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The influenza A virus (IAV) can be recognized by retinoic acid-inducible gene I (RIG-I) to 
activate the type I interferon response and induce antiviral effects. The virus has evolved 
several strategies to evade the innate immune response, including non-structural 
protein 1 (NS1) and its polymerase subunits. The mechanism by which NS1 inhibits 
interferon-β (IFN-β) is well understood, whereas the mechanism by which polymerase 
acid protein (PA) inhibits IFN-β remains to be elucidated. In this study, we observed 
that the IAV PA protein could inhibit the production of IFN-β and interferon-stimulated 
genes induced by Sendai virus through interferon regulatory factor 3 (IRF3), but not 
through nuclear factor-kappaB (NF-kappaB). In addition, PA inhibited IFN-β induction 
by RIG-I, melanoma differentiation-associated gene 5, mitochondria antiviral signaling 
protein, TANK-binding kinase 1, inhibitor of nuclear factor kappa-B kinase-ε (IKKε), and 
IRF3 overexpression. Furthermore, PA interacted with IRF3 to block its activation. The 
N-terminal endonuclease activity of PA was responsible for its interaction with IRF3 and 
inhibition of the IFN-β signaling pathway. In summary, our data reveal the mechanism 
by which IAV PA inhibits the IFN-β signaling pathway, providing a new mechanism by 
which the virus antagonizes the antiviral signaling pathway.
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inTrODUcTiOn

Type I interferon (IFN-I) is the first defense line of the host antiviral response and leads to broad-
spectrum antiviral effects (1–4). Upon Influenza A virus (IAV) infection, viral RNA (vRNA) is 
recognized by pathogen recognition receptors (PRRs) and initiates the innate immune response. 
The activation of innate immunity leads to a cascade of downstream signaling pathways and results 
in the activation of IFN-I and a variety of inflammatory cytokines (5, 6). Both retinoic acid-inducible 
gene 1 (RIG-I) and melanoma differentiation-associated gene 5 (MDA-5) (5, 7–9) can recognize 
IAV RNA and bind to the mitochondria antiviral signaling protein (MAVS, also known as IPS-1), 
thereby activating TANK-binding kinase 1 (TBK-1) and inhibitor of nuclear factor kappa-B kinase 
(IKK). These recruits could lead to the activation of interferon regulatory factor 3 (IRF3) and nuclear 
factor-kappaB (NF-kappaB) (1, 10). Activation of IRF3 depends on the phosphorylation of five 
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serine residues at its C-terminus, leading to its dimerization and 
nuclear localization (11) and initiating the transcription of IFN 
and IFN-induced genes (12, 13).

During IAV infection, polymerase acid protein (PA), PB1, and 
PB2, three components of the vRNA polymerase, are responsible 
for viral replication and transcription (14–17). To evade the 
antiviral response of the host immunity, IAV has developed a 
series of mechanisms to antagonize IFNs. It has been reported 
that the IAV polymerases could inhibit interferon-β (IFN-β) 
expression (18–20). PB2 and PB1 could interact with MAVS and 
independently inhibit IFN-β promoter activation (21). PB2-588I 
could exacerbate PB2 inhibition of IFN-β and contribute to high 
virulence (22). In addition, the non-structural protein 1 (NS1) 
binds to tripartite motif containing 25 (TRIM25) and blocks the 
recognition of host RIG-I, inhibiting IFN-β induction (23).

The PA subunit has been reported to enhance influenza virus 
polymerase activity, pathogenicity, transmission, contribute to its 
capacity to infect a range of hosts (24–26), and has also been sug-
gested to be involved in the inhibition of IFN-β induction (21); 
however, this mechanism still remains to be elucidated. In this 
study, we demonstrated that IAV PA could block IRF3 activation 
and suppress IFN-β production. The aspartic acid at position 108 
in PA is required for this activity.

MaTerials anD MeThODs

cell culture
Human embryonic kidney (293T) cells were maintained in RMPI 
1640 (Invitrogen, Carlsbad, CA, USA) with 10% fetal bovine 
serum (FBS). Human type 2 alveolar epithelial (A549) cells were 
maintained in F12 (Invitrogen) with 10% FBS.

