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Ulcerative colitis (UC) is characterized by a functional dysregulation of alternatively 
activated macrophage (AAM) and intestinal epithelial cells (IECs) homeostasis. 
Chromogranin-A (CHGA) secreted by neuroendocrine cells is implicated in intestinal 
inflammation and immune dysregulation. CHGA undergoes proteolytic processing to 
generate CHGA-derived peptides. Chromofungin (CHR: CHGA47–66) is a short CHGA-
derived peptide encoded by CHGA Exon-IV and is involved in innate immune regulation, 
but the basis is poorly investigated. We investigated the expression of CHR in colonic 
tissue of patients with active UC and assessed the effects of the CHR in dextran sulfate 
sodium (DSS) colitis in mice and on macrophages and human colonic epithelial cells. 
We found that mRNA expression of CHR correlated positively with mRNA levels of AAM 
markers and gene expression of tight junction (TJ) proteins and negatively with mRNA 
levels of interleukin (IL)-8, IL-18, and collagen in patients with active UC. Moreover, AAM 
markers correlated positively with gene expression of TJ proteins and negatively with 
IL-8, IL-18, and collagen gene expression. Experimentally, intracolonic administration of 
CHR protected against DSS-induced colitis by priming macrophages into AAM, reducing 
colonic collagen deposition, and maintaining IECs homeostasis. This effect was associ-
ated with a significant increase of AAM markers, reduction of colonic IL-18 release and 
conservation of gene expression of TJ proteins. In vitro, CHR enhanced AAM polarization 
and increased the production of anti-inflammatory mediators. CHR-treated AAM condi-
tioned medium increased Caco-2 cell migration, viability, proliferation, and mRNA levels 
of TJ proteins, and decreased oxidative stress-induced apoptosis and proinflammatory 
cytokines release. Direct CHR treatments had the same effect. In conclusion, CHR treat-
ment reduces the severity of colitis and the inflammatory process via enhancing AAM 
functions and maintaining IECs homeostasis. CHR is involved in the pathogenesis of 
inflammation in experimental colitis. These findings provide insight into the mechanisms 
of colonic inflammation and could lead to new therapeutic strategies for UC.
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inTrODUcTiOn

Crohn’s disease and ulcerative colitis (UC) are the two main 
forms of inflammatory bowel disease (IBD) in humans (1). 
The etiology of IBD is unknown, but evidence suggests that the 
abnormal immune response within the intestinal wall is directed 
against luminal bacterial antigens inducing intestinal tissue 
damage (2). Analysis of proinflammatory and anti-inflammatory 
pathways in IBD patients have demonstrated dysregulation in the 
immune responses associated with an altered balance between 
inflammatory, regulatory and anti-inflammatory cytokines (3). 
Macrophages implicated in presenting antigens to T and B cells 
are important cells regulating the host innate and adaptive 
immune responses (4). In IBD, macrophages play a crucial role 
in the resolution of tissue injury and promotion of tissue repair  
(5, 6). Two main categories of macrophages are described, the 
classical-activated macrophages (CAMs) which generate Th1-
related cytokines (interferon-γ, tumor necrosis factor-α) response, 
and the alternatively activated macrophages (AAMs) linked to a 
Th2-related cytokines [interleukin (IL)-4 and IL-13] response (7). 
AAMs produce anti-inflammatory molecules (IL-10, arginase) 
and play a major role in the suppression of inflammation and tis-
sue remodeling/repair (8). AAMs have been reported to attenuate 
experimental inflammation in the gut (9–11).

Intestinal epithelial cells (IECs) form a crucial first line of 
physical defense between the mucosa and the luminal milieu. 
Tight junctions (TJ) proteins are mainly responsible for the epi-
thelial barrier function that includes selective transport of water, 
ions, and nutrients by forming an uninterrupted intercellular 
barrier between the epithelial cells (12). Thus, defects in intestinal 
epithelial TJ barrier are important contributing factors for the 
development of intestinal inflammation and lead to an amplified 
inflammatory response due to an increased passage of antigens 
into the colonic mucosa (13, 14). Furthermore, in persons with 
IBD, IECs secrete a significant quantity of chemokines (i.e., IL-8) 
which cause excessive recruitment and transmigration of innate 
immune cells and proinflammatory cytokines, including IL-18 
(15, 16). Additionally, high collagen production by IECs, colo-
nocytes, and fibroblasts favors intestinal fibrosis associated with 
stricture formation, which is a significant complication seen in 
persons with IBD (16). Furthermore, oxidative stress, and subse-
quent epithelial apoptosis, is a fundamental feature of colitis (17).

Chromogranin-A (CHGA), a member of the granin family 
of proteins (18), is an acidic protein distributed ubiquitously in 
vesicles of secretory cells of the enteric, endocrine, and immune 
systems (18). CHGA is the precursor of biologically active pep-
tides implicated in several biological functions (19) by regulating 
the endocrine, the cardiovascular, and the immune systems (18, 
20). The protein is cleaved at multiple dibasic sites and exposed to 
an extensive degree of intracellular and extracellular proteolytic 
processing, particularly at the N- and C-terminal regions (21) 
to generate CHGA-derived peptides including chromofungin 
(CHR: CHGA47–66). CHR is an active short peptide encoded by the 
CHGA exon-IV (18) that possesses antimicrobial activity (22–24) 
and immune regulatory functions (25). Although CHR has anti-
microbial activity, it is a non-hemolytic peptide, suggesting its 
non-toxicity (26). Moreover, CHGA47–57 peptide, which is a part 

of CHR, contains a cell adhesion site for fibroblasts and smooth 
muscle cells (26). Furthermore, CHR displays pronociceptive and 
antinociceptive effects in a model of somatovisceral pain through 
various mechanisms involving the corticotropin-releasing fac-
tor pathway, action on sensory neurotransmitter and direct or 
indirect regulation of inflammatory cells (27). Recently, CHR has 
been described as a post-conditioning agent against ischemia/
reperfusion (I/R) damages through the activation of prosurvival 
kinases and an increased miRNA-21 expression (28).

Although CHGA and its derived peptides are implicated 
in various inflammatory diseases including gut inflammation 
(29–33), there are no available data demonstrating the effects of 
CHR on AAM and IECs homeostasis during the progression of 
intestinal inflammation. Herein, we report on CHR expression in 
human colon tissue from persons with UC compared with unaf-
fected controls. Further, we evaluated effects of CHR in dextran 
sulfate sodium (DSS) model of colitis and assessed its effects on 
AAM activities and human colonic cell line functions. We report 
that treatment with CHR significantly ameliorates disease sever-
ity and inhibits intestinal inflammation.

