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Plasmodium vivax is the most geographically widespread and the dominant human 
malaria parasite in most countries outside of sub-Saharan Africa and, although it was 
classically recognized to cause benign infection, severe cases and deaths caused by 
P. vivax have remarkably been reported. In contrast to Plasmodium falciparum, which 
well-known ability to bind to endothelium and placental tissue and form rosettes is 
related to severity of the disease, it has been a dogma that P. vivax is unable to undergo 
cytoadherent phenomena. However, some studies have demonstrated that red blood 
cells (RBCs) infected by P. vivax can cytoadhere to host cells, while the molecules par-
ticipating in this host–parasite interaction are still a matter of speculation. In the present 
overview, we address the evidences currently supporting the adhesive profile of P. vivax 
and, additionally, discuss the putative role of phosphatidylserine—a cell membrane 
phospholipid with cytoadhesive properties that has been detected on the surface of 
Plasmodium-parasitized RBCs.
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inTRODUCTiOn

Plasmodium vivax is the most geographically widespread and the second most prevalent parasite 
causing malaria in the world, with about 35% of global population living at risk of infection (1) 
and an estimated 8.5 million symptomatic cases in 2015 (2). P. vivax contributes significantly to 
malaria cases outside of sub-Saharan Africa, where it accounts for 41% of the cases, of which 65% 
occur in South-East Asia, 19% in Eastern Mediterranean, and the remaining in Western Pacific 
(9%) and American (7%) regions (2).

Despite its considerable impact in global public health, P. vivax was for long time a neglected 
parasite. The reasons for this scenario include: the low global prevalence [4% (2)], when compared 
with the most prevalent and lethal malaria parasite, Plasmodium falciparum; the failure to adapt 
to in vitro culture conditions; as well as the classically recognized benign profile of infection (3). 
However, in the last decade, severe cases and deaths due to P. vivax infection have remarkably 
been reported in all endemic regions, driving the attention of the academic community to the real 
importance of P. vivax (4). Moreover, the occurrence of severe forms of malaria in P. vivax infections, 
such as cerebral malaria and placental malaria, which were previously reported to be exclusively 
associated with P. falciparum, suggests that P. vivax can, to some extent, present pathogenic profiles 
similar to P. falciparum (5–8).
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It is known that the main pathological phenomenon related to 
high virulence of P. falciparum is the sequestration of parasitized 
red blood cells (pRBC) to vascular endothelium and placenta, 
which allows late-stage forms of parasite to evade splenic phago-
cytosis, while provoking host damage by obstructing blood flow 
and inducing local pro-inflammatory response (9). Additional 
factors contributing to the pathogenesis of falciparum malaria 
comprise rosetting of pRBC with non-parasitized red blood cells 
(nRBC) as well as clumping of pRBC mediated by platelets (10). 
All these cytoadhesive events of P. falciparum-pRBC are recog-
nized to be mediated by a large and diverse family of parasite 
antigens, named P. falciparum erythrocyte membrane protein 1 
(PfEMP1), that is expressed on the surface of pRBC and shows 
affinity to several host receptors, including intercellular adhe-
sion molecule 1 (ICAM-1), platelet-endothelial cell adhesion 
molecule 1, chondroitin sulfate A (CSA), hyaluronic acid (HA), 
thrombospondin (TSP), and CD36 (10). Since homologous of var 
genes, which encode PfEMP1, have not been identified in other 
Plasmodium species and the cytoadherence of pRBC was not con-
sistently documented in non-falciparum malaria, it was believed 
that the cytoadherence phenomenon of pRBC was restricted to 
P. falciparum infection (11–14). However, some evidences cur-
rently support that red blood cells (RBCs) infected by P. vivax 
(Pv-pRBC) also undergo cytoadherence events, as addressed 
below in the present paper.

