANXA1sp. Vehicle control was 1% DMSO in saline for in vivo 
studies, and 1% DMSO in culture medium for in vitro studies. 
ANXA1sp treatment solutions were prepared fresh immediately 
before use for in vivo and in vitro experiments.

Short-term Survival Groups (3, 6, and 24 h)
Rats were randomly assigned to six groups (n  =  5/group) and 
terminated for histologic and biochemical analyses at 3, 6, or 
24 h after CPB/DHCA. Rats received ANXA1sp (1 mg/kg iv) or 
vehicle (1% DMSO iv) in 1 mL saline 1 h before CPB and 1 h after 
reperfusion. Rats in the 24-h survival group were also treated 
at 6 h after reperfusion. All treatments were administered in a 
blinded manner.

Long-term Survival Group (Day 7 Post Operation)
Rats were randomly assigned to two groups (n = 10/group) and 
treated as described above and then daily (ip) up to day 7 post 
operation. After neurologic and cognitive assessments on day 7 
post operation, animals were terminated.

cardiac surgery with cPB/Dhca
Fasted rats were anesthetized with isoflurane, intubated, and 
cannulated for CPB and DHCA without sternotomy, to allow for 
long-term survival, as previously described (27). Routine physi-
ologic parameters, and pericranial and rectal temperature were 
continuously monitored. The heparinized CPB circuit consisted 
of a venous reservoir, a peristaltic pump, a custom-designed 
membrane oxygenator, and a flow probe. Lung ventilation was 
stopped for the entire period of CPB/DHCA. Following heparin 
administration, CPB was initiated at a flow rate of 160–180 mL/
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kg/min, which was then decreased as the animals were cooled 
over 30  min to a target pericranial temperature of 18°C. After 
reaching 18°C, the rats were subjected to DHCA, which was 
confirmed by electrocardiographic asystole and absence of any 
measurable MAP. After 60 min of DHCA, CPB was reinstituted, 
and rats were rewarmed over 30 min to a pericranial temperature 
of 34°C. CPB was then terminated, and mechanical ventilation 
resumed. After 2 h of continuous monitoring, rats were extubated, 
and recovered in a warmed oxygen-enriched environment with 
free access to water. Rats in the sham group (n = 3/group) were 
cannulated without exposure to CPB/DHCA; naïve rats were 
sacrificed under 5% isoflurane.

To harvest the brain, rats were re-anesthetized, intubated, and 
mechanically ventilated. One sample of brain tissue was immedi-
ately fixed in 10% buffered formalin and paraffin-embedded for 
immunostaining. The remaining brain tissue was frozen in liquid 
nitrogen and stored at −80°C until further use. Blood samples 
from each animal were also collected and stored at −80°C until 
analysis.

immunostaining of Microglia
Staining was performed on slices (20 µm thick) of the paraffin-
embedded brain tissue samples using ionizing calcium-binding 
adaptor molecule 1 (Iba1) rabbit antibody (Wako Chemicals 
USA Inc., Richmond, VA, USA). For antigen retrieval, tissue 
slices were incubated with 10 mM citrate buffer, pH 6.0, for 5 min 
at 100°C. After the buffer solution cooled to room temperature 
(RT), slices were washed, and then blocked with 10% normal 
goat serum for 60  min at RT. Slices were then incubated with 
primary rabbit anti-Iba1 primary antibody (1:200) overnight at 
4°C. After three washes with PBS, the slices were incubated with 
goat anti-rabbit secondary antibody conjugated with Alexa Fluor 
488 (1:500, Invitrogen, Carlsbad, CA, USA) for 60  min at RT. 
Images were captured on a fluorescence microscope (Leica DM 
IRB, Germany) using a 10×/0.3 PH objective at 1.5-fold magnifi-
cation. For quantification the total number of Iba1-positive cells 
was determined in five representative areas of the cerebral cortex 
(retrosplenial and posterior parietal cortex) and the hippocampus 
(CA1–CA3 area). Automated imaging and high-content analysis 
of microglia were done on the Cellomics ArrayScan IV platform 
and instrument (Thermo Fisher Scientific) using the Target 
Activation algorithm module optimized for object size, object 
shape, and fluorescence intensity to identify Iba1 positive cells 
by soma size (28). Microglial morphology was evaluated using 
a 4-scale classification method based on (29). Cells were classi-
fied based on their overall morphology as (1) round/amoeboid 
microglia, (2) stout microglia, (3) thicker longer ramifications, 
and (4) thinner ramifications by an investigator blinded to the 
experimental groups.

cell Death assessment
Apoptosis was determined by terminal deoxynucleotidyl nick-
end labeling (TUNEL) per assay manufacturer’s protocol (Roche 
Diagnostics, Indianapolis, IN, USA). Briefly, sections of the 
paraffin-embedded brain tissue sample (5 µm thick) were depar-
affinized using xylene and descending grades of ethanol, and 
pretreated with microwave radiation (350 W, in 200 mL of 0.1 M 