MaTerials anD MeThODs

human subjects
Patients who diagnosed with active UC and persons with no IBD 
were recruited from the University of Manitoba IBD Clinical and 
Research Centre. Endoscopic biopsies obtained from 10 patients 
with active UC and 10 healthy individuals. Patients were between 
27 and 55 years and with a mean age of 40 years. Informed consent 
obtained from patients and control subjects before the study. This 
study approved by the University of Manitoba Health Research 
Ethics Board [HS14878 (E)].

animals
Experiments were approved by the University of Manitoba 
Animal Ethics Committee (Protocol # 15-010) and conducted 
under the Canadian guidelines for animal research. Six- to eight-
week-old male C57BL/6 mice (20–25 g body weight) purchased 
from Charles River (Sherbrook, Canada) were maintained in the 
animal care facility at the University of Manitoba under a specific 
pathogen-free barrier facility.

Peptides
Peptides purchased from Pepmic Co., Suzhou, China. Peptides 
were processed by reversed-phase high-performance liquid chro-
matography and mass spectrometry. CHR peptide corresponds 
to CHR (ChgA47–66: RILSILRHQNLLKELQDLAL) (24–26, 28, 34, 
35). To confirm the sequence specificity scrambled CHR peptide 
(sCHR, ChgA47–66: RARDHQQENKILLLSLILLL) was used as an 
internal control. The effective dose was adjusted at 2.5 mg/kg/day 
as reflected by previously published data related to the use of pep-
tide for intracolonic injection (32, 33). Control groups received 
intracolonic injection of 1% phosphate-buffered saline (PBS).

acute Dss-experimental colitis
Intracolonic injection of CHR or sCHR or 1% PBS started 1-day 
before colitis induction and lasted for 5-days. The experimental 
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design of these experiments is illustrated in Figure  3A. DSS 
(molecular weight, 40  kDa: MP Biomedicals, Soho, OH, USA) 
was added to the drinking water at a final concentration of 5% 
(wt/vol) for 5 days (36) to 6- to 8-week-old mice. DSS was freshly 
dissolved every 2 days. Controls were time-matched with mice 
receiving regular drinking water only. Mean DSS consumption 
was noted per cage each day. Weight loss, stool consistency, and 
bleeding were reported (37) from day 0 to day 5 during DSS treat-
ment. Blood in the stool was evaluated using the Hemoccult II test 
(Beckman Coulter, Oakville, ON, Canada). Mice were sacrificed 
at day5. Collagen deposition and fibrosis scores were assessed 
as described previously (38). Samples were isolated from the 
splenic flexure, fixed in formalin, paraffin embedded, sectioned 
in 3-µm sections, and stained using Masson’s Trichrome (Sigma, 
Mississauga, ON, Canada). Collagen deposition and fibrosis 
were scored based on a published scoring system that considers 
collagen deposition (score 0 = no increase, score 1 = increase in 
the submucosa, 2 = increase in the mucosa, 3 = increase in the 
muscularis mucosa and its thickening, 4 = increase in the mus-
cularis propria, and 5 = gross disorganization in the muscularis 
propria) and the percent involvement (score 1 =  1–25%, score 
2 = 26–50%, score 3 = 51–75%, and score 4 = 76–100%) (39).

colonic Protein assay
Colonic sample were homogenized mechanically in 700 µL of Tris 
HCl buffer containing protease inhibitors (Sigma, Mississauga, 
ON, Canada) then centrifuged for 30 min, and supernatants were 
frozen at 80°C until assay (32). Cytokines release and arginase 
activity measurements were performed on clarified full-thickness 
colon homogenates from mice and or supernatants from cell 
culture using enzyme-linked immunosorbent assays (ELISAs). 
Commercial ELISA kits for mouse IL-10, mouse IL-18, human 
IL-8 and human IL-18 (R&D Systems, Inc., MN, USA), and 
mouse arginase activity (Abnova, Walnut, CA, USA) were used.

Macrophage cell culture
Peritoneal macrophages were isolated from C57BL/6 male mice 
as described by Mosser and Zhang (40). Isolated macrophages 
were cultured in 2  mL Dulbecco’s Modified Eagle’s Medium 
(DMEM) supplemented with 100  U/mL penicillin, 100  µg/mL 
streptomycin, and 10% deactivated fetal bovine serum (FBS). 
Cell cultures were incubated in a humidified 5% CO2 incubator 
at 37°C. The overall cell viability of the adherent cell was greater 
than 95%. Ex vivo colitic macrophages isolation; 5 days after the 
beginning of the DSS treatment, resident peritoneal macrophages 
were isolated from all groups and subjected to further analysis. 
In vitro AAM activation; peritoneal macrophages were isolated 
from naive male C57BL/6 mice then serum starved overnight in 
DMEM with low FBS (0.5%). Macrophages were washed three 
times with 1% PBS solution and pretreated with CHR (200 ng/mL)  
for 2 h and then exposed for additional 6 h to 1% PBS in medium 
or IL-4/IL-13 (20 ng/mL) to induce AAM (40). Cell and superna-
tant medium were harvested for analysis.

cell line culture
Human IEC line, Caco-2 (ATCC, Manassas, VA, USA), was 
cultured in 7  mL of culture medium in a T-25 culture flask. 

Eagle’s Minimum Essential Medium (glutamine, high glucose) 
supplemented with 100 U/mL penicillin, 100 µg/mL streptomy-
cin, and 20% deactivated FBS was used. Cells were incubated in a 
humidified 5% CO2 incubator at 37°C. Caco-2 cells were detached 
by using 3 mL of trypsin (0.05% trypsin, 0.53 mM EDTA) and 
seeded at 3 × 105 cells/well onto tissue culture 24-well plates. Cells 
were counted using a TC20™ Automated Cell Counter (Bio-Rad 
Laboratories, Inc., Mississauga, ON, Canada), and cell count 
was verified using a conventional hemocytometer cell counting 
method. The cell culture medium was changed every 3  days 
until the cells fully differentiated (80–90% confluent). For each 
experimental setup, three separate experiments were performed, 
and at least six wells per condition were assigned.