eviDenCeS OF P. vivax CYTOADHeSiOn

Since Pv-pRBC lack adhesive knob structure and, especially, 
because all parasite stages can be observed in the peripheral blood 
of patients, it has been a dogma that P. vivax lacks the ability to 
cytoadhere and, therefore, to sequester. However, in 2010 it was 
demonstrated, for the first time, that Pv-pRBC are able to cytoad-
here in vitro to host cells (15). In this study, Pv-pRBC obtained 
from Brazilian non-severe patient samples were tested by static 
and flow cytoadhesion assays using human lung endothelial cells 
(HLEC), monkey brain endothelial cells, and human placental 
cryosections. Although the number of Pv-pRBC adhered under 
static conditions was lower than that observed for pRBC infected 
by P. falciparum, the strength of interaction with endothelium 
was similar. Moreover, it was shown using transfected Chinese 
Hamster Ovarian (CHO) cells that the binding of Pv-pRBC to 
ICAM-1-expressing cells was twice as high as to non-transfected 
cells or CD36-expressing cells and that the adherence to placental 
cryosections and HLEC was inhibited by soluble CSA, suggest-
ing involvement of both ICAM-1 and CSA in adhesive processes 
of P. vivax. In fact, the adhesive capacity of Pv-pRBC to HLEC 
and the involvement of ICAM-1 were later recorded in studies 
using P. vivax isolates from Colombia (16). Moreover, a treatment 
with chondroitinase reversed the adherence of P. vivax isolates 
from the Asia-Pacific region to immobilized CSA, while it was 
additionally observed that hyaluronidase disturbed Pv-pRBC 
adhesion mediated by HA (17). Nevertheless, the degree of 
commitment of each host adhesive receptor studied until now is 
still a matter of speculation. For instance, in the study with Thai 
patients described above, all P. vivax isolates were adherent to 
immobilized CSA and HA, but none adhered to ICAM-1 (17), 

and when P. vivax isolates from Brazilian Amazon region was 
evaluated, a low frequency of pRBC adhesion to ICAM-1 and 
CSA was observed (18).

Corroborating the adhesive profile of P. vivax, it was recently 
reported that the schizont stage was absent in the peripheral 
circulation in more than half of Brazilian patients diagnosed with  
P. vivax malaria by blood smears and, even when P. vivax schi-
zonts were detected, they were mostly present at low frequency 
(19). Moreover, in vitro maturation of P. vivax isolates provided a 
greater ability of Pv-pRBC to cytoadhere to HLEC than the same 
isolates before maturation, revealing a higher adhesive capac-
ity of mature forms. These data indicate that P. vivax might be 
sequestered in the deep vasculature and that maturation of late 
stages of P. vivax occur outside peripheral circulation. Actually, 
more than 50 years ago sequestration of Pv-pRBC was proposed 
by Field et  al. (20), who showed a disappearance of schizonts 
from the peripheral blood of a P. vivax patient. In addition, 
recent discoveries showing accumulation of P. vivax schizonts 
and gametocytes in the bone marrow (21); detection of a large 
number of intact Pv-pRBC in the spleen (22); and presence of 
Pv-pRBC within pulmonary microvasculature from a patient 
with negative blood smear at the time of death (23) support the 
hypothesis that P. vivax has the ability to sequester.

Although P. vivax does not present any protein homologous to 
PfEMP1, a group of variable proteins (VIR proteins) is expressed 
by this parasite species (24). In contrast to PfEMP1, VIR proteins 
are not clonally expressed and can additionally be found within 
pRBC, indicating initially that these P. vivax antigens have differ-
ent functions from PfEMP1 ones (25). However, based on their 
variant nature and presence on pRBC surface, the role of VIR 
antigens in Pv-pRBC adhesion has been evaluated. Thus, compu-
tational analysis using a P. falciparum-based algorithm revealed 
putative adhesive protein motifs in VIR proteins (26), which 
could explain the capacity of vir gene (VIR-14) to mediate adhe-
sion of pRBC to ICAM-1 when transfected into a non-adhesive 
P. falciparum line (27). Also, consistent with the participation 
of VIR proteins in the sequester phenomenon of Pv-pRBC, it 
was previously demonstrated that antibodies against variants of 
VIR proteins (VIR-A4 and VIR-E5) partially inhibit adhesion of 
Pv-pRBC to HLEC (15).

