
September 2017 | Volume 8 | Article 10671

Review
published: 01 September 2017

doi: 10.3389/fimmu.2017.01067

Frontiers in Immunology | www.frontiersin.org

Edited by: 
Masoud H. Manjili,  

Virginia Commonwealth University, 
United States

Reviewed by: 
Fabian Benencia,  

Ohio University, United States  
Mallikarjun Bidarimath,  

Cornell University College of 
Veterinary Medicine,  

United States

*Correspondence:
Flavio Salazar-Onfray 
fsalazar@u.uchile.cl; 

Andrés Tittarelli 
tittarelli@gmail.com

Specialty section: 
This article was submitted  

to Cancer Immunity and 
Immunotherapy,  

a section of the journal  
Frontiers in Immunology

Received: 11 July 2017
Accepted: 16 August 2017

Published: 01 September 2017

Citation: 
Gleisner MA, Navarrete M, 

Hofmann F, Salazar-Onfray F and 
Tittarelli A (2017) Mind the Gaps in 

Tumor Immunity:  
Impact of Connexin-Mediated 

Intercellular Connections. 
Front. Immunol. 8:1067. 

doi: 10.3389/fimmu.2017.01067

Mind the Gaps in Tumor immunity: 
impact of Connexin-Mediated 
intercellular Connections
María Alejandra Gleisner1,2, Mariela Navarrete1,2, Francisca Hofmann1,2,  
Flavio Salazar-Onfray1,2* and Andrés Tittarelli1,2*

1 Disciplinary Program of Immunology, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, 
Chile, 2 Faculty of Medicine, Millennium Institute on Immunology and Immunotherapy, Universidad de Chile, Santiago, Chile

Gap junctions (GJs)-mediated intercellular communications (GJICs) are connexin  
(Cx)-formed plasma membrane channels that allow for the passage of small molecules 
between adjacent cells, and are involved in several physiopathological processes, 
including immune responses against cancer. In general, tumor cells are poorly coupled 
through GJs, mainly due to low Cx expression or reduced channel activity, suggesting 
that Cxs may have tumor suppressor roles. However, more recent data indicate that 
Cxs and/or GJICs may also in some cases promote tumor progression. This dual role 
of Cx channels in tumor outcome may be due, at least partially, to the fact that GJs not 
only interconnect cells from the same type, such as cancer cells, but also promote the 
intercellular communication of tumor cells with different types of cells from their micro-
environment, and such diverse intercellular interactions have distinctive impact on tumor 
development. For example, whereas GJ-mediated interactions among tumor cells and 
microglia have been implicated in promotion of tumor growth, tumor cells delivery to 
dendritic cells of antigenic peptides through GJs have been associated with enhanced 
immune-mediated tumor elimination. In this review, we provide an updated overview 
on the role of GJICs in tumor immunity, focusing on the pro-tumor and antitumor effect 
of GJs occurring among tumor and immune cells. Accumulated data suggest that 
GJICs may act as tumor suppressors or enhancers depending on whether tumor cells 
interact predominantly with antitumor immune cells or with stromal cells. The complex 
modulation of immune-tumor cell GJICs should be taken into consideration in order to 
potentiate current cancer immunotherapies.
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iNTRODUCTiON

Gap junctions (GJs) are intercellular channels found at the plasma membrane that allow direct 
communication between adjacent cells. Functional GJs are composed of connexin (Cx) proteins. 
Cxs form hexameric hemichannels (Cx-HCs) inserted into the membrane of one cell, which 
then docks with a Cx-HC from an adjacent cell to establish a GJ channel (1). When Cx-HCs 
acquire an open conformation, they allow for the bidirectional exchange of molecules between 
the cytoplasm and the extracellular fluid. The Cx gene family is comprised of 21 members in 
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Table 1 | Associations between connexin (Cx) expression in tumors and clinical 
outcome in cancer patients.

Cancer type Cx Clinical manifestation Reference

Prostate Cx43 High BRFS Xu et al. (31)
Cx26a Low metastasis Bijnsdorp et al. (32)
Cx43 High OS Benko et al. (33)

ESCC Cx43 High OS Tanaka et al. (34)
Cx26 High LNM; low FYS Inose et al. (35)

GCTB Cx43 High PFS Balla et al. (36)
NMIUBC Cx43 Low PFS Poyet et al. (37)
Breast Cx43 High RDFS

Cx30 Low RDFS
Cx26 High RDFS
Cx32 Low RDFS Teleki et al. (38)
Cx26 Low OS after chemotherapy
Cx46 High OS after chemotherapy Teleki et al. (39)
Cx26 High LNM Naoi et al. (40)
Cx26 High recurrence 5 year
Cx43 Low OS Stoletov et al. (41)

OSCC Cx43 Low OS Brockmeyer et al. (42)
Gastric Cx43 Low LNM Tang et al. (43)

Cx26 High OS Liu et al. (44)

NSCL Cx43 High OS after chemotherapy Du et al. (45)
Cx43a Low nodal micrometastasis Chen et al. (46)

LSCC Cx26 Low FYS Ito et al. (47)
GBM Cx46b High OS Hitomi et al. (48)
HNSCC Cx43 High OS Dános et al. (49)
HCC Cx43 High OS Wang et al. (50)
Colorectal Cx43 High OS Sirnes et al. (51)

Cx26 High OS Nomura et al. (52)
Cx26 Low DFS and LMFS Ezumi et al. (53)

Melanoma Cx26 High metastasis Haass et al. (54)
Cx26 Low OS
Cx43 Low OS, high metastasis Stoletov et al. (41)

Pancreatic Cx43 Low LNM Liang et al. (55)
Cx26 Low OS Zhu et al. (56)

BRFS, biochemical recurrence-free survival; DFS, disease-free survival; ESCC, 
esophageal squamous cell carcinoma; FYS, five-year survival; GBM, glioblastom 
multiform; GCTB, giant cell tumor of bone; HCC, hepatocellular carcinoma; HNSCC, 
head and neck squamous cell carcinoma; LMFS, lung metastasis-free survival; LNM, 
lymph node metastasis; LSCC, lung squamous cell carcinoma; NMIUBC, non-muscle 
invasive urothelial bladder cancer; NSCL, non-small-cell lung; OS, overall survival; 
OSCC, oral squamous cell carcinoma; PFS, progression-free survival; RDFS, relapse/
disease-free survival.
In green: Cx expression is associated with an antitumoral effect; in red: Cx expression 
is associated with a pro-tumoral effect.
aCx expression evaluated in normal adjacent cells.
bCx expression evaluated in cancer stem cells.
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humans and 20 members in mice, and they are usually named 
after their predicted molecular weight, for example Cx43 corre-
sponds to a Cx of 43 kDa. Whereas most Cx isoforms are strictly 
expressed in a tissue-specific manner, Cx43 is expressed almost 
ubiquitously, and is the main Cx member in the immune system 
(2). Each Cx-HC can be formed by one or more isoform of Cx 
proteins, which determines, at least partially, GJ permeability 
and their regulatory properties (1). GJs and Cx-HCs allow for 
the intercellular passage and the intake/uptake from or to the 
extracellular fluid of small (~1.4  nm) and immunologically 
relevant molecules, including adenosine triphosphate (ATP), 
cyclic adenosine monophosphate (cAMP), uridine diphos-
phate (UDP), cyclic guanosine monophosphate–adenosine 
monophosphate (cGAMP), inositol triphosphate (IP3), Ca2+, 
microRNAs (miRNAs), and small peptides (3).

