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Recent studies have demonstrated that combination of modulatory immune strategies 
may potentiate tumor cell elimination. Most strategies rely on the use of monoclonal 
antibodies that can block cell surface receptors to overcome tumor-induced immuno-
suppression or acting as costimulatory ligands to boost activation of T cells. In this study, 
we evaluate the use of combinations of genetically modified tumor-derived cell lines that 
harbor the costimulatory T cell ligands 4-1BB ligand, OX40L, and the cytokine GM-CSF. 
The aim of these treatments is to boost the activation of T cells and the elimination of 
cancer cells. These tumor-derived cells are able to activate or reinforce T cell activation, 
thereby generating a potent and specific antitumor response. We developed a high- 
content in vitro imaging assay that allowed us to investigate synergies between different 
tumor-derived cells expressing modulatory immune molecules, as well as the influence 
on effector T cells to achieve tumor cell death. These results were then compared to 
the results of in vivo experiments in which we challenged immunocompetent animals 
using the B16F10 syngeneic model of melanoma in C57BL6 mice. Our results suggest 
that there is a substantial therapeutic benefit to using combinations of syngeneic tumor 
vaccines that express immune modulators. In addition, we observed that combinations 
of tumor-derived cells that expressed costimulatory ligands and GM-CSF induced a 
long-term protective effect by preventing cancer development in both cured and rechal-
lenged animals.
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inTrODUcTiOn

The development of strategies that induce T cell immune modulation has significantly enhanced the 
ability to treat cancer. The use of antibodies to block cell surface receptors known to be associated 
with lymphocyte immune suppression, such as CTLA4 and PD-1, has demonstrated a high degree 
of efficiency and clinical applicability. Although the outcomes of studies involving these therapies 
are encouraging, numerous cases of treatment resistance have been documented, leading therefore, 
to a need for new therapeutic approaches (1–3).

In addition to blocking antibodies, which are used as checkpoint inhibitors, antitumor responses 
can also be enhanced by agonists that signal costimulatory receptors, such as TNFRSF receptors 
promoting cell proliferation, inflammatory activity, and cytotoxicity. Among this class of costimula-
tory receptors, 4-1BB (also known as CD137 or TNFRSF9) promotes survival, clonal expansion, 
and the enhancement of activated T cells (4, 5). A substantial increase in the number of memory 
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cells was observed in transgenic animals that expressed the 4-1BB 
ligand (4-1BBL) and in animals that were stimulated using an 
anti-4-1BB agonist antibody (6). The 4-1BB receptor is also 
expressed in dendritic cells and its stimulation leads to increased 
levels of the cytokines IL6 and IL12, as well as the ligands B7-1 
and B7-2A which can bind to CD28 to costimulate T cells (7). A 
4-1BB agonist antibody has been shown to stimulate the immune 
system to eliminate established tumors in animal models (8–10). 
In light of these results, a human Phase I trial was performed in 
which human anti-4-1BB monoclonal antibodies were adminis-
tered to patients with encouraging results, but a subsequent Phase 
II clinical trial reported severe adverse reactions that resulted 
from antibody toxicity, leading to the withdrawal of the protocol 
(11, 12). The recent data suggest that reducing the dose of this 
antibody and combining it with other therapies may improve its 
clinical benefits (13). Human clinical trials also have shown that 
melanoma-derived cells engineered to express 41BB-L boosted 
the CD8-mediated antitumor response (14).

OX40 is another costimulatory receptor that also belongs to 
the TNFRSF family. OX40 (also known as CD134 or TNFRSF4) 
is constitutively expressed on the surface of activated T  cells. 
Costimulation of OX40 induces proliferation and boosts lympho-
cyte activation. OX40 signaling enhances T cell longevity. A high 
level of OX40 expression in tumor-infiltrating lymphocytes has 
been correlated with decreased metastasis and better prognoses 
in patients (15, 16). Studies have also demonstrated that using an 
agonist antibody that targets the OX40 receptor may inhibit the 
FoxP3 transcription factor, which is associated with the mainte-
nance of an immune suppressive phenotype in regulatory T cells 
(Tregs) (17, 18). Data in the literature indicate that anti-OX40 
antibodies may cause Treg depletion (19, 20). The Phase I clinical 
trials have demonstrated that treatment with an anti-OX40 ago-
nist antibody increased lymphocyte antitumor activity (21, 22).