Plasmid construction
The IFN-β-luc, IRF3-luc, NF-kappaB-luc, RL-TK, RIG-I, 
MDA-5, MAVS, TBK-1, IKKε, TNF receptor-associated factor 3 
(TRAF3), and IRF3 plasmids were kindly provided by Zhengfan 
Jiang (Peking University) (22). The PA expression plasmids 
were generated from A/Mexico/4486/2009 (H1N1) (pdm/09 
PA), A/swine/Nanchang/F9/2010 (H1N1) (F9), A/duck/Hubei/
Hangmei01/2006 (H5N1), and A/Shanghai/02/2013 (H7N9) and 
were cloned into the p3xFlag-CMV-14 vector. The N-terminal PA 
fragment (PAN), C-terminal PA fragment (PAC), and PA-D108A 
mutants and IRF3 were cloned into both the p3xFlag-CMV-14 
and pCAGGS-HA vectors.

luciferase assay
To determine the impact of PA on the promoter activities of 
IFN-β, IRF3, or NF-kappaB, the luciferase reporter plasmids were 
co-transfected with the indicated plasmids in 293T cells. A co-
transfected pRL-TK vector that provided constitutive expression 
of Renilla luciferase was used as a control (Promega, Madison, WI, 
USA). After 24 h, cells were infected with 10 hemagglutinating 
activity units/well of Sendai virus (SEV; Centre of Virus Resource 
and Information, Wuhan Institute of Virology, Chinese Academy 
of Sciences) or they were transfected with 200  ng Poly(I:C) 
(Sigma, St. Louis, MO, USA) for 8 h. Cells were then lysed for 

measuring the luciferase activity using the dual-luciferase assay 
system (Promega) according to the manufacturer’s instructions.

rna extraction and real-time q-Pcr
A549 cells in 6-well plates were transfected with empty vector 
or a plasmid encoding pdm/09 PA, pdm/09 PAN, pdm/09 PAC, 
or pdm/09 PA-D108A mutant protein at the indicated quanti-
ties. After 24 h, the cells were infected with SEV for 8 h or left 
uninfected. Total RNA was extracted from A549 cells using 
TRIzol (Invitrogen), and 1 µg of RNA was treated with DNase 
(Promega). The cDNA was treated with avian myeloblastosis virus 
(AMV) reverse transcriptase and an oligo(dT-)18-adaptor primer 
(TaKaRa Biotechnology, DaLian, China). The reaction mixtures 
were incubated at 42°C for 1 h and were terminated by heating 
at 95°C for 5  min. The primers used in real-time q-PCR were 
as follows: IFN-β, 5′-TCTTTCCATGAGCTACAACTTGCT-3′ 
(forward), 5′-GCAGTATTCAAGCCTCCCATTC-3′ (reverse);  
interferon-stimulated gene (ISG)-15, 5′-CGCAGATCACCCA 
GAAGATCG-3′ (forward), 5′-TTCGTCGCATTTGTCCAC 
CA-3′ (reverse); ISG-56, 5′-GCTTTCAAATCCCTTCCGC 
TAT-3′ (forward), 5′-GCCTTGGCCCGTTCATAAT-3′ (reverse); 
C-X-C motif chemokine (CXCL) 10, 5′-GTGGCATTCAAG 
GAGTACCTC-3′ (forward), 5′-TGATGGCCTTCGATTCTGG 
ATT-3′ (reverse); and GAPDH, 5′-TCATGACCACAGTCC 
ATGCC-3′ (forward), 5′-GGATGACCTTGCCCACAGCC-3′ 
(reverse) (22). The assay was performed on an ABIViiA 7 PCR 
system (Applied Biosystems, Waltham, MA, USA) in a total 
volume of 10 µl per sample, containing 5 µl of 2× SYBR Green 
Master Mix (Roche, Indianapolis, IN, USA), 0.5  µl of cDNA, 
0.25 µl of each primer (10 mM), and 4 µl of DEPC-treated water. 
The transcript level of each gene was normalized using GAPDH 
as a control.