Gap junction-mediated intercellular communications (GJICs) 
are critical for several physiological processes, including: electric 
current propagation in the heart and neurons (4, 5); embryonic 
development (6); cell differentiation (7); tissue homeostasis 
(8); autophagosome biogenesis (9); cell survival, proliferation, 
and cell death (10, 11); and the immune response (12). As GJs 
are involved in countless cellular and physiological processes, 
the cells need to establish delicate regulatory mechanisms of 
GJICs, which occurs at different levels, such as that of Cx gene 
expression, the life cycle of Cx protein level, or GJ assembly and 
permeability. These different mechanisms of GJIC regulation 
are at the same time highly responsive to environmental cues, 
including pro-inflammatory signals. Excellent reviews about 
regulatory mechanisms of Cx expression and GJIC have been 
recently published (13–21).

Mutations in Cx genes or loss of Cx channel functionality 
have been implicated in the development of different diseases, 
such as congenital deafness (22), skin disorders (23), cardiac 
arrhythmias (24), cataracts (25), and cancer (26). The role of Cx 
channels in the incidence and progression of cancer has been 
extensively investigated since the year 1966 when Loewensteind 
and Kanno showed that the electrical coupling found in normal 
hepatocytes was lost in liver tumors (27). A substantial progress 
in our understanding of GJ-mediated cell coupling in cancer has 
occurred since then, and it was recently reviewed (26, 28, 29). 
In general, cancer cells derived from various tumor types show 
reduced expression of Cxs and low GJ cell coupling, leading to 
the concept that Cxs are tumor suppressor genes, principally due 
to the antiproliferative effect of their overexpression in tumor 
cells (30). However, recent evidence also indicates that this is 
partially true and depends on cancer type, disease stages, and Cx 
isotype (28). Indeed, an analysis of different clinical studies for 
15 different cancer types indicates that the expression of Cxs in 
tumor biopsies could be associated with good or bad prognosis 
of cancer progression, depending on the Cx isotype and the type 
of cancer (Table 1).

Moreover, accumulated evidences strongly suggest that diverse 
aspects of the functionality of Cxs could differentially impact 
tumor progression: (i) besides their role as channel forming units, 
Cxs have channel-independent activities that may affect tumor cell 
growth (29, 57); (ii) Cx-HCs have differential roles than Cx-GJs 
in cancer cells (58); and (iii) Cxs can mediate the formation of 

homotypic GJICs among tumor cells, and/or the formation of 
heterotypic GJICs between different cell types within the tumor 
microenvironment, which could differentially impact the tumor 
cells fate. In this review article, we summarize recent data describ-
ing the pro- and antitumor effects of the heterotypic GJICs that 
tumor cells form (either with immune and non-immune cells), 
focusing on the role of GJICs in the antitumor immune response. 
A large number of evidences suggest that Cx expression on tumor 
cells may promote or halt cancer progression depending on the 
type of cells engaged at the tumor microenvironment. In general, 
tumor GJICs with immune cells may promote responses against 
tumors, while tumor interactions with some stromal cells through 
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GJs may inhibit or enhance tumor cell growth depending on the 
particular context where those interactions occur.

HeTeROTYPiC GJiCs aMONG CaNCeR 
CellS aND iMMUNe CellS: ROle  
OF GJ iN aNTiTUMORal iMMUNiTY

Almost all immune cells and their hematopoietic precursors 
express Cx proteins, and nowadays its ability to modulate 
different aspects of immune responses is well recognized (2, 
12, 59, 60). Cx channels and GJICs have been implicated in 
hematopoiesis, hemostasis, phagocytosis, immune cell migra-
tion, lymphocyte responses, antigen (Ag) cross-presentation, 
inflammation, immune tolerance, and cancer immunity. In 
Table 2, we summarize the current information available on the 
role of Cxs, Cx-HCs, and GJICs in the immune system activities. 
Here, we summarize recent data describing immune cell–cancer 
cell heterotypic GJICs that negatively impact tumor progression 
(Figure 1, right panel).

Initial studies exploring a potential antitumoral role of GJICs 
among cancer cells and immune cells were encouraged by the 
seminal work of Jacques Neefjes and collaborators in 2005, where 
the transfer and cross-presentation of viral Ag peptides via GJs 
was reported (134). In this study, it was shown that GJ-negative 
human squamous carcinoma cells (A431 cell line) transferred 
micro-injected 9-mer linear peptides to surrounding non-micro-
injected cells only when the cells were stably transfected with the 
human Cx43 gene. The closure of GJs by 2-aminoethoxydiphenyl 
borate prevented this intercellular peptide transfer. Neijssen 
and coworkers also evaluated the Cx43-GJ-mediated transfer of 
endogenous and immunologically relevant Ag peptides. They 
showed that human primary human leukocyte Ag (HLA)-A2+ 
monocytes stimulated with interferon (IFN)-γ and tumor necro-
sis factor (TNF)-α (cytokines that induce Cx43 expression) effi-
ciently acquired influenza-derived Ag peptides (FluM57–65) from 
influenza-infected cells (A431 or endothelial cells) via Cx43-GJs, 
allowing for the subsequent monocyte-mediated cross-priming 
of an HLA-A2-restricted FluM57–65-specific T-cell clone (134).

Later, our group described that melanoma Ag peptides 
could also be transferred and cross-presented between human 
dendritic cells (DCs) via Cx43-GJs (136). In this work, we 
reported that melanoma patient’s HLA-A2- monocyte-derived 
DCs incubated overnight with an allogeneic melanoma cell 
lysate (MCL), efficiently transfer MelanA/MART127–35 peptides 
to HLA-A2+ monocyte-derived DCs, leading to the subsequent 
activation of an HLA-A2-restricted MelanA/MART127–35-specific 
cytotoxic T  lymphocyte (CTL) clone (136). The transfer of 
MelanA/MART127–35 peptides between DCs was strongly pre-
vented by two different GJ chemical inhibitors (oleamide and 
18β-glycyrrhetinic acid) or by a Cx43 inhibitor mimetic peptide, 
indicating the involvement of Cx43-GJs in the cross-presentation 
of tumor associated Ags (TAAs) in human DCs. Of note, in a 
series of clinical trials, these MCL-DCs were used as an antitumor 
immunotherapy for advanced malignant melanoma patients 
(148–153). In this series of studies, a positive correlation between 
the immune response induced by MCL-DC-vaccination, as 

established by a patient tumor-specific delayed-type IV hypersen-
sitivity reaction and improved long-term survival was reported. 
In this context, it has been suggested that the efficient clinical 
effect of adoptively transferred DC vaccines may be improved by 
their potential to interact with local DCs in  vivo and/or other 
cell types in peripheral tissues and lymph nodes (154). These 
interactions could include GJ-mediated Ag transfer and cross-
presentation from injected DCs to local DCs, which may finally 
amplify the Ag-specific DC-mediated T cell activation. Indeed, 
it was reported in a murine model, that the OVA257–264 Ag pep-
tide transfer from OVA-expressing DC vaccines to endogenous 
professional Ag presenting cells (APCs) was required for efficient 
OVA257–264-specific CD8+ T cell priming (155). Although in these 
studies the GJ-mediated transfer of Ag peptides was not evalu-
ated, the group of Rescigno, in a murine model of oral tolerance 
to fed Ags, elegantly showed that Cx43-GJ-mediated transfer 
of Ag peptides between gut resident APCs occurs in vivo (127). 
These observations strongly suggest that the spreading of Ag 
peptides between cells by GJs could be a general mechanism of 
Ag cross-presentation.