Therapeutic strategies aimed at costimulatory T  cells and 
increasing antigen presentation can act in synergy. In this way, 
the activation of dendritic cells via the cytokine GM-CSF can 
induce, for example, CTL activation. Genetically modified 
syngeneic tumor cells that express the cytokine GM-CSF have 
been used as an anti-tumor vaccine that inhibit the formation of 
tumors in animals (23). This effect in animals was surprising, but 
the same result was not observed in clinical trials, indicating that 
it is necessary to improve therapeutic strategies (24).

Since T cells play a major role in eliminating cancer cells, in vitro 
assays can be used to evaluate enhancement of T  cell activity, 
thereby investigating therapeutic benefits of new approaches. A 
gold standard assay for measuring the activity of CTLs is based on 
quantification of the chromium (51Cr), released by tumor cells as 
they die by the action of the CTLs (25). An alternative to this assay 
consists in quantifying the incorporation of tritiated thymidine 
([3H]-TdR) into target cells (26). To overcome handling issues 
associated with the use of radioactive materials, other method-
ologies have been developed that employ measurement of leaking 
enzymes of dead cells, such as lactate dehydrogenase, associated 
with enhancement of toxicity (27) and accurate methodologies 
like the ELISPOT, which allows profiling of T cell response and 
quantification of cytokines (28). There are also flow cytometry-
based methods which use 7-AAD DNA-labeled target cells (29) 

or even bioluminescence assays based on luciferase-expressing 
target cells, which are robust and faster than a Chromium 
assay (30). The fluorolysometric based assay can employ GFP-
expressing cells as target cells. In this way, the killing ability of 
effector T cells can be estimated by flow cytometry, quantifying 
GFP-positive cells, with a fluorescence microscope to count GFP-
positive cells, or even by a fluorescence plate reader measuring 
the leak of GFP from dead cells. The fluorolysometric assay is 
highly sensitive when compared to other assays that use radioac-
tive materials or substrates for bioluminescence reactions (31).

In this work we developed a high-content imaging in vitro assay 
that allows exploration of the cytotoxicity mediated by T cells, 
induced by immunomodulatory antitumor vaccines. This assay 
is based on genetically modified tumor cells that simultaneously 
coexpress a single immunomodulator and the GFP reporter gene. 
The immunomodulatory GFP-expressing cells can be combined 
and cocultivated with T cells. If T cells are costimulated, killing of 
the immunomodulatory target cell is enhanced. The GFP marker 
is used as a parameter to count live cells by the high-content 
imaging system.

This in vitro assay provides three possibilities to explore: (i) 
monitoring mediated CTL killing of target cells, (ii) assessment 
of CTL profiling by flow cytometry, and (iii) quantification of 
cytokines in the supernatant. In this manner, the high-content 
imaging assay allowed exploration of the synergistic combination 
of tumor-derived cells that harbor immunomodulators with the 
aim of enhancing antitumor responses. We also performed assays 
using C57BL6 immunocompetent animals that were challenged 
with syngeneic melanoma-derived B16 tumors. These combi-
nations of tumor-derived vaccines may provide a substantial 
therapeutic benefit, contributing to the development of new 
approaches to treating human cancer.