elisa of iFn-β
To measure IFN-β secretion, A549 cells were transfected with 
an empty vector or plasmids with Flag-tagged pdm/09 PA. After 
24  h, the cells were left uninfected or were infected with SEV 
for 8 h. The supernatants were harvested for an ELISA using a 
human IFN-β ELISA kit (Elabscience, Wuhan, China) according 
to the manufacturer’s instructions.

co-immunoprecipitation (cO-iP)  
and Western Blotting
293T  cells cultured in 6-well plates were transfected with the 
indicated plasmids. After 24 h, the cells were lysed and analyzed 
by SDS-PAGE or in NP-40 buffer (SDS free) for NATIVE-
PAGE. The Western blotting was performed using monoclonal 
anti-Flag antibody (Sigma), monoclonal anti-HA antibody 
(ABclonal, Cambridge, MA, USA), an IRF3 polyclonal antibody 
(Proteintech, Rosemont, IL, USA), anti-phospho IRF3 (ser386) 
antibody (Merck Millipore, Darmstadt, Germany), IAV PA poly-
clonal antibody (Gene Tex, Irvine, CA, USA), anti-NF-kappaB 
antibody(Cell Signaling Technology, 3 Trask Lane, Danvers, 
MA, USA), or anti-phospho NF-kappaB antibody(Cell Signaling 
Technology). For CO-IP, the 293T cells were plated in a 15-cm 
dish with 70% cells and then transfected with 10 µg of plasmid. 
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FigUre 1 | Inhibition of SEV-induced interferon-β (IFN-β) expression by PA. 293T cells in 12-well plates were transfected with 0.5 µg of Flag-tagged pdm/09 PA, 
F9PA, H5N1PA, H7N9PA, or an empty vector, together with 0.3 µg of IFN-β-luc and 0.02 µg of RL-TK. After 24 h, cells were infected with SEV or transfected with 
200 ng of Poly(I:C) for 8 h and lysed for luciferase assay (a). A549 cells in 6-well plates were transfected with indicated quantities of Flag-tagged pdm/09 PA or 
empty vector. After 24 h, cells were infected with SEV or left uninfected for 8 h. The supernatants were harvested for IFN-β ELISA (c). The cells were harvested, and 
total RNAs were extracted for detecting the expression levels of IFN-β (B), CXCL-10 (D), ISG-15 (e), and ISG-56 (F) by real-time q-PCR. 293T cells were 
transfected with increasing quantities of Flag-tagged pdm/09 PA for 24 h and then treated with human IFN-β for 1 h or left untreated. Then, cells were lysed for 
Western blot using anti-STAT1 and anti-phospho STAT1 antibodies (g). The bars represent the SEs of the means, based on three experiments. *p < 0.05, 
**p < 0.01, ***p < 0.001 [as determined by Student’s t-test (a,c) or by one-way ANOVA (B,D–F)].
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After 24  h, the cells were collected, washed in ice-cold PBS 
three times, and lysed in 1 ml of Tris lysis buffer (Cell Signaling 
Technology) on ice for at least 20 min. The supernatant (400 µl) 
was used for immunoprecipitation with 5  µl of monoclonal 
anti-Flag antibody (Sigma) or 5 µl of normal rabbit IgG control 
(ABclonal). The cell lysates and immunoprecipitates (IPs) were 
analyzed by SDS-PAGE.

cytokine Treatment
293T  cells were transfected with indicated quantities of Flag-
tagged pdm/09 PA. After 24 h, cells were treated with 100 U/mL 
of human IFN-β (R&D Systems, Minneapolis, MN, USA) for 1 h. 
Cells were then lysed for Western blot using anti-STAT1 (9H2) 
antibody (Cell Signaling Technology) and anti-phospho STAT1 
(Tyr701) antibody (Cell Signaling Technology).