Citrate buffer, pH 6.0) for 5 min. Tissue sections were then incu-
bated with terminal deoxynucleotidyl transferase (TdT) for 1.5 h 
at 37°C and then rinsed with PBS. Slides of five representative areas 
of the retrosplenial and posterior parietal cortex and CA1 area 
of the hippocampus were mounted using UltraCruz™Mounting 
Medium with DAPI (Santa Cruz Biotechnology, Santa Cruz, CA, 
USA). Negative controls were incubated in label solution without 
TdT. A separate set of sections was stained with acid fuchsin–
celestine blue to identify possible necrotic cells. Cell counting was 
performed in a blinded manner across five representative areas of 
the cerebral cortex and CA1 areas using a fluorescence micros-
copy (Leica DM IRB, Germany) with a 20×/0.4 PH objective at 
1.5-fold magnification. Data obtained in every field were added 
together to make a final data count for each slide and expressed 
as percentage of total cell number within the relevant fields. For 
in vitro cell death assessment, cell culture medium (for necrosis) 
and cell lysate (for apoptosis) were assayed using the Cell Death 
Detection ELISAPLUS per manufacturer’s protocol to measure 
cytoplasmic histone-associated DND fragments (momo- and 
oligonucleosomes) as previously described (30).

Western Blots
Frozen brain samples were homogenized and protein quantified 
by BCA assay (Thermo Fisher Scientific). Western blotting was 
performed using SDS-PAGE 4–15% gradient gels (Bio-Rad) with 
the following antibodies: rabbit polyclonal against phosphor-
p65; and ANXA1 (all from Cell Signaling Technology, Danvers, 
MA, USA). The bands were detected by Super-Signal West Dura 
Extended Duration Substrate (Thermo Scientific, Rockford, IL, 
USA). Band intensities of phosphor-p65 or ANXA1 were nor-
malized with a loading control of β-actin.

neurologic evaluation
On day 3 and day 7 post operation, rats underwent standardized 
functional neurologic testing by an observer blinded to group 
assignment, using an established neurologic scoring system that 
evaluates motor deficit (31). Briefly, rats were first placed on a 
35 cm × 31.25 cm screen (grid size 0.6 cm × 0.6 cm) that could 
be rotated from horizontal (0°) to vertical (90°). The length of 
time that the rat could hold onto the screen after being rotated 
from 0 to 90° was recorded to a maximum of 15  s (0–3). Rats 
were then tested for balance on a horizontal wooden rod, and the 
time lapse before falling off the rod was recorded to a maximum 
of 30 s (0–3). Finally, rats underwent a prehensile traction test, 
and the length of time that the rat could cling to a horizontal 
rope was recorded to a maximum of 5 s (0–3). Animals received a 
score for each of the three tests. The final score was the sum of the 
individual test scores, with 0 the best score, and 9 the worst score.

Morris Water Maze
The Morris water maze consisted of a pool of water (27°C), 
1.5  m in diameter and 30  cm deep, with a hidden platform 
submerged 3  cm below the surface in one quadrant, and a 
computerized video tracking system (EthoVision®; Noldus, 
Wageningen, The Netherlands) (32). Rats were placed in the 
water in a dimly lit room with visual clues around the maze. The 
time to locate the submerged platform (defined as the escape 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


4

Zhang et al. ANXA1 and Postoperative Neuroinflammation

Frontiers in Immunology | www.frontiersin.org August 2017 | Volume 8 | Article 1050

latency) was measured. From day 3 through day 7 post opera-
tion, rats underwent daily testing in the water maze. Four trials 
were performed each day with an intertrial interval of 10 min. 
Each trial started in a different quadrant and was limited to 
90 s of water exposure. A probe trial was performed on the last 
day of testing, and the submerged escape platform was removed 
from the water maze.

BV2 cell culture and hypoxic exposure
Immortalized murine microglial cell line BV2 were maintained 
in Dulbecco’s modified Eagle’s medium (DMEM high glucose) 
containing 10% fetal bovine serum, 1% penicillin, and 1% strep-
tomycin in a 37°C humidified incubator with 5% CO2 (balanced 
with air). Confluent cultures were passaged by trypsinization. 
After incubating for 24 h, cells were exposed to ANXA1sp (0, 5, 
10, 20, 30, 40, 50, or 100 µM) for 1 h. Cells were then subjected 
to 2  h oxygen–glucose deprivation (OGD: DMEM no glucose, 
85% N2/10% H2/5% CO2) in an OGD chamber (Farma Scientific), 
followed by reoxygenation for 3, 6, or 24  h in a 37°C growth 
incubator with 5% CO2 (balanced with air). Cells treated with 
1% DMSO in the medium served as vehicle control. At the end 
of each time point, cells and culture supernatant were harvested 
for further analysis.

cell Viability/MTT assay
Cell viability was determined by MTT (3-[4,5-dimethylthiazol-
2-yl]-2,5 diphenyltetra-zolium bromide) assay per manufac-
turer’s protocol (Sigma-Aldrich, St. Louis, MO, USA). Briefly, 
a volume of MTT stock solution (5 mg/mL) equal to one-tenth 
the original culture volume was added to each culture to be 
assayed. After incubating for 3 h, cells were centrifuged at 800 g 
for 5 min, and the medium was removed. The formazan crystals 
were dissolved/solubilized in acidic isopropanol (0.04–0.1  N 
HCl in absolute isopropanol). Absorbance of converted dye was 
measured at a wavelength of 570 nm with background subtrac-
tion at 630–690  nm. Results were presented as cell viability 
(%) = average O.D. of treatment wells/average O.D. of vehicle-
control wells.