MaTerials anD MeThODs

retroviral Vector Preparations
The cDNA encoding the immunomodulators OX40L and 4-1BBL 
was amplified by PCR from splenocytes isolated from C57BL6 
animals and cloned into pCL retroviral vectors (32). The cDNA of 
eGFP was isolated from FUGW lentiviral vector (33) and cloned 
into pBabe retroviral vector (34). Virus preparations were gener-
ated by transient transfection on 293 T cells and titrated by flow 
cytometry (35) by Viral Vector Laboratory at LNBio—CNPEM.

establishment and culture of cell lines
All the cell lines were derived from the poorly immunogenic 
mouse melanoma cell line B16F10. Cell cultures were transduced 
using a retrovirus and selected with G418 or puromycin. The pCL 
vectors encode G418 resistance and the pBabe vector encodes 
puromycin resistance. The G418-resistant clones were analyzed 
by flow cytometry using antibodies anti-OX40L (eBIOSCIENCES 
clone RM134L) and anti-4-1BBL (eBIOSCIENCES clone TKS-1). 
We have chosen high-expression clones to establish the cell lines 
B16-0X40L and B16-41BBL. Next, we transduced B16-4-1BBL, 
B16-OX40L, and B16-GM-CSF (kindly provided by Dr. Glen 
Dranoff, Harvard, USA) using the retroviral vector pBabe-eGFP, 
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which also harbors a puromycin selection cassette. Clones were 
analyzed using flow cytometry to select cells with a high level 
of GFP expression and also a high expression level of immu-
nomodulators like 4-1BBL and OX40L. The B16-GM-CSF was 
also analyzed by flow cytometry for GFP and GM-CSF using a 
quantitative assay to determine secreted GM-CSF by ELISA (duo 
set ELISA kit, R&D).

Mice
C57BL/6 mice (female, 8 weeks old, average weight 20 g) were 
purchased from CEMIB-UNICAMP, maintained in microisola-
tor cages and treated in accordance with CNPEM Laboratory 
Animal Care regulations. The experiments completed during this 
study were approved by the Animal Care and Use Committee of 
the CNPEM, protocol CEUA—15/2015.

Primary T cell isolation
In brief, primary CD4 and CD8 T cells were isolated from sple-
nocytes using negative selection via the Easysep mouse CD4+ 
or CD8+ T cell enrichment kit (STEMCELL Technologies). The 
purity of CD4 and CD8 was tested after isolation by flow cytometry 
and was higher than 90%. These CD4 and CD8 T cells were acti-
vated for 24 h with CD3e (TONBO biosciences clone 145-2C11) 
and CD28 (TONBO biosciences clone 37.51) at a concentration 
of 1 μg/mL. Cells were cultivated in a complete medium (CM) 
containing RPMI (1% penicillin/streptomycin, 1% HEPES, 1% 
sodium pyruvate, 1% non-essential amino acids, 1% glutamine, 
10% bovine fetal serum, and 50 µM β-mercaptoethanol).

In Vitro assays
Cells were cultivated into 96-well plates. Plates were seeded with 
a total of 1,400 adherent B16-derived cells that harbored GFP and 
immunomodulators, as indicated. After the cells were incubated 
for 24  h, 1,400 freshly isolated splenocytes, CD4, or CD8 cells 
were added, as indicated.

The cocultured cells were incubated with CO2 at 37°C for the 
indicated times. The CM was removed from the plates and the 
cells were then fixed in 4% paraformaldehyde and stained with 
DAPI (Sigma). The plates were scanned (27 fields-of-view/well) 
using an Operetta HTS imaging system (PerkinElmer) equipped 
with a 20× air objective lens. The excitation channels 360–400 
and 460–490 and the emission filter channels 410–480 were used 
for eGFP, while 500–550 was used for DAPI. The images were 
then analyzed using Columbus (version 2.4.0 PerkinElmer).