In the context of tumor immunity, very interesting find-
ings suggest that Cx43-mediated transfer of Ag peptides from 
melanoma cells to DCs could be the major mechanism of tumor 
Ag cross-presentation occurring in vivo (139). This mechanism 
allows DCs infiltrating Salmonella-infected Cx43 positive 
melanoma tumors to acquire preprocessed Ag peptides from 
the cancer cells, leading to the activation of tumor Ag-specific 
CTLs that finally eliminate distal tumors. The authors showed 
that this antitumor immune response against distal tumors was 
strongly abrogated when the Salmonella-treated tumor cells 
were silenced for Cx43 (139). Moreover, DC vaccines loaded ex 
vivo with Salmonella-infected B16 melanoma cells were more 
efficient in inducing melanoma growth inhibition in vaccinated 
mice compared to other types of DC vaccines, but only when 
Cx43 was not silenced in the Salmonella-infected B16 cells used 
for loading DC vaccines. These results indicate that transfer of 
TAA peptides from tumor cells to DCs through Cx43-GJs is 
far more effective than standard pathways of DC Ag-loading 
in generating protective DC-based vaccines (139). Interestingly, 
DCs can also acquire tumor-derived Ag peptides by GJ coupling 
with apoptotic tumor cells, as suggested by the findings of Pang 
and coworkers (137). This could be of great relevance in the 
immune response against tumors, since caspase activation can 
expose neo epitopes in early apoptotic tumor cells through the 
direct cleavage of proteins, which results in epitopes from these 
proteins being favored for cross-presentation, and thus amplify-
ing the repertoire of cross-presented Ags (156). Additionally, in 
a 3D in vitro cell coculture model, Cx43-GJs have been impli-
cated in the Ag peptide transfer from melanoma to autologous 
endothelial cells. Once endothelial cells acquire the melanoma 
Ag peptides, they become susceptible to cross-recognition 
and elimination by an autologous tumor-specific CTL clone 
(138). In fact, Cx43-GJs can be detected among melanoma and 
endothelial cells in metastatic biopsies from patients (157), sug-
gesting that CTL-mediated elimination of endothelial cells may 
contribute to control tumor progression, which needs further 
investigation.
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Table 2 | Summary of the role of connexin (Cx) channels in immunity.

immunological process Role of Cx channels Reference

Hematopoiesis Cx43 expression is required for late stages of primary T and B lymphopoiesis  
during embryogenesis

Montecino-Rodriguez et al. (61)

Cx43 and Cx32 expression is necessary for hematopoietic regeneration after  
5-FU cytoablative treatments

Montecino-Rodriguez et al. (61); 
Presley et al. (62);  
Taniguchi Ishikawa et al. (63);  
Hirabayashi et al. (64)

Stromal functional Cx43-GJs contribute to stromal regulation of the clonal  
outgrowth of HP in fetal liver

Cancelas et al. (65)

Cx43 regulates HSC/P proliferation and differentiation of myeloid  
blood cell precursor cells

Bodi et al. (66);  
Flenniken et al. (67)

Cx32 regulates cell proliferation and content of HP in the BM Hirabayashi et al. (64)

GJs allow the IL-3/GM-CSF-dependent intracellular Ca2+ raise  
required for hematopoiesis

Paredes-Gamero et al. (68)

Cx43 controls the cellular content of BM osteogenic microenvironment  
and is required for homing of HSCs in myeloablated animals

Gonzalez-Nieto et al. (69)

Cx43 reduces senescence of HSCs by regulating ROS content via ROS  
transfer to the BM hematopoietic microenvironment during stress- 
induced hematopoietic regeneration

Taniguchi Ishikawa et al. (63)

Cx43- and Cx45-GJs regulate CXCL12 secretion by BMSC and homing  
of HSC and leukocytes to the BM

Schajnovitz et al. (70)

Hemostasis and thrombosis Cx37-GJIC between aggregating platelets limits thrombus propensity  
by downregulating platelet reactivity

Angelillo-Scherrer et al. (71)

Cx37 and Cx40 channels participate in platelet aggregation, fibrinogen binding,  
granule secretion, and clot retraction

Vaiyapuri et al. (72);  
Vaiyapuri et al. (73)

Immune tolerance/Treg cell activity GJ-mediated transfer of cyclic adenosine monophosphate (cAMP) is involved  
in Treg cell-mediated suppression of responder T cells

Bopp et al. (74)

GJIC between Treg cells and DCs abrogates the de novo induction of CD8+ T  
responses during the sensitization phase of experimental CHS reactions by interfering 
with T cell stimulatory activity of DCs

Ring et al. (75)

Expression of Cx43 in thymic Treg cell progenitors supports Treg cell development Kuczma et al. (76)

GJ-mediated cAMP transfer from Treg cell to DCs controls GvHD Weber et al. (77)

Cx43-GJIC is a component of the Treg cell suppression mechanism compromised  
in aging NOD mice

Kuczma et al. (78)

Inflammation/Immune cells migration GJ coupling between neutrophils and the endothelium favors transmigration of  
neutrophils and modulates leakiness

Zahler et al. (79)

Acinar Cx32-GJIC modulates the severity of acute pancreatitis Frossard et al. (80)

GJs favor monocyte/MØ transmigration across a BBB in vitro model.  
TNF-α/IFN-γ-stimulated monocyte/MØs secrete MMP-2 in a GJ-dependent manner

Eugenín et al. (81)

Cx43 channels participate in atherosclerotic plaque formation in vivo Kwak et al. (82); Wong et al. (83)

Cx43 expression in wounded skin promotes inflammation and retard  
wound closure time in vivo

Qiu et al. (84)

ATP released via Cx43 channels of activated neutrophils modulates  
endothelial cell function during inflammation

Eltzschig et al. (85)

ATP released via Cx37 channels of monocytes inhibits their adhesion  
to the endothelium, controlling the initiation of atherosclerotic plaques

Wong et al. (86)

Endothelial Cx43 and GJIC allow leukocyte adhesion and transmigration  
during acute inflammation in vivo

Véliz et al. (87)

Cx43-GJIC between fibroblasts and mast cells promotes fibroblast pro-fibrotic activities Pistorio and Ehrlich (88)

Cx43-GJs participates in eosinophils transendothelial migration Vliagoftis et al. (89)

Cx43-GJs are positive regulators of B cell motility, CXCL12-directed  
migration and transendothelial migration

Machtaler et al. (90)

Infection immunity Cx43 participates in MØ phagocytosis activity and plays a protective role in host  
survival in response to E. coli-induced peritonitis

Anand et al. (91)

GJICs are necessary for the amplification of IRF3 pathway activation and the propagation  
of antiviral and inflammatory responses in response to cytosolic dsDNA

Patel et al. (92)

(Continued )
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immunological process Role of Cx channels Reference