nF-κB Dna Binding activity
Nuclear proteins were extracted from BV2 microglia or cerebral 
tissues per manufacturer’s protocol (Nuclear Extraction Kit, 
Panomics, Santa Clara, CA, USA). Protein concentration of 
nuclear extracts was measured using the BCA assay (Thermo 
Fisher Scientific, Grand Island, NY, USA). NF-κB DNA 
binding activity was assessed using a quantitative detection 
kit (Transcription Factor Assay Kit, Cayman Chemical, Ann 
Arbor, MI, USA). According to the manufacturer’s protocol, 
the 96-well plates were pre-coated with the specific double-
stranded DNA sequence that contains the transcription factor 
NF-κB (p65) response element. Approximately 10  µg nuclear 
protein was incubated in the coated plate at RT for 1 h while 
rocking the plate gently at 150  rpm. After washing, NF-κB 
(p65)-specific primary antibody (1:100 dilution) was added, 
followed by horseradish peroxidase-labeled secondary anti-
body (1:100 dilution). The absorbance was read at 450 nm on a 
microplate reader.

cytokine Measurement
The concentrations of TNF-α and IL-6 in cell media, plasma, and 
brain homogenates were measured using rat-specific ELISA kits 
per manufacturer’s protocol (Thermo Fisher Scientific, Grand 
Island, NY, USA). The plasma was obtained by centrifugation at 
2,000 g for 10 min at 4°C, and stored at −80°C until use. Brain 
homogenates were separated by centrifugation at 14,000  g for 
10 min at 4°C to remove cellular debris. Change in absorbance 
in every well was detected at 450 nm on a microplate reader. All 
measurements were performed in triplicate.

Myeloperoxidase (MPO) Measurement
Myeloperoxidase activity in brain tissue, whole cell lysates, and 
plasma was assessed using ELISA with a rat-specific MPO assay 
kit per manufacturer’s protocol (HK105, HyCult Biotechnology, 
Uden, The Netherlands).

confocal Microscopy
After deparaffinization, sections of the brain tissue sample were 
treated with 10 mM citrate buffer (pH 6.0) for antigen retrieval. 
After blocking with 10% normal goat serum at RT for 1 h, the sec-
tions were incubated with rabbit anti-ANXA1 antibody (1:500) 
and mouse anti-NF-κB p65 (1:500, Santa Cruz Biotechnology, 
Santa Cruz, CA, USA) at 4°C overnight. The sections were then 
incubated with Alexa Fluor 488-conjugated goat anti-rabbit IgG 
(1:500; Invitrogen, Carlsbad, CA, USA) and Alexa Fluor 550-con-
jugated goat anti-mouse IgG (1:500; Invitrogen, Carlsbad, CA, 
USA) at RT for 1 h. After washing with PBS, slides of the sec-
tions were prepared and mounted using UltraCruz™ Mounting 
Medium with DAPI (Santa Cruz Biotechnology, Santa Cruz, CA, 
USA) to detect nuclei.

For in vitro confocal microscopy, adherent BV2 cells grown 
on coverslips were fixed by adding 4% paraformaldehyde to the 
medium, and incubating for 15 min at RT. After rinsing with PBS, 
coverslips were permeabilized in freshly prepared 0.1% Triton 
X-100 and 0.1% sodium citrate for 10 min at RT. After washing 
and blocking with 10% normal goat serum and 1% BSA for 1 h at 
RT, coverslips were incubated with rabbit anti-ANXA1 antibody 
(1:1,000, Santa Cruz Biotechnology, Santa Cruz, CA, USA) and 
mouse anti-NF-κB p65 (1:500, Santa Cruz Biotechnology, Santa 
Cruz, CA, USA) at 4°C overnight. Coverslips were then incubated 
with Alexa Fluor 488-conjugated goat anti-rabbit IgG (1:1,000; 
Invitrogen, Carlsbad, CA, USA) and Alexa Fluor 555-conjugated 
goat anti-mouse IgG (1:1,000; Invitrogen, Carlsbad, CA, USA) 
at RT. Coverslips were mounted using UltraCruz™ Mounting 
Medium with DAPI (Santa Cruz Biotechnology, Santa Cruz, 
CA, USA) to detect nuclei. Images were captured on a Leica 
SP5 confocal microscope (Leica Microsystems, Germany) using 
a 63×/1.25-0.75 Plan APO oil objective, and the images were 
analyzed by NIH ImageJ software (version 1.51).

statistical analysis
Statistical analysis was performed using Statview Software (ver-
sion 5, SAS Institute, Cary, NC, USA) and graphs presented with 
Prism 7 (GraphPad Software, San Diego, CA, USA). Results were 
expressed as mean ±  SD. Morris water maze performance was 
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TaBle 1 | Intraoperative physiologic data.