Lipopolysaccharides (LPSs)- and DSS-Stimulated 
Epithelial Cells in the Presence or Absence of  
CHR-Treated AAM Conditioned Medium
Caco-2 cells were seeded at 3 × 105 cells/well onto tissue culture 
plates. Naive peritoneal macrophages were isolated from naive 
C57BL6 mice and polarized toward AAM (IL-4/IL-13 20 ng/mL) 
in the presence or absence of CHR or sCHR (100  ng/mL) for 
6 h. 2 mL of AAM supernatant or naive PBS-treated macrophage 
supernatant were added to the Caco-2 cell line for 24 h. Then, 
Caco-2 cells were challenged with LPS (1 µg/mL) (Escherichia coli 
serotype 127: B8, Sigma-Aldrich, St. Louis, MO, USA) or 5% DSS 
for an additional 24 h (41). The potential effects of CHR-treated 
AAM conditioned medium on mRNA level of TJ proteins [clau-
din-1 (CLDN1), zonula occludens-1 (ZO1), E-cadherin (CADH1), 
and occludin (OCLN)] and proinflammatory cytokines IL-8 and 
IL-18 were investigated. Moreover, migration, proliferation, 
viability, and oxidative stress survivability of Caco-2 cell line were 
assessed as described below.

Direct CHR Treatment of LPS- and  
DSS-Stimulated Colonic Cell Line
Caco-2 cells were seeded at 3 × 105 cells/well onto tissue culture 
plates and treated with 2 mL of medium containing CHR, sCHR 
(100  ng/mL) or 1% PBS for 24  h. Then cells were challenged 
with LPS (1 µg/mL) or 5% DSS for an additional 24 h (41). Gene 
expression of TJ proteins and proinflammatory cytokines IL-8 
and IL-18, migration, proliferation, viability, and oxidative stress 
survivability of Caco-2 cell line were evaluated.

Colonic Cell Line Migration Assessed  
by Using Wound-Healing Assay
Caco-2 cells were wounded using a sterile 100-µL pipette tip 
dragged perpendicular to a black line drawn on the underside 
of the plate for reference. Images were taken at wounding (0), 
12, 24, and 48  h later using an Evos FL imaging system at 4× 
magnification. Wound widths were determined by averaging six 
measurements per image. Only scratches with edges that could 
be captured in one frame at the time point 0 h were included for 
final analysis. Measurements were taken from edge to edge at the 
time point 0 h and compared with measurements from 12, 24, 
and 48 h using ImageJ (National Institutes of Health, Bethesda, 
MD, USA) software (42). The reported values were the difference 
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TaBle 2 | Mouse primers sequences.

gene Forward reverse

Il10 GCTCTTACTGACTGGCATGAG CGCAGCTCTAGGAGCATGTG
Arg1 TTGGGTGGATGCTCACACTG GTACACGATGTCTTTGGCAGA
Il18 GACTCTTGCGTCAACTTCAAGG CAGGCTGTCTTTTGTCAACGA
Ym1 CAGGTCTGGCAATTCTTCTGAA GTCTTGCTCATGTGTGTAAGTGA
Fizz1 AAGCCTACACTGTGTTTCCTTTT GCTTCCTTGATCCTTTGATCCAC
Col1a2 GGTGAGCCTGGTCAAACGG ACTGTGTCCTTTCACGCCTTT
Eef2 TGTCAGTCATCGCCCATGTG CATCCTTGCGAGTGTCAGTGA
Ocldn TTGAAAGTCCACCTCCTTACAGA CCGGATAAAAAGAGTACGCTGG
Cldn1 GGGGACAACATCGTGACCG AGGAGTCGAAGACTTTGCACT
Zo1 GCCGCTAAGAGCACAGCAA TCCCCACTCTGAAAATGAGGA
Cadh1 CATCCCAGAACCTCGAAACA TGGGTTAGCTCAGCAGTAAAG

TaBle 1 | Human primers sequences.

gene 
name

Forward reverse

IL-10 GACTTTAAGGGTTACCTGGGTTG TCACATGCGCCTTGATGTCTG
MR GGAGTGATGGTTCTCCTGTTTC CCTTTCAGCTCACCACAGTATT
CD1B ACTCAGGAAATCCAATCCTCCTA ATAGCAGGCTGTGAGCTACAT
OCLDN ACAAGCGGTTTTATCCAGAGTC GTCATCCACAGGCGAAGTTAAT
TBP CCCGAAACGCCGAATATAATCC AATCAGTGCCGTGGTTCGTG
CLDN1 AGGTGCTATCTGTTCAGTGATG TGGCTGACTTTCCTTGTGTAG
CADH1 CTTCTGCTGATCCTGTCTGATG TGCTGTGAAGGGAGATGTATTG
ZO1 CCAGCCTGCTAAACCTACTAAA ATCTCTTGCTGCCAAACTATCT
COL1A2 GAGCGGTAACAAGGGTGAGC CTTCCCCATTAGGGCCTCTC
IL-8 ACTGAGAGTGATTGAGAGTGGAC AACCCTCTGCACCCAGTTTTC
IL-18 GCGTCACTACACTCAGCTAAT GCGTCACTACACTCAGCTAAT
CHR 
(CHGA 
Exon-IV)

TCATTGCAGATGAACGGAT TTGGAGAGCGAGGTCTT
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between time point 0 and the other time points, with higher 
values representing increased cellular migration.

Colonic Cell Line Proliferation and Viability Assessed 
Using Cell Numbers and MTT Assay
Colonic cell line viability was studied in vitro by using the 3-(4, 
5-dimethyl thiazolyl-2yl)-2, 5-diphenyl tetrazolium (MTT) assay. 
Briefly, Caco-2 cells were seeded into 96-well plates at a density of 
5 × 105 cells/well and serum starved for 24 h. Cells were cultured 
for 3  days in 200  µL of medium containing CHR (100  nmol/
mL) or sCHR (100 nmol/mL). Negative controls received 200 µL 
of medium, containing vehicle only (1% PBS). After 72  h, the 
media was aspirated and cells quantified by MTT assay (Trevigen 
Inc., Gaithersburg, MD, USA) according to the manufacturer’s 
instructions. The plates were quantified using a microplate spec-
trophotometer (Molecular Devices, Sunnyvale, CA, USA) at a 
wavelength of 570 nm.

Colonic Cell Line Survival Using an Oxidative  
Stress Assay
2 mL of 200 mmol/L of H2O2 in PBS were given to the Caco-2 
cells for 30 min. Trypan blue staining was performed to count 
viable cells.