Cx43-GJs allow cell-to-cell propagation of NFκB and MAP kinase pro-inflammatory  
pathways from S. flexneri-, L. monocytogenes-, or S. typhimurium-infected to  
uninfected epithelial cells, leading to IL-8 production by bystander cells

Kasper et al. (93)

S. epidermidis-derived PGN induces Cx43-HCs and GJ coupling in endothelial cells.  
ATP released by Cx43-HCs induces IL-6 and TLR2 expression in PGN-stimulated 
epithelial cells

Robertson et al. (94)

Treg cells control HIV replication in conventional autologous T cells  
via a Cx43-GJ/cAMP-dependent mechanism

Moreno-Fernandez  
et al. (95)

GJICs mediate the transfer of cGAS-triggered cGAMP from DNA virus- or  
C. trachomatis-infected to bystander non-infected cells, leading to the propagation of 
type I IFN signaling

Ablasser et al. (96);  
Zhang et al. (97)

LPS-induced Cx43 channels protect mice against E. coli infection via the release  
of the extracellular danger signal UDP

Qin et al. (98)

CNS immunity Astrocytic Cx43-GJs play a neuroprotective role during ischemia,  
regulating the apoptosis and the inflammatory response after stroke

Nakase et al. (99)

Release of glutamate via Cx-HCs of activated microglia triggers  
neuronal death during inflammation, ischemia or autoimmune encephalomyelitis

Takeuchi et al. (100); Takeuchi et al. 
(101); Shijie et al. (102)

Cx43 channels participate in the metabolic status of astrocytes during inflammation Retamal et al. (103)

Astrocytes reduce apoptosis of melanoma cells treated with  
different chemotherapeutic drugs by sequestering intracellular Ca2+ via GJs

Lin et al. (104)

Inflammation or hypoxia-induced astroglial Cx43-HC activation  
induces neuronal and astroglial cell death

Froger et al. (105); Orellana et al. 
(106); Orellana et al. (107)

CNS oligodendrocytes Cx47- or Cx32-GJs loss alters the  
CNS immune status without external triggers

Wasseff and Scherer (108)

Astroglial Cx43 promotes immune quiescence of the brain,  
through setting the activated state of cerebral endothelium,  
which controls the immune cells recruitment and Ag presentation mechanisms

Boulay et al. (109)

Carcinoma-astrocyte Cx43-GJs promote brain metastasis by cGAMP transfer Chen et al. (110)

Lung cancer cells acquired pro-survival miRNAs from astrocytes in a GJ-dependent 
manner

Menachem et al. (111)

Mucosal immunity GJs coordinate ciliary beating in respiratory mucosa airway cells Sanderson et al. (112); Boitano 
et al. (113); Homolya et al. (114)

Cx43-GJs spread Ca2+-dependent pro-inflammatory signals in the lung capillray bed Parthasarathi et al. (115)

S. flexneri-induced Cx26-HC opening promotes signaling  
events leading to bacterial invasion and dissemination in  
gastrointestinal epithelial cells

Tran Van Nhieu et al. (116);  
Romero et al. (117);  
Simpson et al. (118)

TLR2-induced GJICs amplify pro-inflammatory signaling by communicating  
Ca2+ fluxes from P. aeruginosa-infected to adjacent bystander airway  
epithelial cells thus increasing CXCL8 secretion and neutrophils recruitment to the 
infected lungs

Martin and Prince (119)

Cx43-GJs favor neutrophils transmigration to the lungs after intra-traqueal  
instillations of P. aeruginosa LPS

Sarieddine et al. (120)

C. rodentium infection induces Cx43 expression and Cx43-HC opening  
in the apical membranes of infected colonocytes, contributing to the generation  
of diarrhea during infectious enteric disease

Guttman et al. (121)

TLR2-induced Cx43-GJICs maintain intestinal epithelial barrier during  
acute and chronic inflammatory injury

Ey et al. (122)

Cx40-GJIC contributes to a quiescent non-activated endothelium  
by propagating adenosine-evoked anti-inflammatory signals between endothelial cells

Chadjichristos et al. (123)

GJICs coordinate the signaling cascade leading to airway surface liquid secretion Scheckenbach et al. (124)

Intestinal epithelial cells release ATP via Cx-HCs as an early alert  
response to S. flexneri infection, which promotes inflammation of the gut

Puhar et al. (125)

Cx43-GJIC is necessary for innate immune activation by regulating  
the survival/apoptosis balance of airway epithelial cells in response to P. aeruginosa

Losa et al. (126)

Establishment of oral tolerance via Cx43-GJ-mediated transfer  
of fed Ags from gut MØs to DCs

Mazzini et al. (127)

Table 2 | Continued

(Continued )
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immunological process Role of Cx channels Reference

Alveolar MØs establish Cx43-GJIC with the epithelium through  
synchronized Ca2+ immunosuppressive wave signals to reduce  
endotoxin-induced lung inflammation

Westphalen et al. (128)

TLR ligands induce GJIC between sentinel globet cell guards in  
the colonic crypt favoring mucin2 secretion

Birchenough et al. (129)

APC and lymphocyte activity Cx43-GJs communicates FDCs with FDCs and with B cells in  
germinal centers and support FDC-B cell cluster formation and cell survival

Krenacs et al. (130);  
Rajnai et al. (131)

Cx40- and 43- but not Cx26-, 32-, 37- nor 45-GJICs are  
present in peripheral blood and tonsil T, B, and NK lymphocytes;  
their expression are induced by PHA and LPS and participates  
in the secretion of IL-10, IgM, IgG and IgA in mixed lymphocytes cocultures

Oviedo-Orta et al. (132);  
Oviedo-Orta et al. (133)

Cx43-GJIC allows cross-presentation of influenza-derived Ag peptides  
between influenza-infected Cx43-transfected human squamous or  
primary HUVEC endothelial cells and human primary IFN-γ/TNF-α-stimulated monocytes

Neijssen et al. (134)

Cx43-GJIC between murine BMDCs or DC cell line is required for  
effective LPS/IFN-γ-mediated activation of DCs

Matsue et al. (135)

Melanoma cell lysate-pulsed/TNF-α stimulated MDCs transfer and cross  
present melanoma derived Ag peptides between MDCs by Cx43-GJs

Mendoza-Naranjo et al. (136)

Cx43-GJ allows the cross-presentation of Ag peptides from live or apoptotic  
tumor cells to DCs or endothelial cells

Pang et al. (137); Benlalam et al. 
(138); Saccheri et al. (139)

Cx43-GJs and HCs are localized in the murine and human DC-T Cell  
immunological synapse (IS) in an Ag-dependent fashion and are  
required for DC-mediated T cell activation

Elgueta et al. (140);  
Mendoza-Naranjo et al. (141);  
Yu et al. (142)

Cx43-HCs are required by CD4+ T cells for sustain their clonal  
expansion after Ag recognition

Oviedo-Orta et al. (143)

Cx43 regulates B lymphocyte spreading and adhesion Machtaler et al. (144)

Anti-proliferative miRNAs are transferred from human MØs to  
hepatocarcinoma cells via GJs

Aucher et al. (145)

Cx43-GJs are localized in the human DC-NK and NK-tumor cell  
ISs and Cx43-GJIC is required for DC-mediated NK cell activation  
and NK cell-mediated tumor cell lysis

Tittarelli et al. (146);  
Tittarelli et al. (147)