Flow cytometry
Isolated or cultured cells were harvested, centrifuged at 300 g, and 
resuspended in 5% FBS-1× PBS. They were then stained with the 
indicated antibodies. The tumor-infiltrating lymphocytes were 
isolated from mice tumors, which were removed and mechani-
cally dissociated by pushing tissue through a 70 µm strainer. The 
cells were then treated with ACK for 5 min on ice, washed with 
1× PBS and centrifuged. We subsequently separated a fraction 
enriched with TILs using a 100% Ficoll Isopaque gradient. Then 
the cells were washed, resuspended in 5% FBS-1× PBS and stained 
with CD4 and CD8. After fixation and permeabilization of cells 
using Transcription Factor Staining Buffer Kit (Tonbo) we used 

an antibody against FOXP3. We used the following antibodies 
conjugated to fluorophores: CD4-FITC (TONBO biosciences 
clone GK 1.5), CD8a-PE (Biolegend clone 53-6.7), FOXP3-APC 
(eBIOSCIENCES clone FJK-16S) and isotype IgG2a, kappa-APC.

Tumor inoculation and Treatment
Mice were subcutaneously (sc) injected in the right flank with 
5 × 104 B16F10 cells in 100 µL of PBS. They were injected sc into 
the left flank on days 1, 4, and 7 with 1 × 106 irradiated (50 Gy) 
B16F10 cells that expressed GM-CSF (Gvax), OX40L, 4-1BBL, or 
a combination of these cell lines (n = 10). We injected the total 
amount of 1 × 106 irradiated immunomodulatory cells into each 
mouse, per vaccination, employing 5 × 105 of each cell line when 
combining two cell lines and 3.33 × 105 of each with the triple 
combination of GM-CSF + OX40L + 4-1BBL.

Tumor growth is expressed as the percentage of tumor-free 
mice among all injected mice on all days. Tumor size was 
measured using a caliper and calculated using the following 
equation: [(longest diameter  ×  shortest diameter  ×  diagonal 
diameter × 3.141599)/6] in cubic millimeters. Mice in which no 
tumors were detectable were rechallenged sc with 5 × 104 B16F10 
cells in the lower left flank and monitored for tumor growth.

histology and immunofluorescence
Dissected B16F10 mouse tumors were embedded in Tissue-Tek 
OCT and frozen in liquid nitrogen. Sectioned specimens were 
washed with 1× PBS (pH 6.8) and incubated with glycine (0.1 M) 
for 30  min followed by incubation with 1% BSA for 1  h. These 
samples were then incubated overnight with anti-rat CD8a (eBIO-
SCIENCES) with a 1:100 dilution at 4°C. The slides were subse-
quently washed and incubated with secondary anti-rat conjugated 
to FITC antibodies (Invitrogen) with a 1:500 dilution at room 
temperature for 1 h. Nuclear staining was performed using Hoechst 
33258 (Sigma-Aldrich) according to the manufacturer’s instruc-
tions. Images were captured using a Leica Confocal Microscope 
and images were analyzed using LAS AF software (LEICA).

statistical analysis
All data were analyzed using Prism 7.0 (GraphPad software). 
Statistical significance was determined using one-way ANOVA 
followed by Dunnett’s multiple comparisons test. Tumor survival 
data were analyzed using the Kaplan–Meier method. The log-rank 
Mantel–Cox test was used to compare survival curves between 
different groups. Graphs show the mean and error bars, indicat-
ing the SEM of two to four independent experiments performed 
on different days.

resUlTs

combinations of Tumor-Derived cells 
expressing 4-1BBl, OX40l, and gM-csF 
act synergistically enhancing the activity 
of cTls
We developed a high-content in  vitro imaging assay that 
allowed us to evaluate the efficiency of antitumor vaccines 
and combination of costimulatory molecules. Tumor cells that 
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FigUre 1 | In vitro assay to evaluate cytotoxicity induced by cell lines harboring single immunomodulators. Graphs represent GFP-positive cells that were counted 
using a high-content imaging system. We tested tumor-derived cell lines that harbored single immunomodulators. The immunomodulators are indicated above the 
graphs. Immunomodulatory B16-GFP cells were cocultivated as shown below each graph. CM, complete medium; CD4, primed CD4 T cells; CD8, primed CD8 
T cells; SP, non-primed splenocytes; RCCs: relative cell counts normalized to the counts in the CM control. Graphs of mean and SEM. ANOVA and Dunnett’s 
multiple comparisons against CM (*P ≤ 0.005). Results from three independent experiments performed in triplicates.
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expressed GFP and immunomodulators were incubated with 
CD4, CD8, or splenocytes. If tumor cells were killed, it suggested 
a therapeutic benefit. To estimate the therapeutic benefit of 
monotherapies as tumor-derived vaccines, the tumor cells were 
incubated with activated T cells or non-primed splenocytes for 
24, 48, 72, and 96 h and then analyzed using high-content imag-
ing to count the remaining live cells (Figure S1 in Supplementary 
Material).