Quantitative real-time  
reverse-Transcription Polymerase  
chain reaction (Pcr)
Total RNA was extracted using TRIzol™ Plus RNA Purification 
Kit (Life Technologies, NY, USA) and reverse transcribed using 
SuperScript VILO cDNA Synthesis Master Mix (Invitrogen, NY, 
USA). A real-time quantitative PCR was used to quantify gene 
expression in a Roche light cycler 96 Real-Time System using 
Power SYBR green master mix (Life Technologies, Burlington, 
ON, Canada). Differences in the threshold cycle (ΔCt) number 
between the target genes and mouse eukaryotic elongation factor 
2 (Eef2) and human TATA-box binding protein (TBP) (optimal 
reference genes) (43–45) were used to normalize expression. 
Human and mice primers sequences for the genes that encode 
cytokines, TJ proteins and IECs markers are provided in Tables 1 
and 2.

Data analysis
Group comparisons were determined using unpaired Mann–
Whitney U test, and one- and two-way ANOVA followed by a 
post hoc test when appropriate. Spearman’s correlation test was 
used. P values (two-tailed) below 0.05 were considered as sig-
nificant. Data are presented as mean ± SEM and statistics were 
analyzed using GraphPad Prism software (version 6; GraphPad 
Software, Inc., La Jolla, CA, USA).

resUlTs

chr correlates Positively with aaM  
and gene expression of TJ Proteins and 
negatively with il-8, il-18, and collagen 
gene expression in Patients with  
active Uc
First, we assessed the relationship between CHR and human 
pathophysiological markers implicated in IBD. mRNA level of 
CHR was significantly reduced (P  <  0.0001) in biopsies from 
subjects with active UC when compared with healthy controls 
(Figure  1A). CHR mRNA expression demonstrated a strong 
positive correlation with IL-10, mannose receptor (CD206, MR), 
cluster of differentiation 1B (CD1B, Figure  1B), and CLDN1, 
CADH1, OCLN, ZO1 (Figure  1C). Conversely, CHR mRNA 
expression revealed a significant negative correlation with IL-8, 
IL-18, and COL12A (Figure 1D).

aaM Markers correlates Positively  
with gene expression of TJ Proteins  
and negatively with il-8, il-18, and 
collagen gene expression in Patients  
with active Uc
Next, we investigated the link between the genes expression of 
AAM markers and TJ proteins. IL-10 mRNA expression cor-
related positively with CLDN1, CADH1, ZO1, and OCLN and 
negatively with IL-8, IL-18, and COL12A (Figure 2A). Also, MR 
correlated positively with CLDN1, CADH1, ZO1, and OCLN and 
negatively with IL-8, IL-18, and COL12A (Figure 2B). Moreover, 
CD1B correlated positively with CLDN1, CADH1, ZO1, and 
OCLN and negatively with IL-8, IL-18, and COL12A (Figure 2C).
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FigUre 1 | Chromofungin (CHR) correlates positively with alternatively activated macrophages (AAMs) and gene expression of tight junction (TJ) proteins and 
negatively with interleukin (IL)-8, IL-18 and collagen gene expression in patients with active ulcerative colitis (UC). mRNA levels of (a) CHR (CHGA Exon-IV) in human 
active UC (n = 10), and healthy individual as control (n = 10) and its correlation with mRNA levels of (B) AAM markers [IL-10, mannose receptor (MR), cluster of 
differentiation 1B (CD1B)], (c) gene expression of tight junction (TJ) proteins, Claudin-1 (CLDN1), zonula occludens-1 (ZO1), E-cadherin (CDH1), and occludin 
(OCLN), (D) and IL-8, IL-18, and collagen (COL1A2). Mann–Whitney test and Spearman’s correlation were used to analyze the data. Two tails significance level 
adjusted at 0.05.

FigUre 2 | Alternatively activated macrophages (AAMs) markers correlate positively with gene expression of tight junction (TJ) proteins and negatively with 
interleukin (IL)-8, IL-18, and collagen gene expression in patients with active ulcerative colitis (UC). Correlation analysis of mRNA levels of (a) IL-10, (B) mannose 
receptor (MR), and (c) Cluster of Differentiation 1B (CD1B) with mRNA levels of Claudin-1 (CLDN1), zonula occludens-1 (ZO1), E-cadherin (CDH1), occludin  
(OCLN), IL-8, IL-18, and collagen (COL1A2). Correlation analysis: Spearman’s correlation and significance level adjusted at 0.05.
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FigUre 3 | Chromofungin (CHR) attenuates colonic inflammation and reduces colonic collagen deposition in dextran sulfate sodium (DSS)-induced colitis in mice. 
(a) Experimental design of peptides treatment and DSS-induced colitis. Mice were received 5% DSS for 5 days. Mice received an intracolonic injection of CHR 
peptide (2.5 mg/kg/day) or scrambled CHR peptide (2.5 mg/kg/day) or vehicle phosphate-buffered saline 1% (control) starting 1 day before DSS treatment. Disease 
onset and severity (from day 0 to day 5) represented by (B) percentage of body weight change of different groups, (c) stool consistency, and (D) blood in stool. 
Colonic collagen deposition scores were quantified by (e,F) Masson Trichrome staining for collagen in colonic tissues, whereas collagen stained in blue with a red 
background. (g) Quantitative real-time reverse-transcription polymerase chain reaction (RT-PCR) of collagen col1a2 mRNA expression in colonic tissues of mice. 
Two-way repeated measures or one-way ANOVA followed by multiple comparison tests. Each value represents the mean ± SEM, n = 8–10 mice/group. # refers to 
significance compared to control groups. Each experiment was repeated at least three times.
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chr attenuates the Onset and severity  
of Dss-induced colitis
To decipher the functional consequences of exogenous CHR 
administration, a mouse model of colitis was used. Preventive 
intracolonic administration of CHR to DSS-treated mice decreased 
significantly (P ≤ 0.0001) the clinical signs of colitis, represented 
by the weight loss percentage, stool consistency and stool bleed-
ing (Figures 3B–D). In colitic mice, intracolonic administration 
of CHR significantly reduced the collagen deposition and fibrosis 
scores (Figures 3E,F). Moreover, DSS administration increased 
Col1a2 mRNA colonic expression (Figure  3G) and treatment 
with CHR decreased it significantly (Figure 3G). Administration 
of the sCHR peptide did not modify the markers studied.

chr Decreases il-18 release and 
regulates colonic gene expression  
of TJ Proteins in Dss-induced colitis
Tight junction proteins and IL-18 play critical roles during the 
progression of IBD (12, 46). Compared with non-colitic mice, a 
significant decrease in Cldn1, Zo1, Cdh1, and Ocln colonic mRNA 
levels was detected in DSS-treated mice (Figure  4B), however, 
CHR treatment abolished this effect (Figures  4A,B). We also 
observed that DSS treatment elevated colonic protein and mRNA 
expression levels of IL-18 (Figure  4A) which was significantly 
decreased when mice were treated with CHR (Figure  4A). 