5-FU, 5-fluorouracil; Ags, antigens; APC, professional Ag presenting cell; BBB, blood–brain barrier; ATP, adenosine triphosphate; BM, bone marrow; BMDC, bone marrow-derived 
DC; BMSC, bone marrow stromal cells; cGAMP, cyclic guanosine monophosphate (GMP)–adenosine monophosphate (AMP); cGAS, cyclic GMP-AMP synthase; CHS, contact 
hypersensitivity; CNS, central nervous system; C. rodentium, Citrobacter rodentium; C. trachomatis, Chlamydia trachomatis; DC, dendritic cell; E. coli, Escherichia coli; FDC, folicular 
dendritic cells; GJ, gap junction; GJIC, gap junction-mediated intercellular communication; GvHD, graft-versus-host disease; HC, hemichannel; HIV, human immunodeficiency virus; 
HP, hematopoietic progenitors; HSC/P, hematopoietic stem cells/progenitors; HUVEC, human umbilical vein endothelial cell; IFN, interferon; IL, interleukin; IRF, IFN responsive factor; 
L. monocytogenes, Listeria monocytogenes; LPS, lipopolysaccharide; MØ, macrophages; MDC, monocyte-derived DC; miRNA, microRNA; MMP-2, metalloproteinase-2; NK, 
natural killer cell; NOD, non-obese diabetic; P. aeruginosa, Pseudomonas aeruginosa; PGN, peptidoglycan; PHA, phytohemagglutinin; ROS, reactive oxygen species; S. epidermidis, 
Staphylococcus epidermis; S. flexneri, Shigella flexneri; S. typhimurium, Salmonella typhimurium; TLR, toll-like receptor; TNF, tumor necrosis factor; UDP, uridine diphosphate.

Table 2 | Continued
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In addition to peptides, the GJ-mediated transfer of miRNAs 
between tumor cells and immune cells have been implicated in 
tumor immunity. Specifically, Aucher and collaborators (145) 
reported that miR-142 and miR-223, which are endogenously 
expressed in human macrophages (MØs) but not in hepatocar-
cinoma cells (HCCs), were transferred from MØs to HCC cells 
via GJs and effectively target the expression of stathmin-1 and 
insulin-like growth factor-1 receptor in the acceptor tumor cells 
leading to the inhibition of tumor cell proliferation.

Furthermore, recent evidences suggest that Cx43 is a compo-
nent of the immune synapse, and that Cx43-GJICs are required 
for Ag-dependent DC-mediated T  cell activation (140, 141). 
In this context, we reported that Cx43 channels (both GJs and 
HCs) accumulate at the immunological synapse (IS) during 
DC-mediated Ag-specific CD4+ T  cell priming, mediating the 
bidirectional crosstalk between DCs and T cells. This phenom-
enon was observed in both murine (DC-OVA/OT-II T cells) and 
human (MCL-DCs/melanoma-specific autologous CD4+ T  cell 

clone) models. The evidence indicated that Cx43-GJICs between 
DCs and T cells regulates Ca2+ signals and DC-mediated T cell 
activation (141), pointing to a role for Cx43 as an important 
functional component for intercellular signaling in the immune 
system. Similarly, Cx43 accumulation was detected at the inter-
face of mature human DCs and autologous resting natural killer 
(NK) cells, mediating bidirectional GJICs between these cells. 
The blockade of Cx43-GJs strongly inhibits the DC-mediated 
activation of NK cells, as measured by NK cell expression of CD69 
and CD25 and the secretion of IFN-γ (146). The nature of the 
molecules shuttled via Cx43 channels at the IS between DCs and 
lymphocytes (both T cells and NK cells) remains uncharacterized, 
but as lymphocyte activation requires ATP and Ca2+ for biomass 
synthesis and signal transduction (158, 159), both molecules are 
reasonable candidates to be mobilized from DCs to lymphocytes 
by Cx43-GJs.

Moreover, Cx43 channels seem to accumulate at the interface 
of NK  cells and target tumor cells (myelogenous leukemia or 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FiGURe 1 | Pro- and antitumoral effects of tumor-immune cell heterotypic GJICs. Gap junction (GJ)-mediated communications among tumor cells and immune 
cells can lead to pro-tumoral (left: 1–4, 11) or antitumoral (right: 5–10) consequences. 1: carcinoma–astrocyte interactions promote brain metastasis of breast and 
lung cancers through the passage of the second messenger cyclic guanosine monophosphate–adenosine monophosphate (cGAMP) from tumor cells to 
astrocytes via Cx43-GJs, the subsequent activation of the STING pathway and the production of IFN-α and TNF that act as paracrine signals promoting growth 
and chemoresistance of tumor cells. 2: GJ-mediated diffusion of pro-survival microRNAs (miRNAs) between mouse astrocytes and human lung cancer cells 
provides increased resistance to chemotherapy. Similarly, the transfer of miRNAs from glioma to astrocytes induces glioma invasion. 3: astrocytes reduce 
apoptosis in melanoma cells treated with different chemotherapeutic drugs by sequestering intracellular Ca2+ via GJICs. 4: GJICs among glioblastoma cells and 
astrocytes contribute through uncharacterized mechanisms to the adhesion, migration, and invasion of tumor cells to the brain parenchyma. 5: GJ-mediated 
transfer of miRNAs from macrophages to hepatocellular carcinoma cell lines regulates gene expression of stathmin-1 and insulin-like growth factor-1 receptor and 
inhibits tumor cell proliferation. 6: Cx43 expression in melanoma cells allows for the transfer of preprocessed tumor associated antigens (TAAs) from melanoma 
cells to dendritic cells (DCs), improving DC-based tumor vaccination by increasing CD8+ T cell activation and antitumor immunity. 7: Cx43-GJs participate in 
melanoma antigen transfer and cross-presentation between human DCs, facilitating a more effective DC-mediated CD4+ T cell activation. 8: Cx43-GJs accumulate 
at the immunological synapse (IS) formed between DCs and melanoma-specific CD4+ T cells and natural killer (NK) cells, contributing to cell activation. 9: 
Cx43-GJs allow for the passage of TAA peptides from melanoma to autologous endothelial cells, inducing their cross-recognition and elimination by TAA-specific 
CD8+ T cells. 10: Cx43-GJs accumulate at the lytic IS formed between NK cells and melanoma cells, contributing to Ca2+ influx and granzyme-b  
(GrzmB)-mediated induction of apoptosis in the target cells. 11: Activation of autophagy in hypoxic melanoma cells causes the selective degradation of GJ-Cx43, 
impairing NK cell-mediated tumor cell killing.
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melanoma cells) and to mediate intercellular communications 
that participate in NK cell-mediated tumor cell lysis (146, 147). 
Cx43-GJICs among NK cells and tumor cells appear to not affect 
tumor-induced NK cell degranulation but instead do control the 
NK cell cytotoxicity by contributing to granzyme-b activity and 
Ca2+ influx into tumor cells (146, 147). Moreover, Cx43 expres-
sion in target tumor cells renders these cells more susceptible to 
NK cell-mediated lysis. Indeed, Cx43 gene knockdown in Cx43 
positive tumor cells decreases the level of NK  cell-mediated 
lysis to the same extent as the prevention of GJICs by chemical 
inhibitors or Cx43 mimetic peptides (146). Additionally, different 