The cytotoxic activity of CD8 T cells was boosted in the pres-
ence of tumor-derived cells expressing 4-1BBL when employed 
as single vaccines, as shown in Figure 1. In contrast, we did not 
see any effect with the non-primed splenocytes using the single 
vaccines and just a slight reduction of tumor cells mediated by 
CD4 T cells in the conditions of GM-CSF and 4-1BBL at 96 h.

We next tested all the possible combinations of B16F10-
derived cells expressing GM-CSF, 4-1BBL, and OX40L 
(Figure 2). We observed that combination of two tumor-derived 
cells, harboring immunomodulators, induced a significant CD8 
T  cell mediated cytotoxicity. However, the response of CD4, 
CD8, and splenocytes was improved when they were in contact 
with the triple combination of tumor-derived cells, showing 

an early and strong induction of cytotoxicity. Strikingly, we 
observed a cytotoxic effect mediated by immunomodulation of 
CD4 T  cells after 72  h. To better understand this observation 
of cytotoxicity, we performed an INF-γ test with supernatants 
of preactivated CD4 T  cells that were incubated with target 
cells, finding the highest expression for the double combina-
tion GM-CSF + 4-1BBL followed by the triple combination of 
GM-CSF + OX40L + 41BBL (Figure 3).

The combination of immunomodulatory 
Tumor-Derived cells Boosts T cell 
activation and enhances antitumor 
response
When freshly isolated splenocytes were first incubated with 
immunomodulatory B16F10-derived cells and then added to 
parental B16F10-GFP cells that lacked immunomodulators, 
we observed a substantial cytotoxic effect on tumor cells. We 
detected a stronger cytotoxic activity using the combinations 
of cells harboring 4-1BBL  +  OX40L, GM-CSF  +  OX40L, and 
4-1BBL (Figure 4A). An enrichment of CD4 and CD8 T cells was 
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FigUre 2 | In vitro assay to evaluate cytotoxicity induced by the combination of cell lines harboring combination of immunomodulators. Graphs represent 
GFP-positive cells that were counted using a high-content imaging system. We tested combinations of cell lines that harbored immunomodulators. The 
immunomodulators are indicated above the graphs. Immunomodulatory B16-GFP cells were cocultivated as indicated below each graph. CM, complete medium; 
CD4, primed CD4 T cells; CD8, primed CD8 T cells; SP, non-primed splenocytes. RCCs: relative cell counts normalized to the counts in the CM control. Graphs of 
mean and SEM. ANOVA and Dunnett’s multiple comparisons against CM (*P ≤ 0.005). F10: parental B16F10 cells. RCCs: relative cell counts normalized to the 
counts in the CM. Results from three independent experiments performed in triplicates.

FigUre 3 | Tumor vaccines induce IFN gamma production by CD4 T cells. 
CD4 T cells were cocultivated with the indicated tumor-derived cells 
harboring immunomodulators. Concentrations of interferon gamma were 
determined by Elisa after 96 h of incubation. (−) Only CD4 T cells. Mean of 
three measurements; error bars indicate SEM, ANOVA, and Dunnett’s 
multiple comparisons against F10 (*P < 0.05). Experiment performed in 
triplicate.
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observed in all the combinations (Figure 4B), suggesting a boost 
in the proliferation of these subsets. We also observed an overall 
increase in the proliferation of CD8 T cells (Figure 4C) and an 
increased activation of CD4 T cells (Figure 4D) in all the cells 
expressing immunomodulatory molecules.