Therefore, there is now a growing body of evidence support-
ing that P. vivax parasites possess adhesive phenotypes. Indeed, 
besides adhesion to endothelium and placental tissue, it is known 
that P. vivax has the ability to form rosettes, which are defined 
by the binding of a pRBC with two or more nRBC. Rosetting 
formation in P. vivax infection was described more than 20 years 
ago (28) and has been shown to be more frequent than in P. falci-
parum infection (29, 30), but few studies have been conducted to 
investigate this P. vivax phenomenon; largely due to the absence 
of a P. vivax continuous culture method. Notwithstanding, it was 
already demonstrated that rosettes in P. vivax infection are formed 
by interaction of pRBC containing trophozoites, schizonts, or 
gametocytes with mature RBCs (normocytes), a process that 
involves glycophorin C receptor present on nRBC surface (30). 
Furthermore, P. vivax rosettes were shown to be stable even under 
high physiological shear stress and rosette formation was closely 
associated with induction of an increased rigidity of Pv-pRBC, 
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possibly contributing to sequestration of P. vivax in the micro-
vasculature (31). However, differently from P. falciparum, both 
host and parasite antigens intricate on P. vivax rosetting as well 
as the relation of this adhesive phenomenon to the pathogenesis 
of vivax malaria remain unknown.

THe ROLe OF PHOSPHATiDYLSeRine 
(PS) in CYTOADHeSive PHenOMenA

While some research efforts have been dedicated to identifying 
P. vivax antigens participating in cytoadhesion of pRBC, little 
attention has been given to host RBC factors that have adhesive 
potentiality, such as PS. PS is a cell membrane phospholipid usually 
restricted to the inner leaflet of the lipid bilayer (32), but during 
apoptotic cell death processes PS is exposed on cell surface, pro-
moting recognition and clearance of dying cells by phagocytes (33). 
Externalization of PS also occurs in activated platelet and transiently 
in activated lymphocytes and mast cells, where it is associated 
with procoagulant activity, homing to sites of inflammation and 
cell degranulation, respectively (34–36). Furthermore, it has been 
shown that the presence of PS on external leaflet of cell membrane 
is a hallmark of suicidal erythrocyte death, named eryptosis (37).

Eryptosis occurs in senescent RBC and can precociously be 
triggered by a variety of endogenous and xenobiotics stimuli  
(38, 39). Similarly to apoptosis of nucleated cells, eryptotic pro-
cesses are characterized by many morphological and biochemical 
changes, i.e., Ca2+ influx, cysteine protease activity, PS exposure, 
cell shrinkage, and plasma membrane microvesiculation, with 
externalized PS rendering RBC susceptible to clearance by splenic 
phagocytes (40). Accordingly, overinduction of PS-exposing 
eryptotic RBC is believed to contribute to the development of 
anemia related to several clinical disorders, as reported in both 
experimental and human malaria (41, 42). But, additionally, PS 
on RBC surface is also considered one of the factors responsible 
for thrombo-occlusive events in pathologies such as sickle cell 
disease, chronic renal failure, retinal vein occlusion, and diabetes; 
in part, by mediating RBC adherence to endothelium as well as 
cell aggregation (43–46).

Indeed, adherence of PS-exposing RBC to endothelium is 
observed in vitro under dynamic flow conditions mimicking venu-
lar wall shear stress (47, 48) and takes place through interaction of 
PS with the scavenger receptors CD36 or CXC chemokine ligand 
16 (CXCL16) expressed on endothelial cell membrane, as well as 
with TSP, which is found in the basement membrane and extracel-
lular matrix of endothelium and that can be exposed by vascular 
injury (45, 48, 49). Moreover, soluble plasma TSP can interact with 
CD36 and, in this manner, could operate as a bridge to adherence 
of PS-exposing RBC (50, 51). Such interactions involving PS, 
CD36, TSP, and CXCL16 have also been involved in RBC-platelet 
aggregation, agreeing with the presence of CD36 and CXCL16 
in platelet membrane (52–54). Thus, if parasite antigens able to 
provide pRBC adhesiveness are absent, P. vivax could explore host 
adhesive molecules to mediate cytoadhesive events of pRBC.