indirect immunofluorescence assay
293T cells seeded onto coverslips and placed into 12-well plates 
were transfected with the indicated plasmids or an empty vector 
and cultured in the presence or absence of SEV for 8 h. The cells 
were fixed with 4% paraformaldehyde for at least 15 min, treated 
with 0.2% Triton X-100 for 15  min, and blocked with bovine 
serum albumin (5%) in PBS for 2 h at room temperature. The 
cells were then incubated separately with monoclonal anti-Flag 
antibody (Sigma) or IRF3 polyclonal antibody (Proteintech) at 
a dilution of 1:200, followed by incubation with a fluorescein 

isothiocyanate-labeled secondary antibody (Invitrogen) for 1 h 
at 37°C. Nuclei were stained with 4′,6-diamidino-2-phenylindole 
(DAPI) for 15 min. The images were taken using a Zeiss LSM510 
Meta confocal microscope (Carl Zeiss, Zena, Germany).

statistical analyses
Statistical analyses for all experiments were performed using 
Student’s t-test or one-way ANOVA (for more than two groups) 
with GraphPad Prism software (San Diego, CA, USA). The data 
were representative of at least three separate experiments. The 
error bars represent the SDs, and p values <0.05 are significant 
(*p < 0.05, **p < 0.01, ***p < 0.001).

resUlTs

Pa antagonizes seV-induced iFn-β 
Production
To investigate the regulation of influenza virus PA in IFN-β 
induction, we constructed the expression plasmid of influenza 
A (H1N1) pdm09 virus (pdm/09) PA and a series of influenza 
PA expression plasmids from different influenza virus subtypes, 
including F9PA, H5N1PA, and H7N9PA. Luciferase assays 
revealed that all subtypes of PA could strongly inhibit SEV- and 
Poly(I:C)-induced IFN-β promoter activity (Figure  1A), sup-
porting the hypothesis that IAV PA plays a role in inhibition of 
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FigUre 2 | Inhibition of RIG-I-like receptor (RLR)-mediated IFN-β signaling pathway by Pdm/09 PA 293T cells in 12-well plates were transfected with 0.5 µg of 
Flag-tagged pdm/09 PA or empty vector, together with 0.3 µg of IFN-β-luc (a) or 0.3 µg of IRF3-luc (B) or 0.3 µg of NF-kappaB-luc (c), 0.02 µg of RL-TK, and 
0.5 µg of transcription factors as the positive controls. After 24 h, the cells were lysed for luciferase assay. The bars represent the SEs of the means, based on three 
experiments. *p < 0.05, **p < 0.01, ***p < 0.001 (as determined by Student’s t-test).
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the IFN-β signaling pathway (21). This hypothesis was further 
supported by the fact that IFN-β induction by SEV could be 
further inhibited by pdm/09 PA overexpression, as evidenced by 
reduced IFN-β transcription and protein levels (Figures 1B,C). 
Because of the inhibition of the IFN-β signaling pathway, CXCL-
10 (also known as IP-10) (Figure 1D), ISG-15 (Figure 1E), and 
ISG-56 (Figure 1F) induction levels were all strongly reduced 
by pdm/09 PA. Furthermore, pdm/09 PA expression showed no 
influence on IFN-β-induced phosphorylation of signal trans-
ducer and activator of transcription 1 (STAT1) (Figure  1G). 
Therefore, this study indicates that influenza PA can antagonize 
IFN-β induction.

Pdm/09 Pa inhibits the rig-i-like 
receptor (rlr)-Mediated iFn-β signaling 
Pathway through irF3, rather than  
nF-kappaB
During influenza virus infection, vRNAs will be recognized by 
PRRs and trigger the activation of transcription factors, leading 
to IFN-β induction (10). To describe the molecular mechanism of 
IFN-β inhibition by PA, a luciferase assay of the IFN-β promoter 
was performed with several activators, including RIG-I, MDA-5, 
MAVS, TBK-1, IKKε, and IRF3. PA induced by upstream factors 
could inhibit IFN-β promoter activation (Figure 2A). The assay 
indicated that PA may inhibit the IFN-β pathway downstream of 
these activators.