The combination of immunomodulatory 
Tumor-Derived Vaccines enhances Tumor 
rejection In Vivo
To explore the therapeutic benefit of using combinations of 
immunomodulatory tumor-derived cells, we performed in vivo 
experiments using immunocompetent animals challenged with 
the syngeneic B16 tumor-derived melanoma. The parental B16 
cells were given subcutaneously, followed by irradiated immu-
nomodulatory B16F10-derived cells (Figure  5A). Our results 
suggest that all combinations were able to boost an antitumor 
immune response. When we analyze the survival fractions 
(Figure  5B), it is possible to identify three groups of the anti-
tumor response. The group without treatment and the lowest 
survival fraction that was only given 1× PBS, the group treated 
with the triple combination (4-1BBL  +  OX40L  +  GM-CSF) 
that had an intermediate response and, finally, a group with the 
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FigUre 4 | Immunomodulatory B16-derived cells boost T cell cytotoxic activity  in vitro. (a) Freshly isolated splenocytes were cultivated with the indicated 
tumor-derived cells harboring immunomodulators, the graph indicates remaining live tumor cells after incubation with these splenocytes. (B) Flow cytometry of 
primed splenocytes showed an enrichment of CD8 and CD4 T cells for all immunomodulatory combinations (two-way ANOVA *P < 0.0001). (c) Freshly isolated 
CD8 T cells were incubated with B16F10 immunomodulatory cells, following Ki67 staining. (D) Freshly isolated CD4 T cells were incubated with B16F10 
immunomodulatory cells, following CD25 staining (all comparison of CD4-CD25 and CD8 against F10 made with one way ANOVA and Dunnett’s multiple 
comparisons had a P value ≤0.005). Graphs of mean and SEM. One way ANOVA and Dunnett’s multiple comparison tests against F10. F10: parental B16F10 cells. 
RCCs: relative cell counts normalized to the counts in the complete medium (CM). Results from three independent experiments performed in triplicates.

highest survival fraction, that was given the double combinations 
(4-1BBL + OX40L, GM-CSF + 4-1BBL, GM-CSF + OX40L).

In addition, it was observed that all the combinations showed 
an elevated ratio of CD8/Treg in tumor sites when compared to 
non-treated animals (Figure  5C; Figure S2 in Supplementary 
Material). An examination of tumor histology has shown an 
increased infiltration of CD8 T  cells in treated animals when 
compared to non-treated animals (Figures 5D,E).

combining immunomodulatory  
Tumor-Derived Vaccines induces an 
increased Protective effect in cured  
and rechallenged animals
To investigate whether antitumor vaccines provide long-term 
protection, we rechallenged 16 cured animals that were previ-
ously challenged once with the combinations. In this way, on 
day 30 (Figure  5A), these animals were given new injections 
of parental B16-F10 tumor cells monitoring tumor growth. As 

shown in Figure 6, we observed increased survival in the animals 
that received a combination that included cells harboring OX40L 
plus 4-1BBL and GM-CSF plus 4-1BBL.