Parameter group Pre-cPB 30 min cPB 60 min Dhca 10 min reperfusion end of cPB 120 min P-cPB

MAP (mmHg) Vehicle 70 (7) 30 (4) – 72 (25) 88 (11) 88 (6)
ANXA1sp 66 (7) 29 (4) – 49 (12) 78 (22) 81 (17)

Temp. (°C) Vehicle 34.1 (0.8) 19.3 (0.6) 15.0 (0.1) 21.9 (3.0) 33.2 (0.6) 36.0 (0.8)
ANXA1sp 34.2 (0.3) 19.1 (0.5) 15.0 (0.1) 22.0 (2.3) 33.8 (0.5) 36.4 (0.3)

Glucose (mg/dL) Vehicle 124 (40) – 190 (44) 143 (42)
ANXA1sp 123 (46) – 170 (36) 116 (38)

PH Vehicle 7.36 (0.08) 7.46 (0.05) – 7.57 (0.08) 7.28 (0.05) 7.36 (0.03)
ANXA1sp 7.38 (0.02) 7.48 (0.09) – 7.51 (0.15) 7.29 (0.02) 7.40 (0.05)

PO2 (mmHg) Vehicle 227 (46) 516 (47) – 374 (69) 245 (114) 256 (71)
ANXA1sp 253 (93) 474 (77) – 257 (211) 170 (138) 247 (126)

PCO2 (mmHg) Vehicle 53.2 (13.1) 40.2 (3.8) – 28.6 (4.6) 55.8 (8.7) 52.0 (4.4)
ANXA1sp 49.4 (5.1) 38.6 (9.7) – 31.2 (12.0) 53.0 (5.1) 48.6 (6.1)

HCO3
−

 (meq/L) Vehicle 29.4 (1.9) 24.6 (0.8) – 25.7 (2.3) 25.7 (2.6) 29.0 (1.0)
ANXA1sp 29.2 (1.6) 28.3 (1.2) – 23.5 (1.7) 25.2 (1.9) 29.8 (1.4)

Hct (%) Vehicle 41.4 (2.3) 25.0 (0.7) – 25.0 (1.2) 28.0 (0.8) 39.0 (2.9)
ANXA1sp 41.6 (1.9) 24.2 (0.8) – 25.2 (0.8) 27.4 (2.6) 38.4 (2.1)

Values in brackets represent SD (– indicates no values due to the bypass machine being on).
CPB, cardiopulmonary bypass; DHCA, deep hypothermic circulatory arrest.
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compared by repeated measures analysis of variance, with time 
as the repeated measure and Fisher’s least significance difference 
post  hoc test. The Mann–Whitney U test was used to compare 
neurologic scores between groups at each recovery interval. 
Parametric values, including physiologic values, data from ELISA, 
western blots, as well as numbers of apoptotic and necrotic cells, 
were compared between groups using the Student’s t-test. One-
way or two-way analysis of variance followed by Tukey’s or Sidak’s 
multiple comparison post hoc was used as defined in the figure 
legends. Statistical significance was assumed when P < 0.05.

resUlTs

No deaths were reported after CPB/DHCA in this study. 
Intraoperative physiologic values (MAP, Hct, glucose, pH, 
PaCO2, PaO2, HCO3

−, and pericranial temperature) in rats treated 
with vehicle or ANXA1sp are summarized in Table 1. Intergroup 
comparisons show no statistical differences, with all values within 
normal limits.

anXa1sp Treatment attenuates 
neuroinflammation and systemic 
inflammation after cPB/Dhca
Neuroinflammation is a critical hallmark in several neurocognitive 
disorders (33). After CPB/DHCA, we found a significant increase 
in brain levels of key pro-inflammatory cytokines such as TNF-α 
and MPO (Figure 1). TNF-α was elevated 24 h after surgery, with 
protein levels significantly reduced following ANXA1sp treatment 
(Figure 1A, 12.39 ± 0.11 vs 1.50 ± 0.09, P < 0.01). Similarly, MPO 
levels were lower in ANXA1sp-treated rats at 6 and 24 h compared 
to controls (Figure 1B, 1.47 ± 0.31 vs 0.53 ± 0.14 at 6 h; 0.71 ± 0.24 
vs 0.53 ± 0.14 at 24 h, P < 0.01). Given the known effects of CPB 
surgery on the systemic inflammatory response we also measured 
plasma levels of these pro-inflammatory cytokines and IL-6. Levels 
of TNF-α, MPO, and IL-6 were elevated after injury, peaking at 6 h 
and returning toward baseline at 24 h. ANXA1sp-treated rats had 

significantly blunted systemic inflammation (Figure 2). Although 
statistically significant changes were measured only at 24 h, both 3 
and 6 h treated groups had lower levels of plasma TNF-α (Figure 2A, 
3.63 ± 0.68 vs 0.88 ± 0.17 at 24 h, P < 0.01). Systemic levels of MPO 
were reduced at 6 and 24 h after treatment (Figure 2B, 10.12 ± 2.33 
vs 4.87 ± 0.30, P < 0.05; 6.07 ± 0.31 vs 3.15 ± 0.86, P < 0.01), whereas 
IL-6 was reduced at all time points (Figure 2C, 33.20 ± 15.81 vs 
11.83 ± 2.33 at 3 h, P < 0.05; 58.94 ± 11.79 vs 12.29 ± 10.80 at 6 h, 
P < 0.01; 4.71 ± 1.36 vs 2.27 ± 0.04 at 24 h, P < 0.05).