melanoma cell lines or MCF-7 breast cancer cells with low or 
negative expression of Cx43, showed diminished susceptibility 
to NK cell-mediated lysis compared to the Cx43-overexpressing 
counterparts (147). Additional data, indicating the importance 
of Cx43 at the NK cell/tumor cell lytic IS, were obtained from the 
evaluation of the regulation of Cx43 by tumor hypoxia. Hypoxic 
stress, frequently occurring in the microenvironment of solid 
tumors, is involved in the tumor escape of immune surveillance, 
including a suppressed susceptibility of tumor cell lysis by CTLs 
and NK cells (160). While hypoxic stress increased the total Cx43 
protein level in a hypoxia-induced factor 1α-driven manner in 
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melanoma cells, the presence of Cx43 channels at the IS between 
hypoxic melanoma cells and NK cells was strongly diminished 
(147). The decline of Cx43 channels at the lytic IS was dependent 
on increased autophagic flux occurring during hypoxia. Indeed, 
the presence of Cx43 at the IS could be restored in hypoxic 
melanoma/NK  cell cocultures by inhibiting hypoxia-induced 
autophagy flux by hydroxychloroquine or the hypoxia-induced 
autophagosome formation by 3-methyladenine or knock down of 
the ATG5 gene in hypoxic melanoma cells (147). Importantly, the 
inhibition of hypoxia-induced autophagy and thus the preven-
tion of the subsequent autophagy-mediated degradation of Cx43 
at the lytic IS was very effective in restoring the susceptibility of 
hypoxic melanoma cells toward NK  cell-mediated lysis. These 
findings were corroborated using the endocytic Cx43Y286A mutant 
(161), which remained present at the lytic IS during hypoxic 
stress and restored the susceptibility of melanoma cells to lysis 
by NK cells in hypoxic conditions, which is inhibited by Cx43-
specific inhibitory mimetic peptides (147). These reports high-
light an important role for Cx43 channels at the lytic ISs among 
NK cells and tumor cells, and suggest that the low susceptibility 
of Cx43-negative tumor cells to NK cell immune surveillance is 
an additional mechanism that favors the survival of GJ-deficient 
tumor cells observed principally in primary tumors (162).

Altogether the heterotypic GJICs described so far, support 
a tumor suppressor role of Cxs, as its expression in tumor cells 
promotes a plethora of intercellular interactions between tumor 
cells and immune cells that limit tumor cell survival and growth 
via the induction of antitumor immune responses. In addition, 
malignant cells establish bidirectional communications with 
different stromal cells besides immune cells, such as cancer-
associated fibroblast, endothelial cells, mesenchymal stem cells, 
bone marrow stromal cells (BMSC), and osteocytes. Heterotypic 
GJICs among cancer cells and their non-immune stromal cell 
counterparts have also been negatively associated with tumor 
progression (Figure 2, right panel).

HeTeROTYPiC GJiCs aMONG  
CaNCeR CellS aND STROMal CellS 
aSSOCiaTeD wiTH aNTiTUMORal 
eFFeCTS

At large, GJICs between tumor cells and tumor stromal cells 
have been implicated in tumor inhibition. The first evidence 
suggesting that heterotypic GJICs between non-malignant 
cells and cancer cells negatively impact tumor cell growth was 
reported by the Loewenstein and coworkers (163). In this pio-
neer study, the authors showed that the growth of chemically 
or virally transformed malignant cells could be inhibited when 
those cells were chemically coupled with normal non-tumoral 
cells, specifically with embryo fibroblasts and rat liver cells. More 
recent data showed that leukemic Jurkat cells cocultured with 
Cx43-overexpressing BMSCs have a lower proliferation rate and 
higher methotrexate-induced apoptosis than Jurkat cells alone or 
cocultured with unmodified Cx43- and GJ-poor BMSCs (164). 
Similarly, BMSCs overexpressing Cx43, specifically human 
umbilical cord stem cells (Cx43-hUCSC), can form functional 

GJICs with the mouse T lymphoblastic leukemia cell line L615. 
The coculture of these cells increases the basal level of apoptosis 
in leukemic cells due to the activation of caspases 3 and 7 (165). 
Additionally, in a minimal residual disease mouse model, the 
relapse of leukemia was delayed when mice were transplanted 
with Cx43-hUCSC cells, suggesting a role for Cx43-mediated 
GJs among BMSCs and leukemic cells in the induction of tumor 
cell apoptosis in vivo (165). Another study indicates that Cx43-
GJ-mediated transfer of the antitumoral miRNA miR-145-5p 
from human microvascular endothelial cells transfected with 
miR-145-5p mimics to primary colon cancer cells inhibits the 
cancer-induced tubulogenesis, suggesting that this heterotypic 
GJIC downregulate colon cancer cell growth by preventing 
the formation of new vessels (166). Additionally, a protective 
role of heterotypic communications mediated by Cx43-HCs 
has been described in the osteocyte-mediated suppression 
of breast cancer bone metastasis (167). The opening of Cx43-
HCs in osteocytes induced by either bisphosphonate drugs or 
mechanical stimulation, allows for the release of ATP from 
osteocytes, which in turn inhibits anchorage-independent 
growth, migration, and invasion properties of human and mouse 
breast cancer cells. These inhibitory effects on cancer cells were 
attenuated when osteocytes were incubated with Cx43(E2), a 
specific Cx43-HC-blocking antibody. More interestingly, both 
Cx43 osteocyte-specific knockout mice and osteocyte-specific 
Δ130–136 transgenic mice with impaired Cx43-GJs and Cx43-
HCs showed increased tumor growth and an attenuated inhibi-
tory effect of bisphosphonate drugs, whereas R76W transgenic 
mice with functional Cx43-HCs but not Cx43-GJs in osteocytes 
did not show significant differences compared to control mice 
(167). These results indicate that heterotypic cell communica-
tions among normal and tumor cells, both via GJs and Cx-HCs, 
can mediate antitumor responses (Figure 2, right panel).