Administration of the sCHR peptide neither modified the control 
conditions nor the deleterious effect of the DSS treatment.

chr increases aaM Polarization and 
increases anti-inflammatory Mediators  
in Dss-induced colitis
Alternatively activated macrophage plays a significant role in 
colonic tissue-repair through the high production of IL-10, 
arginase, and other extracellular molecules (47, 48). Therefore, 
to further determine the role of CHR in modulating immune 
cells during the development of colitis, colonic AAM media-
tors and markers were investigated. Colitic CHR-treated mice 
displayed an increase in IL-10 and Arginase activity (Figure 5A), 
moreover, mRNA expression of Il10, arginase (Arg1), Ym1 
Chitinase-like protein (Ym1), and found in inflammatory zone 
protein (Fizz1) were significantly upregulated (Figure  5B). To 
confirm this effect, we next investigated the role of CHR in 
peritoneal macrophage isolated from colitic mice. Measurement 
of AAM mediators and markers revealed an increase in IL-10 
and arginase activity in response to CHR (Figure  5C), along 
with increased mRNA expression of Il10, Arg1, Ym1, and Fizz1 
(Figure 5D), when compared to macrophages isolated from the 
colitic PBS-treated group. Administration of the sCHR peptide 
neither modified the control conditions nor the deleterious effect 
of the DSS treatment.
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FigUre 4 | Chromofungin (CHR) decreases interleukin (IL)-18 release and maintains colonic gene expression of tight junction (TJ) proteins in dextran sulfate sodium 
(DSS)-induced colitis. Treatments [CHR or sCHR (2.5 mg/kg/day) or 1% phosphate-buffered saline (PBS)] started 1 day prior to colitis induction. (a) Colonic protein 
and mRNA expression levels of Il-18. (B) Colonic mRNA levels of TJ proteins [claudin-1 (Cldn1), zonula occludens-1 (Zo1), E-cadherin (Cdh1) and occludin (Ocln)]. 
One-way ANOVA followed by multiple comparison tests. Each value represents the mean ± SEM, n = 8–10 mice/group. # refers to significance compared to control 
groups. Each experiment was repeated at least three times.
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chr enhances the Polarization  
of naive Peritoneal aaM
Considering the effect of other CHGA-derived peptides on mac-
rophages and their contribution to macrophages polarization (32, 
33, 49–52), we reasoned that CHR might be involved in AAM 
polarization. To determine whether CHR can directly affect the 
polarization of AAM, peritoneal macrophage of naive C57BL6 
mice were isolated and pretreated with CHR and polarized toward 
AAM using IL-4/IL-13. CHR pretreatment increased mRNA 
expression levels of AAM markers, Il10, Arg1, Fizz1, and Ym1, 
and the release of IL-10 and Arginase activity (Figures  6A,B). 
Administration of the sCHR peptide neither modified the control 
conditions nor the deleterious effect of the IL-4/IL-13 treatment.

chr-Treated aaM conditioned Medium 
Maintains gene expression of TJ Proteins 
and Decreases il-8 and il-18 release in 
lPs- and Dss-stimulated colonic 
epithelial cells
The human Caco-2 IEC system has been commonly used as an 
in vitro model of the intestinal epithelium (53–55). Also, caco-2 
cells have been used as in vitro model of IBD for potential drug 
testing and screening (56–60). Therefore, culture studies were 
performed using Caco-2 epithelial cells and AAM conditioned 
medium to assess whether CHR-treated AAM conditioned 

medium could regulate the expression and the release of IL-8 and 
IL-18 and the gene expression of TJ proteins in a human colonic 
cell line following LPS or DSS-induced injury. Exposing Caco-2 
cells to LPS (1 µg/mL) or 5% DSS for 24 h induced a significant 
increase of IL-8 and IL-18 release (Figure 7A) and a substantial 
downregulation of mRNA expression levels of Cldn1, Zo1, Cdh1, 
and Ocln (Figure 7B). Conversely, the presence of CHR-treated 
AAM conditioned medium maintained barrier restitution by 
suppressing IL-8 and IL-18 release (Figure 7A) and by maintain-
ing the mRNA expression of CLDN1, ZO1, CADH1, and OCLN 
(Figure 7B). Administration of the sCHR peptide neither modi-
fied the control conditions nor the deleterious effect induced by 
LPS or DSS treatments.

chr Maintains gene expression of TJ 
Proteins and Decreases il-8 and il-18 
release in lPs- and Dss-stimulated 
colonic epithelial cell line
Furthermore, we investigated whether CHR could have a direct 
effect on the expression/release of IL-8 and IL-18 and the gene 
expression of TJ proteins following LPS or DSS-induced injury. 
CHR treatment maintained the epithelial homeostasis by sup-
pressing IL-8 and IL-18 release (Figure 8A) and by maintaining 
the gene expression of CLDN1, ZO1, CADH1, OCLN (Figure 8B). 
Moreover, in the absence of stimuli, CHR treatment did not show 
any significant effects on IL-8 and IL-18 release or mRNA levels of 
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FigUre 5 | Chromofungin (CHR) upregulates the activity of alternatively activated macrophages (AAM) in dextran sulfate sodium (DSS)-induced colitis. Preventive 
treatments of CHR or sCHR or 1% 1% phosphate-buffered saline (PBS) were started 1 day prior to colitis induction. (a) Colonic protein levels of interleukin (IL)-10 
and arginase activity and (B) colonic mRNA levels of AAM markers [Il10, arginase (Arg1), Ym1 Chitinase-like protein (Ym1), and found in inflammatory zone protein 
(Fizz1)]. Peritoneal macrophages isolated from all mice groups; (c) protein levels of IL-10 and arginase activity, and (D) mRNA levels of AAM markers (Il10, arg1, 
Fizz1, and Ym1) in the peritoneal macrophages. One-way ANOVA followed by multiple comparison tests. Each value represents the mean ± SEM,  
n = 8–10 mice/group. # refers to significance compared to control groups. Each experiment was repeated at least three times.
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TJ proteins (Figures 8A,B). Administration of the sCHR peptide 
neither modified the control conditions nor the deleterious effect 
of induced by LPS or DSS treatments.