Interestingly, it has previously been demonstrated that 
intraerythrocytic plasmodia development progressively induces 
PS exteriorization on pRBC, with larger exposure at the late 

stages of parasite maturation (55, 56), which possibly result 
from eryptosis stimulation. Schizogonic process is described to 
activate non-selective cation channels in host pRBC membrane, 
allowing the entry of Ca2+ necessary for parasite intracellular 
growth, which, in turn, leads to the activation of phospholipid 
scramblases responsible for PS exposure (57). Although PS 
externalization has not been evaluated in P. vivax infection, it was 
already detected by flow cytometry in RBC infected by P. falcipa-
rum, P. berghei, and P. yoelii (41, 58, 59) and in P. falciparum, the 
binding of late-stage pRBC exposing PS to CD36-expressing cells 
as well as immobilized CD36 and TSP was inhibited by annexin V, 
PS-containing liposomes or glycerophosphorylserine—a soluble 
form of PS (60), indicating that PS could, at least in part, sup-
port cytoadhesive phenomena of pRBC in malaria. Consistent 
with this possibility, a relationship between cytoadhesive activity 
and PS exposure was also reported when knobby and knobless  
P. falciparum strains, which differentially induce PS externaliza-
tion on late-stage pRBC, were studied (60) and, more recently, it 
was also shown that PS-expressing RBC can operate as nuclei for 
RBC aggregation induced by P. falciparum-conditioned medium 
(61).

Importantly, studies conducted on P. berghei ANKA experi-
mental infection with CD36-deficient rodents have demon-
strated that CD36 is an essential receptor for sequestration of 
schizont-stage pRBC, which occurred mostly in the capillaries 
of lungs and adipose tissue, but not in the brain, where endothe-
lial expression of CD36 is low or absent (62). Indeed, besides 
being incriminated in acute tissue injury induced by P. berghei 
ANKA-pRBC accumulation in lung (63), CD36 is known as an 
important receptor mediating pRBC sequestration, non-related 
to brain and placental tissue in P. falciparum malaria (64), and its 
expression on surface of platelets and RBC has been implicated 
in clumping and rosetting processes of P. falciparum-pRBC, 
respectively (65, 66). However, it is noteworthy that, in contrast 
to P. falciparum, which expresses the adhesin PfEMP1, but simi-
larly to Plasmodium chabaudi, whose late-stage forms undergo 
CD36-dependent cytoadhesion in vitro (67), no putative parasite 
ligand for CD36 has been identified in genome of P. berghei, 
or even other species of Plasmodium displaying cytoadherence 
phenotypes, such as P. vivax (14, 68), reinforcing the premise 
that alternative pathways, not based on the expression of parasite 
adhesins, could mediate CD36-dependent cytoadhesion of late-
stage pRBC.

Additional evidences for this proposition are also documented 
in P. vivax malaria. First, a reduction in Pv-pRBC adhesion to 
HLEC was achieved in the presence of anti-CD36 antibodies, 
although the small number of samples limited the statistical 
analysis concerning extension of CD36 participation in P. vivax 
cytoadhesion (15). Second, while studying cellular trafficking and 
the adhesive propriety of P. vivax VIR proteins in P. falciparum 
transgenic lines, it was shown that only one variant of VIR pro-
teins (VIR-14) was exposed at the surface of pRBC, mediating 
cytoadherence to CHO cells through ICAM-1, but not CD36 
(27). Thus, it is tempting to speculate that if antigens encoded by 
vir genes participate in Pv-pRBC adhesive events, it seems that it 
does not take place through a CD36-dependent mechanism, in 
which PS could play a role (Figure 1). In view of this possibility, 
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FigURe 1 | Model of phosphatidylserine (PS) role in cytoadhesive phenomena of Plasmodium vivax-parasitized red blood cells (pRBC). Intraerythrocytic parasite 
development leads to exposure of PS on pRBC surface as a result of suicidal erythrocyte death (eryptosis) induction. In turn, PS mediates sequestration of pRBC  
to microvasculature through interaction with receptors expressed on endothelial cells, such as CD36, or thrombospondin (TSP) exposed in injured endothelium.  
In a CD36-dependent manner, PS-exposing pRBC can promote rosetting of non-parasitized red blood cells (RBCs) as well as autoagglutination (clumping) by 
binding to platelets. Additionally, von Willebrand factor (vWF) can indirectly contribute to the sequestration of PS-exposing pRBC by mediating platelet adhesion  
at sites of vascular damage (69).
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studies evaluating the occurrence of PS externalization in pRBC 
from P. vivax isolates as well as the effect of blocking PS-CD36/
TSP interaction on adhesive phenomena of Pv-pRBC may help 
to confirm the involvement of PS in vivax malaria.
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