regulation of Microglial activation and 
cell Death by anXa1sp after cPB/Dhca
Microglia are resident immune cells in the CNS that have key 
functions in homeostasis and disease development (34). Changes 
in microglial morphology are often associated with pathological 
states. Here we found that CPB/DHCA induced distinct changes 
in microglial activation both in the hippocampus CA1–CA3 area 
and retrosplenial and posterior parietal cortex (Figure 3). Using 
a method identified to characterize microglia morphology (29) 
we found ANXA1sp treatment (1  mg/kg) significantly attenu-
ated microglial activation (Figures  3A,B). This was evidenced 
by reduced numbers of Iba1-positive cells in the hippocampus 
CA1–CA3 area (P < 0.01) and retrosplenial and posterior parietal 
cortex (P < 0.01) at 24 h post reperfusion (Figure 3A). This was 
particular significant for microglial with thicker processes (scale 
3, Figure  3C) as well as stout microglia in the cortex (scale 2, 
Figure  3D). Overall, CPB/DHCA surgery did not induce sig-
nificant round/ameboidal microglia (scale 1) at this time point. 
However, overall number of microglia both in the hippocampus 
and cerebral cortex were reduced using automated imaging and 
high-content analysis of soma size (Figure 3E).

Finally, ANXA1sp treatment was also associated with a signifi-
cant reduction in TUNEL-positive cells in the cerebral cortex, but 
not in the hippocampus, at 24 h after CPB/DHCA (Figure 4A). 
Staining with acid fuchsin–celestine blue also revealed acidophilic 
neurons and possible necrosis in the hippocampus (Figure 4B) 
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FigUre 2 | Circulating cytokine levels after cardiopulmonary bypass/deep 
hypothermic circulatory arrest by treatment group. ELISA assays of plasma 
levels of TNFα (a), myeloperoxidase (MPO) (B), and IL-6 (c) showed that 
time-dependent effects were noted in TNFα and MPO levels, with significant 
reduction in ANXA1sp rats by 24 h post reperfusion. IL-6 levels were 
significantly reduced in ANXA1sp-treated rats as early as 3 h post reperfusion. 
Data are presented as mean ± SD (n = 3–5 rats/group). *P < 0.05, **P < 0.01 
compared to vehicle controls, analyzed with unpaired t test.

FigUre 1 | Cytokine levels in brain homogenates after cardiopulmonary bypass/
deep hypothermic circulatory arrest by treatment group. ELISA assays revealed 
time-dependent reductions in brain levels of TNFα (a) and myeloperoxidase  
(B) in ANXA1sp-treated rats, with significant effects at 6 and 24 h post 
reperfusion. Data are presented as mean ± SD (n = 3–5 rats/group). *P < 0.05, 
**P < 0.01 compared to vehicle controls, analyzed with unpaired t test.
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and cerebral cortex (Figure 4C) that was reduced in rats treated 
with ANXA1sp at day 1 and 7 post operation.

In Vivo and In Vitro Modulation of nF-κB 
activity by anXa1sp
We previously demonstrated that both non-steroidal and steroi-
dal anti-inflammatory drugs such as glucocorticoids and nitric 

oxide–aspirin, induce expression of ANXA1, which directly 
binds to the NF-κB p65 subunit, and thereby inhibits its activa-
tion in cancer models (26). Here, we found that NF-κB activity 
in the brain was significantly attenuated in the ANXA1sp-
treated rats at 6  h after CPB/DHCA (Figure  5A). Notably, 
levels of NF-κB increased after CPB/DHCA (with vehicle) 
compared to sham and naïve rats (Figure S1 in Supplementary 
Material), hence we focused this study on the comparison 
between vehicle-treated and ANXA1sp-treated rats. Confocal 
microscopy in the cerebral cortex revealed ANXA1 co-localized 
with nuclear NF-κB p65 after treatment, suggesting a possible 
similar mechanism as earlier described in cancer models (26) 
(Figure  5B). Thus, we assessed protein levels of ANXA1 by 
western blot and found a significant increase in the expres-
sion following peptide administration compared to naïve- and 
vehicle-treated rats (Figure 5C, P < 0.01 vs naïve and P < 0.05 
vs vehicle, respectively).

Given the effects of ANXA1sp on microglial activation after 
CPB/DHCA we then used immortalized murine microglial cell 
line BV2. BV2 cells were pretreated with ANXA1sp for 1 h, and 
then exposed to 2 h OGD (hypoxia) followed by 24 h reoxygena-
tion, to mimic I/R injury from CPB in the rat model. No changes 
were observed in ANXA1sp-treated cells under normoxic or 
sham conditions. However, in cells subjected to hypoxia, we dis-
covered that cell survival (by MTT assessment) was maximal after 
pretreatment with 30 µM ANXA1sp (Figure S2 in Supplementary 
Material). Thus, we used this dosage for the remainder of the 
in vitro studies reported here.

Cells pretreated with ANXA1sp had lower levels of NF-κB 
DNA binding activity (based on the gel electrophoresis mobility 
shift assay) at all time points after OGD (Figure 6A). Using confo-
cal microscopy we also observed increased levels of ANXA1 and 
co-localization with NF-κB p65 (Figure 6B). These findings cor-
roborated our in vivo results. Further, both necrotic (Figure 7A, 
2.58 ± 0.40 vs 1.29 ± 0.53, P < 0.01) and apoptotic (Figure 7B, 
1.74 ± 0.12 vs 1.23 ± 0.18, P < 0.01) cell death following hypoxia 
reoxygenation were reduced after pretreatment with 30  µM 
ANXA1sp assessing oligosome formation as an index of DNA 
fragmentation by ELISA (30). TNFα release in culture media was 
also suppressed after pretreatment with ANXA1sp (Figure 7C, 
3.21 ± 0.30 vs 1.51 ± 0.15, P < 0.001).