chr-Treated aaM conditioned Medium 
Promotes epithelial Migration, 
Proliferation, Viability, and Oxidative 
stress Viability
The appropriate activation of AAM is crucial for tissue repair 
(48), and IBD involves functional impairment of IECs, associ-
ated with infiltration of macrophages in the lamina propria 
(6,  61,  62). Macrophages can mediate protective effects via a 
variety of mechanisms, including maintenance or reshaping of 
the epithelial homeostasis through cell proliferation and migra-
tion, and by promoting resistance to epithelial apoptosis induced 

by oxidative stress (5, 63). Therefore, we investigated the potential 
consequences of CHR-treated AAM conditioned medium on the 
functions of colonic epithelial cells using Caco-2 cells. In the 
presence of CHR-treated AAM conditioned medium, migra-
tion, viability, and proliferation of the epithelial cells increased 
(Figures  9A–D). Administration of the sCHR peptide did not 
have any effect on cell proliferation or migration. Furthermore, 
oxidative stress is a feature of intestinal inflammation and initi-
ates epithelial apoptosis (17, 64). Therefore, Caco-2 cells were 
exposed to the free radical donor, H2O2, and cell survival was 
assessed. H2O2 caused a significant reduction in cell survival 
compared with untreated cells, and cell survival in H2O2-treated 
cultures significantly improved in the presence of CHR-treated 
AAM-conditioned medium (Figure 9E). Administration of the 
sCHR peptide neither modified the control conditions nor the 
deleterious effect of induced by H2O2.
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FigUre 6 | Chromofungin (CHR) enhances the polarization of alternatively activated macrophages (AAM) in vitro. Peritoneal macrophages collected from naive 
C57BL6 mice and pretreated with CHR (200 ng/mL) for 2 h then stimulated by interleukin (IL)-4/IL-13 (20 ng/mL) for 6 h. (a) Protein levels of IL-10 and arginase 
activity and (B) mRNA levels of AAM markers [Il10, arginase (Arg1), Ym1 chitinase-like protein (Ym1), and found in inflammatory zone protein (Fizz1)]. One-way 
ANOVA followed by multiple comparison tests. Each value represents the mean ± SEM, n = 3–5/group. # refers to significance compared to control groups, Each 
experiment repeated at least three times.

FigUre 7 | Chromofungin (CHR) indirectly maintains gene expression of tight junction (TJ) proteins and decreases interleukin (IL)-8 and IL-18 release from 
lipopolysaccharide (LPS)- and dextran sulfate sodium (DSS)-stimulated colonic cell line through alternatively activated macrophages (AAM) conditioned medium. 
Peritoneal macrophages collected from naive C57BL6 mice and pretreated with CHR (200 ng/mL) for 2 h then stimulated by IL-4/IL-13 (20 ng/mL) for 6 h. Caco-2 
cells were cultured in 2 mL supernatants of 1% phosphate-buffered saline (PBS) or CHR (100 nmol/mL) or sCHR (100 nmol/mL) treated AAM conditioned medium 
for 24 h, then challenged with LPS (1 µg/mL) or 5% DSS for 24 h. Cells and supernatants harvested for analysis. (a) IL-8 and IL-18. (B) Colonic mRNA levels of TJ 
proteins [claudin-1 (CLDN1), zonula occludens-1 (ZO1), E-cadherin (CDH1), occludin (OCLN)]. One-way ANOVA followed by multiple comparison tests. Data 
represent mean ± SEM (n = 6). # refers to significance compared to control groups. Each experiment repeated at least three times.
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FigUre 8 | Chromofungin (CHR) directly maintains gene expression of tight junction (TJ) proteins and decreases interleukin (IL)-8 and IL-18 release from 
lipopolysaccharide (LPS)- and dextran sulfate sodium (DSS)-stimulated colonic cell line. Caco-2 cells were treated with 1% phosphate-buffered saline (PBS) or  
CHR (100 nmol/mL) or sCHR (100 nmol/mL) in medium for 24 h then challenged with LPS (1 µg/mL) or 5% DSS for additional 24 h. (a) IL-8 and IL-18. (B) Colonic 
mRNA levels of TJ proteins [claudin-1 (CLDN1), zonula occludens-1 (ZO1), E-cadherin (CDH1), occludin (OCLN)]. One-way ANOVA was used to analyze the data 
followed by multiple comparison tests. Data represent mean ± SEM (n = 6). # refers to significance compared to control groups. Each experiment repeated at least 
three times.
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chr enhances epithelial Migration, 
Proliferation, Viability, and Oxidative 
stress Viability
Finally, we investigated the direct interaction between human cell 
line and CHR in LPS- and DSS-stimulated cells. Exposing Caco-2 
cells to LPS (1 µg/mL) or 5% DSS for 24 h led to a significant 
decrease in the cell migration, cell proliferation and viability 
(Figures 10A–D) and exogenous CHR treatment restored these 
properties (Figures  10A–D). Surprisingly, in the absence of 
stimuli, CHR alone induced a significant increase in migration, 
viability, and proliferation of the cells (Figures  10A–D). H2O2 
caused a significant reduction in cell survival compared with 
untreated cells, and treatment with CHR significantly improved it 
(Figure 10E). Administration of the sCHR peptide neither modi-
fied the control conditions nor the effect on cell proliferation or 
migration and the deleterious effect of induced by H2O2.