Additionally, GJICs have been associated with antitumor 
effects through the “bystander effect” during suicide gene therapy 
approaches, whereby the spread of death signals between cells 
occurs. Using the herpes virus thymidine kinase (HSV-TK) gene 
to render cancer cells sensitive to the drug ganciclovir (GCV), it 
was noted that HSV-TK-free neighboring tumor cells also died, 
and this phenomenon correlates with the level of GJs among 
tumor cells (168). Heterotypic GJICs have also been implicated 
in this kind of bystander effect. For example, when HSV-TK+ 
fibroblasts or HSV-TK+ endothelial cells are cocultured with 
different tumor cell lines, the extent of GCV-induced bystander 
killing correlates with the level of GJICs between tumor and 
HSV-TK+ fibroblasts or endothelial cells (169, 170). Also, het-
erotypic GJICs have a relevant role in other types of antitumor 
therapy, as reported by Lee and collaborators (171). They showed 
that mesenchymal stem cells, derived from different human tis-
sues, efficiently deliver synthetic miRNA mimics to glioma and 
glioma stem cells in  vivo when administered intracranially. In 
cocultures, it was determined that the transfer of miRNA mimics 
occurs via GJ- and exosome-dependent processes, affecting the 
expression of their target genes and decreasing the migration 
and self-renewal of glioma and glioma stem cells, respectively 
(171). Recently, functional Cx43 channels were identified in 
the membrane of exosomes and they can facilitate the release of 
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primary colon cancer cells release heat-shock protein 27 (HSP27), which induces the phosphorylation of Cx43 in endothelial cells and the subsequent formation of 
heterotypic GJs with tumor cells. This communication thus promotes transendothelial migration of primary colon cancer cells. 3: the GJ-mediated transfer of 
microRNAs (miRNAs) from glioblastoma cells to endothelial cells promotes angiogenesis. 4: metastatic colon cancer cells induce Cx32-HCs in endothelial cells via 
CXCR2. The adenosine triphosphate (ATP) released by Cx32-HCs could induce neo-angiogenesis in the metastatic foci. 5: leukemic cells GJ-coupled with bone 
marrow stromal cells (BMSCs) are arrested in G0 and acquire resistance to chemotherapy-induced apoptosis. 6: breast cancer cells acquired CXCL12-specific 
miRNAs from BMSCs via GJs, which induce cancer cell dormancy. 7: Cx43-GJ-mediated transfer of antitumoral miRNAs from human microvascular endothelial 
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exosomal content into target cells, including tumor cells, both 
in vitro and in vivo (172, 173). Indeed, the authors showed that 
when doxorubicin was incorporated into exosomes and used as a 
drug delivery vehicle to treat tumor-bearing mice, its antitumor 
effect was similar to the free drug regardless of the presence of 
Cx43 in exosomes; however, its cardiotoxicity was significantly 
lower when administrated in Cx43+ exosomes (173). This evi-
dence strongly suggests that Cx43-GJ-mediated communications 
among extracellular vesicles and tumor cells could occur in vivo, 
and it is a very promising area to explore.

Altogether the heterotypic GJICs described so far, support 
a tumor suppressor role of Cxs, as its expression in tumor cells 
promotes a plethora of intercellular interactions between tumor 
cells and immune or non-immune stromal cells that limit tumor 
cell survival and growth. However, as we mentioned before, some 

specific heterotypic GJICs among cancer cells and their stroma 
have been positively associated with tumor progression.

HeTeROTYPiC GJiCs aMONG  
CaNCeR CellS aND STROMal CellS 
aSSOCiaTeD wiTH PRO-TUMORal 
eFFeCTS

Several groups have reported that GJ-mediated coupling 
between tumor cells and endothelial cells contributes to inva-
sion and metastasis (Figure 2, left panel). For example, the B16 
melanoma cell subline BL6 establishes efficient cell coupling with 
endothelial cells through Cx26-Cx43 heterotypic GJs, while the 
Cx26 negative B16 cell subline F10 does not (174). Interestingly, 
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BL6 cells have a major spontaneous metastatic potential com-
pared to the F10 cells. Transfections with the wild-type Cx26 
render F10 cells competent for GJ coupling with endothelial 
cells, which in turn increases their spontaneous metastatic 
potential. Conversely, transfections with a dominant negative 
mutant of Cx26 render BL6 cells deficient in heterotypic GJ cou-
pling and less metastatic (174). Similarly, in human melanoma 
lesions, melanoma cells in the invasive and perivascular areas 
as well as the endothelial cells of the small vessels surrounding 
the melanoma cell nests expressed Cx26, while melanoma cells 
residing in the basal layer showed lower levels of Cx26, suggest-
ing that heterotypic GJ-mediated cell–cell adhesion and com-
munication contributes to melanoma metastasis in humans (54, 
174, 175). A role for Cx43-mediated interactions in melanoma 
cell diapedesis and in melanoma-endothelial cell attachment, 
both processes required for metastasis, has also been suggested. 
Villares and coworkers showed that the expression of the 
protease-activated receptor-1 contributes, at least partially, to 
the malignant phenotype of two human metastatic melanoma 
cell lines via the regulation of Cx43 expression, favoring Cx43-
mediated melanoma-endothelial cell attachment (176). More 
recently, it was shown that Cx-mediated extravasation and 
heterotypic GJ formation with the brain endothelium could 
facilitate tumor cell integration into foreign tissues creating a 
more hospitable niche for metastatic growth (41). Cx26 and 
Cx43 expression in melanoma and breast cancer cells, respec-
tively, contributes to the in  vivo cell extravasation and brain 
microtumor formation in association with the vasculature. 
Interestingly, these tumor cells establish functional GJICs with 
endothelial cells in vitro, and this process seems to be necessary 
for spheroid formation and colonization in 3D matrices (41), 
suggesting that Cx43 and Cx26 mediate breast cancer cell and 
melanoma metastasis to the brain via tumor-endothelial cell 
GJ-dependent mechanisms. Additionally, it has been shown 
that the re-expression of Cx43 in mammary carcinoma cell lines 
lacking endogenous Cx43 enabled the formation of heterotypic 
GJIC with microvascular endothelial cells and thus increased 
their diapedesis (177). Moreover, Cx43-GJICs between breast 
cancer cells and endothelial cells facilitate the metastatic hom-
ing of the tumor cells by increasing their arrest in the lung vas-
culature (178). Interestingly, the co-administration of avastatin 
(an anti-VEGF antibody used for anti-angiogenic therapy) and 
oleamide (a GJ chemical inhibitor) or even the administration of 
oleamide alone, decreases the heterotypic cell communications 
between MDA-MB-231 breast cancer cells with endothelial cells 
in  vitro, increases their survival rate, and reduces pulmonary 
and hepatic metastatic foci in mice subdermally injected with 
MDA-MB-231 cells (179). However, the in vivo administration 
of oleamide alone does not inhibit metastasis to the lung in mice 
intravenously injected with MDA-MB-231 cells, suggesting that 
the inhibition of breast tumor-endothelial cell GJs has an anti-
metastatic activity at the extravasation level (179).

Furthermore, it has been shown that primary and metastatic 
tumor cells can differentially modulate the expression of Cx 
proteins in endothelial cells. The heat-shock protein 27 released 
from cells derived from a primary colon tumor induces both the 
phosphorylation of Cx43 in endothelial cells and the formation 

of GJs among tumor and endothelial cells, promoting the 
transendothelial migration of malignant cells (180). In contrast, 
cells derived from a metastatic colon tumor from the same 
patient, induce the expression of Cx32-HCs in endothelial cells 
via CXCR2. The subsequent release of ATP through the Cx32-
HCs by endothelial cells then modulates the crosstalk between 
endothelial and metastatic colon cancer cells, possibly favoring 
neo-angiogenesis in the metastatic foci (180). Similarly, glioblas-
tom multiform (GBM) cells can also modulate endothelial cell 
function through heterotypic GJICs. The GJ-mediated transfer 
of the miRNA miR-5096 from GBM  cells to endothelial cells 
promotes endothelial tubulogenesis by increasing the expres-
sion of Cx43 and the concomitant formation of heterotypic 
GJICs (181). Heterotypic GJs have also been described between 
leukemic and endothelial cells, allowing cancer cell migration 
and extravasation (182, 183). Finally, lung carcinoma and 
gastric cancer cells use heterotypic Cx43-GJICs with lymphatic 
endothelial cells and peritoneal mesothelial cells to support their 
migration through the lymphatic endothelium or the peritoneal 
mesothelium, respectively (184, 185). These evidences suggest 
that tumor cells engage GJICs with endothelial and epithelial 
cells to promote their migration, invasion and metastasis via 
blood vessels, lymphatic endothelium and peritoneal mesothe-
lium. Taking into account the evidences described so far, we 
can speculate that the expression of Cxs by tumor cells growing 
in a vascularized microenvironment could be considered as a 
negative prognosis marker in cancer. However, as we previously 
discussed, GJICs among tumor cells and endothelial cells could 
also allow the cross-recognition and elimination of endothelial 
cells by tumor-Ag-specific CTLs (138). Therefore, we propose 
that Cx expression by tumor cells in a vascularized microenvi-
ronment could have a negative impact in patients with tumors 
poorly infiltrated by CTLs or a positive effect in those with 
tumors highly infiltrated by CTL; however, this hypothesis needs 
to be addressed.