neurological and neurocognitive 
Outcomes after cPB/Dhca and anXa1sp 
Treatment
Finally, we evaluated neurobehavioral changes after CPB/DHCA 
and ANXA1sp treatment. Neurologic scores were assessed on day 
3 and day 7 post operation and showed improved sensory-motor 
functions (including processing involving retrosplenial and 
posterior parietal cortex) in ANXA1sp-treated rats compared to 
vehicle-treated rats, with scores returning to baseline by day 7 
post operation (Figure 8A). We used the Morris water maze to 
evaluate spatial learning and memory (involving hippocampal 
function). Fisher’s least significance difference post  hoc test 
showed the cognitive function was significantly improved at day 
3 of the water maze (Figure 8B, P < 0.003).
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FigUre 3 | Microglial activation after cardiopulmonary bypass/deep hypothermic circulatory arrest and ANXA1sp or vehicle treatment. ANXA1sp significantly 
improved microglial morphology both in the hippocampus (a) and cerebral cortex (B) 24 h after CPB/DHCA. (c,D) Microglial morphology was quantified based on 
four morphological subtypes: 1. round/amoeboid microglia; 2. stout microglia; 3. microglia with thick long processes; and 4. microglia with thin ramified processes. 
(e) Overall microglial numbers in the hippocampus and cerebral cortex were reduced after surgery in ANXA1sp-treated rats. Scale bar: 20 µm. Data are presented 
as mean ± SD (n = 3–5 slides/tissue section from five rats per group). *P < 0.05 compared to vehicle controls, analyzed with two-way ANOVA Sidak’s multiple 
comparisons test (c,D) and **P < 0.01 with unpaired t test (e).

7

Zhang et al. ANXA1 and Postoperative Neuroinflammation

Frontiers in Immunology | www.frontiersin.org August 2017 | Volume 8 | Article 1050

DiscUssiOn

In this study, we evaluated the potential of a bioactive ANXA1 
peptidomimetic to confer neuroprotection after cardiac surgery. 
Our findings show that systemic administration of ANXA1sp 
reduced brain and circulating levels of pro-inflammatory mark-
ers while improving neurocognitive outcomes following CPB/
DHCA in rats. In particular, treated animals displayed significant 
decreases in microglial activation, NF-κB activation, and release 
of pro-inflammatory mediators in the CNS and systemically, as 
well as modulation of cell death in different brain regions after 
CPB/DHCA.

Annexin A1 was the first described member of the annexin 
superfamily, which includes 13 mammalian proteins with 
distinct biologic roles (35). It is widely expressed in different 
organs, and signals via the lipoxin A4 receptor (ALX). ANXA1 
has profound effects on innate immunity including regulation 
of glucocorticoid activity by inhibiting eicosanoid synthesis and 
phospholipase A2 (PLA2) (36). The N-terminal domain of this 
molecule is pivotal in mediating several of its biologic functions 
as well as signaling via FPR receptors (37). These actions result 
in potent immunoregulatory effects, especially on inflammatory 
phagocytes and neutrophils by inhibiting their accumulation 
and migration. After splanchnic artery occlusion and reperfu-
sion injury, treatment with ANXA1 N-terminal peptidomimetic 
(Ac2–26) reduced MPO activity and neutrophil infiltration into the 
reperfused tissue and thus, improved outcome after shock (38).  

Recently, using a model of middle cerebral artery occlusion and 
reperfusion in mice that recapitulates warm focal I/R injury, 
Vital et  al. showed attenuation of cerebrovascular injury after 
administration of ANXA1 Ac2–26 (39). This study highlighted 
the importance of FPR2/ALX on neutrophils as a central player 
in controlling formation of neutrophil-platelet aggregates in the 
cerebral microcirculation post-I/R as a central mechanism for 
resolving neuroinflammation. Our findings complement those 
of Vidal et al. in a rat model of cardiac surgery-associated cold 
global cerebral I/R, with postoperative MPO levels significantly 
reduced in brain and plasma following ANXA1sp treatment 
(Figures 1B and 2B), suggesting a similar mode of action and 
attenuation of neutrophil infiltration into the CNS.

Changes in endothelial function have been described after car-
diac and non-cardiac surgery (40–42), with translational relevance 
as well as significant implications related to the pathogenesis of 
postoperative delirium and cognitive dysfunction. Indeed, after 
CPB/DHCA, we previously reported changes in blood–brain 
barrier (BBB) permeability and tight junction protein expression 
in purified CNS capillaries (43). Although we cannot ascertain 
whether ANXA1sp exerts systemic and/or central effects, BBB 
opening after CPB provides direct access to the brain and several 
putative cellular targets. ANXA1sp is expressed by different cell 
types in the CNS, including neurons, microglia, and astrocytes (44). 
Moreover, ANXA is a critical regulator of BBB integrity by stabiliz-
ing tight junction expression and is often downregulated in disor-
ders such as multiple sclerosis (45) and Alzheimer’s disease (46).  
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FigUre 5 | Modulation of cerebral NF-κB DNA binding activity and 
expression of ANXA1 after cardiopulmonary bypass/deep hypothermic 
circulatory arrest. (a) NF-κB DNA binding activity was significantly reduced 
in brain homogenates from ANXA1sp-treated rats at 6 h post reperfusion. 
(B) Co-localization of ANXA1 and NF-κB p65 (arrowheads) was visualized 
by double immunofluorescence staining and confocal microscopy.  
(c) ANXA1sp promoted expression of cerebral ANXA1 in rats at 24 h 
following CPB/DHCA. Scale bar: 20 µm. Data are presented as mean ± SD 
(n = 3–5 rats/group). *P < 0.05, **P < 0.01 compared to vehicle controls, 
analyzed with unpaired t test (a) or one-way ANOVA with Tukey’s multiple 
comparisons test (c).