Because activation of the transcription factors IRF3 and 
NF-kappaB is essential for IFN-β production, we further inves-
tigated whether pdm/09 PA disturbs the IRF3 or NF-kappaB 
pathway using luciferase assays of the IRF3 (Figure  2B) or 
NF-kappaB promoter (Figure 2C). Interestingly, IRF3 promoter 
activity induced by the above activators was strongly inhibited. 
However, NF-kappaB promoter activity was not inhibited by 
pdm/09 PA protein. Therefore, we conclude that PA can interfere 
in RLR-mediated IFN-β production through the IRF3-dependent 
signaling pathway.

Pdm/09 Pa interacts with irF3 and 
suppresses irF3 Phosphorylation, 
Dimerization, and subsequent nuclear 
Translocation
In the context of viral infection, activation of signaling pathways 
can induce IRF3 phosphorylation and dimerization, which results 
in IRF3 accumulation in the nucleus (11, 27). We observed that 
pdm/09 PA overexpression could decrease IRF3 phosphorylation 
in a dose-dependent manner but could not influence NF-kappaB 
activation (Figures  3A,B). In addition, pdm/09 PA could also 
suppress SEV-induced dimerization (Figure  3C) and nuclear 
translocation of IRF3 (Figure 3D). These data indicated that the 
IAV PA protein inhibits IRF3 activation in response to SEV stimu-
lation. Interestingly, pdm/09 PA and IRF3 showed co-localization 
in the cytoplasm by confocal microscopy (Figure 3D).
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FigUre 3 | Inhibition of interferon regulatory factor 3 (IRF3) activation is mediated by interaction between Pdm/09 polymerase acid protein (PA) and IRF3 (a) 
293T cells in 6-well plates were transfected with increasing quantities of Flag-tagged pdm/09 PA. After 24 h, cells were lysed, and the expression levels of IRF3, 
P-IRF3, and GAPDH were measured with indicated antibodies by Western blotting. (B) 293T cells in 6-well plates were transfected with increasing quantities of 
Flag-tagged pdm/09 PA. After 24 h, cells were infected with SEV or left uninfected for 8 h. Then the cells were lysed for Western blotting using nuclear factor-
kappaB (NK-kappaB) and phospho-NF-kappaB antibodies. (c) 293T cells in 6-well plates were transfected with Flag-tagged pdm/09 PA or empty vector. After 
24 h, cells were infected with Sendai virus (SEV) or were left uninfected for 8 h and then they were harvested for NATIVE-PAGE using anti-IRF3 antibody or for 
Western blot using anti-Flag and anti-GAPDH antibodies. (D) 293T cells seeded onto coverslips and placed into 12-well plates were transfected with Flag-tagged 
pdm/09 PA or empty vector. After 24 h, cells were infected with SEV or were left uninfected for 8 h and were fixed for immunofluorescence assay (IFA), with 
endogenous IRF3 (red), PA (green), and nuclei (blue) labeled with anti-IRF3 antibody, anti-Flag antibody and DAPI, respectively, using confocal microscopy. (e) 
293T cells in 6-well plates were transfected with Flag-tagged PA and HA-tagged IRF3. After 24 h, cells were lysed and precipitated with anti-Flag antibody. The cell 
lysates and immunoprecipitates (IPs) were analyzed by Western blotting using anti-Flag and anti-HA antibodies. (F) 293T cells were infected with H1N1 pdm/09 
([MOI] = 0.1) for 12 h, and cells were then lysed and precipitated with anti-IRF3 antibody or with normal IgG as a negative control. The cell lysates and IPs were 
analyzed by Western blotting using anti-IRF3 and anti-PA antibodies.
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Since pdm/09 PA antagonizes IRF3 activation, we hypoth-
esized that both proteins interact. A CO-IP experiment showed 
that pdm/09 PA does co-precipitate with IRF3 in both transfected 
cells (Figure 3E) and virus-infected cells (Figure 3F). These data 
indicate that pdm/09 PA interacts with IRF3 and further blocks 
IRF3 activation.