DiscUssiOn

This study, for the first time, shows possible novel mechanisms 
by which CHR ameliorated intestinal inflammation by regulat-
ing IECs homeostasis and enhancing the activity of AAM in 
preclinical models. In patients with active UC, CHR showed 
a positive correlation with AAM markers and gene expression 
of TJ proteins and a negative correlation with IL-8, IL-18, and 
collagen gene expression. Experimentally, CHR treatment 
reduced the onset and severity of colitis, decreased colonic 

collagen deposition, promoted AAM mediators, and ultimately 
maintained the homeostasis of IECs during the development 
of DSS-induced colitis. Although CHR alone had no apparent 
effect on the AAM, CHR significantly expanded the polarization 
of AAM in the presence of IL-4/IL-13. Moreover, CHR indirectly 
and directly regulated colonic gene expression of TJ proteins, 
decreased IL-8 and IL-18 release in LPS- and DSS-stimulated 
human colonic epithelial cell line, and exhibited a protective 
effect in regulating epithelial cell migration, proliferation, 
viability, and oxidative stress survivability. Taken together, these 
findings extend the influence of CHGA-derived peptides to 
intestinal inflammation.

A complex network of events at molecular, cellular, and tissue 
levels underlie inflammation and remodeling that are tightly 
regulated by various mediators and mechanisms and that eventu-
ally contribute to the development of IBD. One of these molecules 
is the CHGA and its derived peptides, which, have emerged as an 
essential axis in immune cells migration and immune responses 
in IBD (32, 33). Recently, it has been described that CHR can affect 
neutrophils (25, 65). In our study, we demonstrated a positive 
correlation between the expression of CHR and AAM markers 
in patients with active UC. Experimentally, intracolonic admin-
istration of CHR reduced colitis severity through the production 
of IL-10 and arginase activities and the promotion of AAM-
associated gene expression (Ym1, Fizz1) in the colonic mucosa 
and peritoneal macrophages. Although peritoneal macrophages 
are present at a distance from the mucosal inflammatory site, sev-
eral studies have implicated these cells in the progression of colitis 
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FigUre 9 | Chromofungin (CHR) indirectly induces migration, proliferation, viability, and oxidative stress survivability of colonic cell line through alternatively activated 
macrophages (AAM)-conditioned medium. Macrophages were treated with CHR (200 ng/2 h) then stimulated by interleukin (IL)-4/IL-13 (20 ng/mL) to promote AAM 
for 6 h and supernatants were collected. Caco-2 cells were cultured in 2 mL of supernatants of 1% phosphate-buffered saline (PBS) or CHR (100 nmol/mL) or 
sCHR (100 nmol/mL) treated AAM conditioned medium. (a,B) Epithelial cell migration assessed by the wound healing assay, (c) intestinal epithelial cell proliferation, 
(D) epithelial cell viability assessed by the 3-(4, 5-dimethyl thiazolyl-2yl)-2, 5-diphenyl tetrazolium (MTT) assay, and (e) epithelial cells oxidative stress assay show 
survival data from cultures treated with normal medium (control) or 200 mmol/L H2O2. Two-way or one-way ANOVA was used to analyze the data followed by 
multiple comparison tests. Data represent mean ± SEM (n = 6). # refers to significance compared to control groups. Each experiment was repeated at least  
three times.
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and in the unbalanced proinflammatory and anti-inflammatory 
axis (66–68). Previously, we reported that intracolonic adminis-
tration of CHGA-derived peptides reduced the clinical sequelae 
of colitis and modulated the functional activity of peritoneal 
macrophages (32, 69). In addition to that, CHR can penetrate the 
cells and interfere with some intracellular pathways (70–72). It 
is therefore possible that intrarectal administration not only has 
local effects on the colonic mucosa but may also exert effects in 
the surrounding and adjacent tissues and cavities. Activation of 
anti-inflammatory AAM by stimulatory signals (IL-4, IL-13, or 
TGFβ1) (40) can restrain the proinflammatory immune responses 
through the release of anti-inflammatory molecules and various 
components affecting the extracellular matrix and tissue repair 
(8). Over the past decade, several studies have demonstrated 
an excessive production of proinflammatory Th1- and Th17-
related cytokines (73) and a reduced AAM number in the gut of 
patients with IBD (9) and experimental studies confirmed these 
observations. DSS-induced colitis is mainly driven by an activa-
tion of CAMs and treatments with drugs interfering with their 

proinflammatory function result in amelioration of the intestinal 
inflammation (32). Conversely, it has been demonstrated that 
AAM can decrease the onset and severity of murine colitis (9). 
AAM not only protect against colitis directly but also can sup-
port the directionally concordant expansion of the Treg/Th17 cell 
axis associated with a restoration of the gastrointestinal immune 
tolerance and the repair of mucosal injuries (62). For example, 
Lupeol™ can mitigate intestinal inflammation by inducing and 
increasing survival from lethal DSS-induced colitis by upregulat-
ing AAM-related genes and downregulating CAMs-related genes 
(74). Furthermore, worm infections have been associated with a 
reduced progression of colitis through the increase of IL-4/IL-13 
and the upregulation of AAM (9).

Intestinal injury and inflammation can induce excessive trans-
mural extracellular matrix collagen deposition accompanied by 
an alteration of normal tissue architecture leading ultimately to 
fibrosis (39). Here, we reported that CHR negatively correlated 
with collagen expression in patients with active UC and that exog-
enous CHR treatment decreased significantly colonic collagen 
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expression and deposition and protected against DSS-induced 
colitis. In that context it has been described that the arginase 
activity by murine AAM can facilitate the assembly of proline, 
which is critical for collagen production (75). AAM–fibroblast 
interaction is imperative for wound healing, but a dysregulated 
interaction can result in fibrosis and possibly stricture formation in  
the gastrointestinal tract. Although the role of AAM in the 
pathophysiology of fibrosis is not clear, some studies suggest 
that AAM display a profibrotic profile and stimulate collagen 
deposition (75–79), conversely other reports demonstrate that 
AAM can protect against fibrosis (80, 81). Here, CHR displayed 
a unique feature by reducing colitis severity and maintaining the 
IECs homeostasis without promoting collagen deposition and 
fibrosis. Therefore, it can be postulated that the role of AAM 
in collagen synthesis and deposition can be influenced by the 
surrounding microenvironment and the type of tissue. Our data 
confirm the non-deleterious effect of AAM activation in the 
context of colonic inflammation as demonstrated previously by 
other groups (9, 82).