FigUre 4 | Apoptosis and necrosis in the CNS after cardiopulmonary bypass/
deep hypothermic circulatory arrest and ANXA1sp or vehicle treatment.  
(a) Terminal deoxynucleotidyl nick-end labeling staining and quantification of 
apoptotic bodies. Apoptosis was significantly reduced in the cerebral cortex of 
ANXA1sp-treated rats on day 1 post operation. (B,c) Necrosis was detected 
by acid fuchsin–celestine. Necrosis was reduced in a time-dependent fashion 
in the hippocampus and cerebral cortex of ANXA1sp rats, with levels returning 
to baseline by day 7 post operation. Arrowheads in panel A identify pyknotic 
positive cells. Scale bar: 20 µm. Data are presented as mean ± SD (n = 5–10 
slides/tissue section from five rats per group). *P < 0.05, **P < 0.01 compared 
to vehicle controls, analyzed with unpaired t test.
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Here, we found sound evidence for potent neuroprotective 
effects of ANXA1sp, including reduction in neuroinflammation 
(Figure 1), microglial activation (Figure 3), cell death (Figure 4), 
and overall improved neurobehavioral outcomes (Figure  8). 
Some of these effects may be systemically mediated with direct 
actions at the inflammatory site given the peripheral route of 
drug administration in this study. In fact, plasma levels of pro-
inflammatory cytokines including TNF-α and IL-6 were reduced 
as early as 3 h after reperfusion, with levels returning to baseline 
by 24 h (Figure 2). This is consistent with the anti-inflammatory 
effects, as well as direct myocardial, protection of ANXA1 in 
other models of cardiac injury (47, 48).

Our current study focused on remote effects of CPB and 
DHCA on the CNS by evaluating a potential role for ANXA1sp 
in resolving neuroinflammation. We found that cell necrosis 
and apoptosis were reduced in different brain regions after CPB/

DHCA in ANXA1sp-treated rats. In an earlier study on ANXA1, 
similar findings were reported after spinal cord injury through 
inhibition of caspase-3 and PLA2 activity (49). Further, ANXA1 
in microglia facilitates clearance of apoptotic neurons after con-
tact with a neurotoxin (50).

Microglia are central to the onset and progression of inflam-
mation in the CNS. Although the function and exact role of these 
cells is highly dependent on activation state, reactive microglia 
contribute to neuroinflammation and a maladaptive response 
that contributes to neuronal dysfunction (33). After exposure to 
CPB and DHCA, we found changes in numbers and morphology 
of microglia in different brain areas, including the hippocampus 
(Figure 3). Microglial activation has been reported in orthopedic 
(51), vascular (52), abdominal (53), and cardiac (54) surgery-
induced neurocognitive disorders. Although the mechanisms 
that contribute to microglial activation are multifactorial and 
include both humoral and neuronal signaling, modulation of 
ANXA1 is a promising target for intervention.

Annexin A1 is abundant in microglia (55), and we found that 
ANXA1sp boosts expression of ANXA1 in these cells possibly 
facilitating resolution of neuroinflammation (Figures 3 and 7). 
Our in vivo and in vitro data demonstrate a key role for NF-κB 
activation in microglial cells, and NF-κB activation represents a 
key regulatory gene for de novo synthesis of pro-inflammatory 
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FigUre 7 | ANXA1sp reduced microglial cell death and TNFα. BV2 cells were 
pretreated with ANXA1sp or vehicle for 1 h, and then subjected to 2 h 
oxygen–glucose deprivation (OGD) followed by reoxygenation. Cell necrosis 
(a) and apoptosis (B) were assessed by ELISA assay. Following OGD, 30 µM 
ANXA1sp prevented both cell necrosis and apoptosis in ANXA1sp-treated 
BV2 cells. (c) TNFα levels in cell culture medium were also restored in cells 
pretreated with ANXA1sp. Data are presented as mean ± SD (n = 3 
independent experiments). 30 µM ANXA1sp was selected as the optimal 
treatment based on the dose response (Figure S2 in Supplementary Material). 
**P < 0.01, ***P < 0.001 compared to vehicle controls, analyzed with unpaired 
t test or one-way ANOVA with Tukey’s multiple comparisons test.

FigUre 6 | Modulation of NF-κB activation after oxygen–glucose deprivation 
in BV2 cells pretreated with 30 µM ANXA1sp or vehicle. (a) NF-κB activity 
based on the gel electrophoresis mobility shift assay was significantly 
reduced in a time-dependent fashion in ANXA1sp-treated cells. (B) After 24 h 
reoxygenation, co-localization of annexin A1 (ANXA1) and NF-κB p65 
subunits was visualized by double immunofluorescence staining and confocal 
microscopy. Scale bar: 20 µm. Data are presented as mean ± SD (n = 3 
independent experiments). ***P < 0.001 compared to vehicle controls, 
analyzed with unpaired t test.