The n-Terminal Functional Domain of 
pdm/09 Pa is responsible for iFn-β 
suppression
Influenza A virus (IAV) PA consists of two functional domains: 
a 30-kDa N-terminal fragment (PAN, residues 1–257) and a 

53-kDa C-terminal fragment (PAC, residues 258–716) (28). PAC 
is known as the PB1 binding domain, while PAN possesses endo-
nuclease activity (29). Similar to what was observed for full-length 
PA, pdm/09 PAN could strongly inhibit SEV-induced IFN-β pro-
moter activation in a dose-dependent manner (Figures 4A,C). 
Furthermore, the expression levels of IFN-β and ISG-56 were 
reduced by pdm/09 PA and pdm/09 PAN (Figure 4B), whereas 
pdm/09 PAC showed no significant effect on IFN-β induction 
(Figure 4C). These results indicate that the N-terminus of pdm/09 
PA may be responsible for IFN-β suppression.

Because PA interacts with IRF3 and blocks its activation 
(Figure 3), we further investigated the interaction of PAN with 
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FigUre 4 | Interferon-β (IFN-β) induction was suppressed by the N-terminus of pdm/09 polymerase acid protein (PA). (a) 293T cells in 12-well plates were 
transfected with 0.5 µg of Flag-tagged pdm/09 PA, pdm/09 N-terminal PA fragment (PAN), pdm/09 C-terminal PA fragment (PAC), or an empty vector, together with 
0.3 µg of IFN-β-luc and 0.02 µg of RL-TK. After 24 h, cells were infected with SEV or were left uninfected for 8 h and then they were lysed for the luciferase assay. (B) 
A549 cells in 6-well plates were transfected with 1 µg of Flag-tagged pdm/09 PA, pdm/09 PAN, pdm/09 PAC, or empty vector. After 24 h, cells were infected with 
SEV for 8 h and subsequently harvested, and total RNA was then extracted for detection of IFN-β and ISG-56 expression levels by real-time q-PCR. (c) 293T cells in 
12-well plates were transfected with HA-tagged PAN and PAC in increasing quantities and co-transfected with 0.3 µg of IFN-β-luc and 0.02 µg of RL-TK. After 24 h, 
cells were infected with SEV for 8 h and then lysed for use in the luciferase assay. (D) 293T cells in 6-well plates were transfected with 2 µg of HA-tagged pdm/09 
PA, pdm/09 PAN, pdm/09 PAC, or an empty vector, and Flag-tagged IRF3. After 24 h, cells were lysed and precipitated with anti-Flag antibody. The cell lysates and 
IPs were analyzed by Western blotting using anti-Flag and anti-HA antibodies. (e) 293T cells were seeded onto coverslips and placed into 12-well plates and were 
transfected with Flag-tagged pdm/09 PA, pdm/09 PAN, pdm/09 PAC, or empty vector. After 24 h, cells were infected with SEV or were left uninfected for 8 h and 
were fixed for IFA, with endogenous IRF3 (red) and nuclei (blue) shown with anti-IRF3 antibody and DAPI via confocal microscopy. The bars represent the SEs of the 
means, based on three experiments. *p < 0.05, **p < 0.01, ***p < 0.001 [as determined by Student’s t-test (a,B) or by one-way ANOVA (c)].
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IRF3. Similar to what was observed with pdm/09 PA, PAN was 
shown to interact with IRF3 in a CO-IP assay (Figure 4D) and 
to block SEV-induced translocation of IRF3 into the nucleus 
(Figure 4E). Therefore, the N-terminus of pdm/09 PA is respon-
sible for the interaction with IRF3 and suppression of the IFN-β 
signaling pathway.

The Binding activity of pdm/09 Pa to irF3 
is Dependent on asp108
Because the N-terminus of pdm/09 PA contains an endo-
nuclease domain, it is important to investigate the role that 

the endonuclease activity of pdm/09 PA plays in inhibition 
of the host IFN-β induction. A previous study showed that a 
PA-D108A mutant could abolish the endonuclease activity of 
PA in vitro (30). The D108A mutation impairs the capacity of 
pdm/09 PA to inhibit IFN-β induction by SEV at the transcrip-
tional (Figure 5A) and translational levels (Figure 5B). In addi-
tion, ISG-15, ISG-56, and CXCL-10 expression levels in cells 
transfected with the pdm/09 PA-D108A mutant were only half 
that of those in cells transfected with pdm/09 PA (Figure 5B). 
Furthermore, the mutation abolished the interaction between 
IRF3 and pdm/09 PA (Figure 5C). Together, these results indi-
cate that Asp108 of pdm/09 PA contributes to the interaction 
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of pdm/09 PA with IRF3 and inhibition of the IFN-β signaling 
pathway.