Additionally, pro-tumoral GJICs among BMSCs and malignant 
cells have also been described. Reports from different groups have 
shown that GJICs between BMSCs and leukemic or breast cancer 
cells mediate the cell cycle quiescence of tumor cells. Leukemic 
cells coupled with BMSCs are arrested in G0, and these coupled 
leukemic cells are resistant to methotrexate-induced apoptosis, 
which can be prevented with treatments with the GJ inhibitor 
carbenoxolone (186). Similarly, Lim and collaborators reported 
that breast cancer cells acquired CXCL12-specific miRNAs 
from BMSCs via GJs, which is associated with the maintenance 
of cancer cell dormancy (187). These studies partly show how 
metastatic tumor cells could take advantage of GJ coupling with 
the bone marrow microenvironment for their survival.

The GJs among tumor cells and astrocytes are another 
example of pro-tumoral heterotypic GJICs occurring in cancer. 
Astrocytes are the most abundant glial cell population of the 
central nervous system (CNS), and they participate in the local 
innate immune response triggered by a variety of insults (188). 
Indeed, the majority of cancer cells that infiltrate the brain are 
eliminated by astrocytes (189). However, astrocytes can exert a 
beneficial effect on cancer cells through GJ-dependent manners 
(Figure 1, left panel). GJICs between GBM cells and astrocytes 
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contribute somehow to the adhesion, migration and invasion 
of tumor cells to the brain parenchyma (190, 191). Recent 
evidence suggests that Cx43 expression in glioma cells and 
astrocytes influences tumor cell motility in  vivo independently 
of its channel function (192). In a very elegant report by Chen 
and coworkers (110), it was demonstrated that protocadherin 
7, which is expressed in human and mouse breast and lung  
cancer cells, promotes the assembly of  Cx43- GJs between carci-
noma cells and astrocytes. These  Cx43- GJs allow metastatic cancer 
cells in the brain to transfer cGAMP to astrocytes, leading to the 
activation of the STING pathway and the subsequent production 
of IFN-α and TNF by the cGAMP-receiving astrocytes. These 
pro-inflammatory cytokines then cause paracrine activation of 
the STAT1 and NF-κB pathways in brain metastatic cells, sup-
porting tumor growth and chemoresistance. Interestingly, in vivo 
inhibition of carcinoma-astrocyte GJICs, through the oral deliv-
ery of meclofenamate and tonabersat, blocks this paracrine loop, 
controlling metastatic outgrowth in the brain (110). Moreover, 
it has been shown that astrocytes can protect tumor cells from 
chemotherapy through additional GJ-mediated mechanisms. For 
example, reactive astrocytes reduce apoptosis in melanoma cells 
treated with different chemotherapeutic drugs by sequestering 
intracellular calcium via GJICs (104). In addition, astrocytes 
seem to upregulate the expression of various pro-survival genes 
in glioma cells trough a GJ-dependent manner, thus reducing the 
cytotoxic effects of various chemotherapeutic agents in tumor 
cells (193). Recently, it was shown that lung cancer cells acquire 
miRNAs from astrocytes in a GJ-dependent manner during 
in vitro cocultures (111). Several of the transferred miRNAs were 
implicated in cell survival pathways, and the enforced expression 
of these miRNAs increases the resistance of lung cancer cells to 
paclitaxel (111). Similarly, the GJ-mediated transfer of miR-5096 
from glioma cells to astrocytes induces in vitro glioma cell inva-
sion (194). Altogether, these data suggest that GJICs occurring 
between tumor cells and the main immune cells of the CNS, 
namely astrocytes, allow for the intercellular passage of signals 
that promote the colonization and survival of tumor cells in the 
brain.

These exciting and promising new evidences in our under-
standing of GJICs among tumor cells and their surrounding 
stromal cells, and particularly immune cells, generates the idea 
of potentiating the antitumor immune responses induced by 
current cancer immunotherapies via the modulation of GJIC. 
The implementation of this concept absolutely deserves further 
attention.

CONClUDiNG ReMaRKS

The essential role of GJICs among tumor cells and neighboring 
cells of the tumor microenvironment, including immune cells, 
on tumor cell fate and their relationship with cancer progression 
is only beginning to be understood. The current literature about 
cell intrinsic mechanisms of Cxs and homotypic GJICs among 
tumor cells, in general terms, would support a tumor suppres-
sor role of Cxs in early stages of cancer progression, while in 

late-stage cancer and metastasis, Cxs could act as oncogenes, 
promoting the progression of cancer. It is worth noting that this 
general conclusion depends on the Cx isoforms expressed as well 
as on the tumor type or subtype. Additionally, the different het-
erotypic GJICs occurring in the tumor microenvironment should 
be included in this panorama. For example, while heterotypic 
GJICs among tumor cells and astrocytes seem to promote tumor 
progression, heterotypic GJICs between tumor cells and DCs or 
lymphocytes are involved in tumor cell elimination. Accordingly, 
re-assessing Cx expression along with a deep characterization of 
immune cell infiltration in human tumors may, in our opinion, 
definitively solve the complexity of the mixed findings related to 
Cxs as a useful diagnostic method (Table 1). Precision-medicine 
diagnostic tools, such as multilabel immunofluorescence on 
formalin-fixed paraffin-embedded sections (195) are suitable 
for evaluation of Cx expression and localization in different cells 
from the tumor microenvironment. Although much of the data 
discussed in this review come from in  vivo studies, several of 
the most exciting findings remains to be validated on accurate 
and specific physiological models. Smart experimental designs 
using current murine models, such as conditional knockout 
of Cx43 in T  cells (76) or in DCs (127), are required to fully 
elucidate the physiopathological implication of GJICs on tumor 
immunity. Additionally, major efforts must be made to deter-
mine which intercellular signals are involved in GJ-mediated 
tumor immunity. In our opinion, special focus should be put on 
the identification and characterization of immune modulatory 
miRNAs that can be transferred between tumor and immune 
cells, and therefore, affect tumor immune attack and/or tumor 
immune escape.

Nowadays, novel Cx and GJ-based therapeutic approaches 
have emerged, particularly based on small peptides that spe-
cifically block Cx-HCs or enhance GJ plaque formation. These 
therapeutic approaches have shown promising results in the con-
text of cutaneous wound healing, tissue regeneration, narcolepsy, 
and reperfusion injury after acute myocardial infarction (196). 
Efforts to move these therapeutic approaches to cancer should 
be made in order to promote GJ-mediated antitumor immunity. 
It seems clear that targeting GJIC alone is not likely to be suf-
ficient and combination with immunotherapy treatments will be 
necessary.
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