FigUre 8 | Neurocognitive outcomes after cardiopulmonary bypass/deep 
hypothermic circulatory arrest and ANXA1sp or vehicle treatment. (a) Neurologic 
scores were assessed on day 3 and day 7 post operation. Sensory-motor 
functions were significantly improved at both time points in ANXA1sp-treated 
rats. (B) Morris water maze testing was performed daily from day 3 through day 
7 post operation. Learning abilities were significantly improved in ANXA1sp rats 
on day 3 post operation. Data are presented as mean ± SD (n = 10 rats/group). 
*P < 0.003, **P < 0.01, ***P < 0.001 compared to vehicle controls. Mann–
Whitney U test was applied for the neurological score comparisons at each 
recovery interval. Repeated measures ANOVA with Fisher’s least significance 
difference post hoc test was used for Morris water maze analysis.
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cytokines as well as cell death processes. Although, we can-
not ascertain if microglia are the primary and sole target of 
ANXA1sp, this small peptidomimetic is likely to exert several 
effects both on peripheral and central inflammatory processes. 
Importantly, post-I/R NF-κB activation was dampened after 
treatment with ANXA1sp (Figures  5–7), and TNF-α and IL-6 
levels were reduced accordingly in both brain tissue and plasma 
in a time-dependent fashion after CPB/DHCA (Figures 1 and 2). 
These findings suggest then, that modulation of NF-κB activation 
may reduce neuronal damage and improve behavioral outcomes 
after cardiac surgery.

Several protective effects of ANXA peptidomimetics have 
been described in different models [reviewed in Ref. (56)]. We 
previously reported anti-inflammatory effects of our ANXA1sp 
tripeptide on NF-κB inhibition in models of colon cancer (26). 
In this surgical model, ANXA1sp not only reduces NF-κB DNA 
binding activity, but also increases levels of ANXA1, which can 
bind directly to NF-κB p65 to further inhibit its transcriptional 
activity (Figure  5). These findings are relevant and possibly 
unique since the N-terminal domain sequence of this tripeptide 
(Ac-Gln10–Ala11–Trp12) has been shown to have greater binding 
affinity for FPR2/ALX (57). In general, FPR2/ALX shows high 
promiscuity in terms of ligand recognition, and thus possesses 
very complex functional properties including both promotion 
of resolution and pro-inflammatory effects (58). This may be 
important because even though other peptidomimetics, includ-
ing nanoparticles encapsulating ANXA1 mimetic peptide Ac2–26 
(59), SuperAnxA1 (60), and CR-AnxA12–28 (14), regulate effero-
cytosis and neutrophil activity, ALX agonists can activate other 
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specialized pro-resolving signaling and extend therapeutic effects 
(61). Currently, surgery-induced neurologic complications such 
as delirium and postoperative cognitive dysfunction have no effec-
tive therapy. Between 14% (62) and 50% (63) of cardiac surgery 
patients suffer from postoperative neurocognitive impairments, 
with effects lasting up to several years (64). Therapeutic strategies 
that reduce and promote resolution of neuroinflammation may 
limit these complications without significantly affecting homeo-
static and reparative processes (65).

In the current study, ANXA1sp was systemically administered, 
and thus, we cannot verify the exact site of action of this small 
peptide. Although we observed significant anti-inflammatory 
changes both systemically and in the CNS, we cannot yet assign 
causal effects. For our in vitro experiments we used an immortal-
ized murine microglial cell line (BV2) as a suitable alternative 
to primary microglia (50, 66), however, the role ovvf FPR2/
ALX signaling in microglial activation or monocytes trafficking 
through the BBB were not formally evaluated in this study. Given 
the critical role of ANXA1 in regulating BBB integrity, it is pos-
sible that regulation of endothelial function after surgery protects 
against secondary effects in the CNS. We used a clinically relevant 
rat model of CPB and DHCA to study secondary effects on the 
CNS, yet to allow for long-term survival, median sternotomy, 
direct cardiac cannulation, and opening of cardiac cavities 
were not performed. Extended exposures to anesthesia, such 
as sevoflurane, without surgical manipulation downregulated 
ANXA1 expression in endothelial cells, which contributed to 
cognitive deficits (67). Here, we found that expression of ANXA1 
was also increased following ANXA1sp treatment (Figure 5C), 
and although the signaling mechanisms via FPR2/ALX must be 
further refined. It remains unclear if treatment with this ANXA1 
peptidomimetic boosts endogenous levels of ANXA1 or simply 
contributes to the existing pool of pro-resolving factors, thus 
facilitating the resolution cascade.

Taken together these findings demonstrate the potential for 
exploiting innate neuroprotective mechanisms to minimize cer-
ebral I/R damage in general and that novel stable activators of this 
pathway may serve as resolution-targeting strategies to prevent or 
limit perioperative cerebral injury and associated neurocognitive 
complications.
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FigUre s1 | Expression of NF-κB in naive, sham, and cardiopulmonary bypass 
with deep hypothermic circulatory arrest.

FigUre s2 | Cell viability measured by MTT assay at 24 h OGD/reoxygenation.
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