DiscUssiOn

The influenza virus RNA polymerase is a heterotrimeric com-
plex consisting of the PB2, PB1, and PA subunits, all of which 
are required for vRNA transcription and replication (15–17). 
Infection is usually associated with inhibition of the host antiviral 
response by viral polymerases (31). Upon infection, IAV triggers 
the activation of the host innate immunity (32), which leads to 
IFN-β secretion, which mediates an antiviral effect. Hence, IAV 
employs a variety of strategies to circumvent innate immunity 
and the host’s IFN response. The influenza viral NS1 protein and 
polymerase proteins could reduce IFN-β synthesis through the 
inhibition of IFN signaling pathways, thereby circumventing the 
antiviral effect of host immunity, which is essential for IAV infec-
tion (18, 19, 21, 23, 33–36). However, the mechanism by which 
PA inhibits IFN-β remains unknown. In our study, we found 

that all the PA subunits from the IAV strains H1N1, H5N1, and 
H7N9 could antagonize IFN-β production through IRF3 rather 
than NF-kappaB.

It is known that upon viral infection, IRF3 is phosphoryl-
ated, exposing the IRF association domain at the C-terminus. 
Subsequently, phosphorylated IRF3 will be dimerized and trans-
locate to the nucleus (37), leading to IFN-β transcription (11, 27, 
38–41). In this study, we observed that IRF3 phosphorylation 
and dimerization were inhibited by pdm/09 PA, resulting in IRF3 
accumulation in the cytoplasm. Interestingly, IRF3 and pdm/09 
PA were co-localized, and a CO-IP assay further indicated an 
interaction between pdm/09 PA and IRF3. These results explain 
the findings that PA can antagonize IFN-β production through 
IRF3.

The influenza viral PA protein can be digested by trypsin 
through two domains: the N-terminal domain (from amino 
acid residues 1–257) and the C-terminal domain (from amino 
acid residues 277–716). Amino acid residues 257–276 provide a 
flexible structure to ensure the connection of PA to PB1 (28, 30).  

FigUre 5 | The binding activity of pdm/09 polymerase acid protein (PA) to interferon regulatory factor 3 (IRF3) is dependent on Asp108. (a) 293T cells in 12-well 
plates were transfected with 0.5 µg of Flag-tagged pdm/09 PA, pdm/09 PA-D108A mutant or empty vector, together with 0.3 µg of interferon-β (IFN-β)-luc and 
0.02 µg of RL-TK. After 24 h, cells were infected with Sendai virus (SEV) or were left uninfected for 8 h and were then lysed for the luciferase assay. (B) A549 cells in 
6-well plates were transfected with 2 µg of Flag-tagged pdm/09 PA, pdm/09 PA-D108A mutant or an empty vector. After 24 h, cells were infected with SEV or were 
left uninfected for 8 h. The cells were harvested, and total RNA was extracted for detection of IFN-β, CXCL-10, ISG-15, and ISG-56 expression levels by real-time 
q-PCR. (c) 293T cells in 6-well plates were transfected with 2 µg of Flag-tagged pdm/09 PA, pdm/09 PA-D108A mutant or an empty vector, and HA-tagged IRF3. 
After 24 h, cells were lysed and precipitated with anti-Flag antibody. The cell lysates and immunoprecipitates (IPs) were analyzed by Western blotting using anti-Flag 
and anti-HA antibodies. The bars represent the SEs of the means, based on three experiments. *p < 0.05, **p < 0.01, ***p < 0.001 (as determined by Student’s 
t-test).
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