Tight junction-deficient mouse models revealed pathophysi-
ologic features of mucosal inflammation compatible with human 
UC (83). As intestinal epithelial barrier is regulated by TJ proteins 
(12) and as regulation of TJ proteins is correlated with intestinal 
inflammation (13, 14), we quantified the gene expression of TJ 
proteins in colonic tissue. In patients with active UC, we dem-
onstrated a strong positive correlation between CHR and gene 
expression of TJ proteins and AAM. In our animal model, we 
showed that CHR treatment ameliorated the disease severity by 

maintaining colonic gene expression of TJ proteins and enhanc-
ing polarization of AAM. Several studies have reported that the 
activity of AAM can promote tissue-repair functions such as 
cell proliferation or matrix remodeling through the expression 
of different molecules such as arginase, IL-10, TGFβ1, Ym1, 
and Fizz1 (47, 48, 84). In our study, using an in  vitro culture 
system, we demonstrated that CHR-treated AAM conditioned 
medium preserved gene expression of TJ proteins in LPS- and 
DSS-stimulated epithelial cells and improved the functional 
capacities of epithelial cells by regulating migration, proliferation, 
and viability. This is supported by previous data demonstrating 
that a reduction of intestinal inflammation is associated with 
an enhancement of AAM activity, limitation of the proinflam-
matory signals, and maintenance of IECs functions (85, 86). 
Furthermore, we demonstrated that CHR can directly restore 
the epithelial homeostasis by maintaining gene expression of TJ 
proteins and by improving the epithelial cells functional abilities 
to migrate, proliferate, and survive in response to LPS, DSS, or 
oxidative stress stimuli. Similar study demonstrated a protective 
effects of 5-hydroxytryptamine receptor 4 agonist against DSS-
induced colitis, involving resistance of caco-2 epithelial cells to 
the detrimental effects of oxidative stress by the free radical donor 
(H2O2) (64).

Our study also described the ability of CHR to improve pro-
liferation and viability of Caco-2 epithelial cells. Receptors for 
CHGA-derived peptides seem not to exist, but the sequence simi-
larity of these peptides with cell penetrating abilities (70–72) may 
explain the ability of CHR to enter the cell and interact with the 

FigUre 10 | Chromofungin (CHR) directly enhances migration, proliferation, and viability of colonic cell line. Caco-2 cells were pre-treated with 1% phosphate-
buffered saline (PBS) or CHR (100 nmol/mL) or sCHR (100 nmol/mL) for 24 h, then challenged with lipopolysaccharide (LPS) (1 µg/mL) or 5% dextran sulfate 
sodium (DSS) for additional 24 h. (a,B) Epithelial cell migration assessed by the wound healing assay, (c) intestinal epithelial cell proliferation, (D) epithelial cell 
viability assessed by the 3-(4, 5-dimethyl thiazolyl-2yl)-2, 5-diphenyl tetrazolium (MTT) assay, and (e) epithelial cells oxidative stress assay shows survival data from 
cultures treated with normal medium (control) or 200 mmol/L H2O2. Two-way or one-way ANOVA was used to analyze the data followed by multiple comparison 
tests. Data represent mean ± SEM (n = 6). # refers to significance compared to control groups. Each experiment was repeated at least three times.
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intracellular pathways. We speculate that CHR might affect some 
specific intracellular pathways including the p38 MAP kinase or 
the activator of transcription 1 (STAT1), which are well known 
to enhance the functional abilities of epithelial cells to proliferate 
and migrate (87, 88). Supporting this idea, recent studies have 
demonstrated the importance of these two pathways. Treatment 
of Caco-2 with pregnane X receptor agonists or IL-28 significantly 
increased wound healing activity and proliferation, and in both 
context, when give to mice, a significant decrease of colitis was 
determined (88, 89). Other pathways are also for consideration 
as CHR induces calcium entry in human neutrophils through a 
calmodulin-regulated calcium independent phospholipase A2 
(70, 72), as this enzyme seems to play a role in the regulation 
of the integrity of epithelial TJ proteins and the pathogenesis of 
colitis (90).

Our findings also revealed that CHR is negatively correlated 
with IL-8 and IL-18 in colonic biopsies from patients with active 
UC. In parallel using our mouse model of colitis, we demon-
strated that exogenous CHR treatment reduced the weight loss 
and colonic IL-18 release. Moreover, CHR peptide directly and 
indirectly through CHR-treated AAM conditioned medium 
decreased IL-8 and IL-18 release in LPS- and DSS-stimulated 
epithelial cell line. Studies have reported that a deletion of 
IL-18 protected against experimental colitis and minimized the 
mucosal damage through maintenance of the epithelium equilib-
rium (46, 91), demonstrating the importance of IL-18. The overall 
effect of CHR on IL-18 can also explain indirectly the impact of 
fibrosis described above, as transmural intestinal inflammation 
favors colitis-associated fibrosis through the promotion and the 
expression of collagen and IL-18 (92). Downregulation of IL-18 

expression results in a decreased inflammatory process (92). IL-8 
known as CXCL-8, is a potent chemoattractant secreted by IECs, 
and mediates polymorphonuclear leukocytes recruitment from 
the lamina propria to the epithelium and is increased during IBD 
(93, 94). The close relation between IL-8 and CHGA-derived 
peptides is supported by previous data demonstrating that 
vasostatin-1, another CHGA-derived peptide, can decrease the 
onset and severity of experimental colitis via an inhibition of 
human IECs IL-8 production (95). As in mice, the homolog of 
human IL-8 is completely absent from their genome IL-8 was not 
quantified (93).

In this study, we assessed only the mRNA level considering 
the main concept of molecular biology, which states that “DNA 
makes RNA makes proteins,” suggesting a direct association 
between mRNA and protein levels (96). Although, several stud-
ies have found significant correlations between mRNA levels 
and protein levels (96–98), in some conditions the mRNA levels 
do not correlate with protein expression levels or even with the 
protein function. Therefore, the gene expression presented in our 
study can only provide an idea of understanding the potential 
action of CHR involved in the protection against colitis, and 
further studies are warranted to investigate the precise effects of 
CHR on the protein expression and localization of the proteins 
studied.

We cannot rule out the possibility that other mechanisms, 
including gut microbiota dysbiosis, apoptosis, and permeability, 
can also contribute to the changes seen post-treatment. Several 
studies have highlighted the importance of gut microbiota in IBD 
pathophysiology, innate immunity, and epithelial homeostasis 
(99–101). Previous studies have demonstrated that CHR features 

FigUre 11 | Graphical summary. Chromofungin (CHR) decreases tissue damage by the promotion of alternatively activated macrophages (AAM) macrophages  
that anti-inflammatory and regulatory molecules to decrease the onset of inflammation, reduces interleukin (IL)-8 and IL-18 release, maintains the tight junction (TJ) 
protein, and promotes the mucosal healing.
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