DiscUssiOn

Despite therapeutic advances in monoclonal antibody therapies, 
cases of toxicity and refractory patients continue to be described 
(11–13). It is therefore necessary to pursue new approaches to 
improving immunotherapy. In this study, we have explored the 
effectiveness of combinations of genetically modified tumor 
cells that express T cell costimulatory ligands and the cytokine 
GM-CSF. Other groups have described the use of tumor-derived 
cell lines that coexpress different immunomodulators within the 
same cell line or the coadministration of tumor vaccines and 
antibodies (36–39). In contrast, we established different tumor-
derived immunomodulatory cell lines, each harboring only a 
single immunomodulator. We combined these tumor-derived 
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FigUre 5 | Continued
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FigUre 5 | Continued  
Combination of tumor-derived vaccines harboring immunomodulators enhance antitumor response. (a) Experimental design for in vivo experiment, Tumors were 
injected on day 0, following injections of irradiated immunomodulatory B16-derived cells on days 1, 4, and 7. On day 28, animals were sacrificed, performing 
analysis of lymphocytes in tumors and spleens by flow cytometry and immunofluorescence. Tumor-free mice were rechallenged on day 30 and monitored for more 
than 250 days. (B) Tumor growth and survival curves in C57BL/6 mice bearing subcutaneous B16F10 tumors, mice were treated with PBS or 1 × 106 cells of 
different combinations of irradiated immunomodulatory B16-derived cells. These cumulative survival curves and tumor progression graph represent three 
independent experiments (n = 10 mice per group) the log-rank Mantel–Cox test was used to compare survival curves between different groups. (c) An analysis of 
tumor infiltrate lymphocytes and lymphocytes in spleens using flow cytometry reveals that the ratio of CD8/Tregs was increased by all immunomodulatory 
combinations. (D) Immunofluorescence of tumors reveals CD8 enrichment in animals treated with immunomodulatory vaccines. (This image is representative of all 
conditions challenged with double and triple combinations since no significant differences were observed among these groups.) (e) Histological analysis with 
hematoxylin–eosin of tumor and spleens of animals treated with the immunomodulatory vaccines. (This image is representative of all conditions challenged with 
double and triple combinations since no significant differences were observed among these groups.) and non-treated mice. Data are shown as the mean ± SEM. 
The ratio of CD8/Tregs equal to CD8 positive cells divided by FOXP3 positive cells (CD8+Teff/Treg ratio). Results are pooled from three independent experiments 
(n = 10 per experimental condition for each experiment).

FigUre 6 | Combinations of immunomodulatory tumor-derived vaccines prevent tumor progression in previously cured and subsequently rechallenged animals. 
Thirty days after the first challenge, animals that were free of tumors were rechallenged with parental B16F10 cells. The graph shows the cumulative survival curves 
for three independent experiments (n = 12 mice per group). The survival curves were analyzed using the Log-rank test.

cell lines to investigate synergies to enhance antitumor response. 
Establishing immunomodulatory cell lines harboring a single 
immunomodulator increases flexibility to test different combina-
tions. In addition, it is also possible to test combinations using 
different amounts of immunomodulatory tumor-derived cells 
and different vaccination protocols for the further investigation 
of increased therapeutic benefits.

We developed a high-content in  vitro imaging assay that 
allowed us to investigate T  cell-mediated antitumor responses. 
This assay is based on counting target cells that simultaneously 
coexpress an immunomodulator and the GFP reporter gene, 
in contrast to fluorolysometric assay described in the literature 
in which target cells encode only the reporter gene (31). In this 
manner, the same target cell that costimulates T cells can be used 
as a reporter to monitor T cell-mediated cytotoxicity. Compared 
to the fluorolysometric assay, the high-content imaging system 
just uses GFP to count cells and does not depend on measuring 
fluorescence intensity. This feature is an advantage since GFP 
is highly stable and can accumulate in the cytoplasm, biasing 
reproducibility of the assay.

When we performed in  vitro assays using single immu-
nomodulators, we observed an increased cytotoxic activity 
mediated by CD8 T  cells in tumor-derived cells harboring 
4-1BBL, after 96 h (Figure 1). This observation was supported 
by data in the literature that have associated enhanced T  cell 
activity with the costimulation of 4-1BB (4, 5, 8). However, the 
cytotoxic effect was enhanced in the presence of combinations 

of GM-CSF +  OX40L, GM-CSF +  4-1BBL, 4-1BBL +  OX40L, 
4-1BBL + OX40L + GM-CSF (Figure 2). Of note was the fact that 
some of the immunomodulatory cell lines, or their combinations, 
were associated with an enhancement of cytotoxicity mediated by 
preactivated CD4 T cells (Figure 2).

We performed an IFN-γ test in the supernatant of cell cultures 
(Figure 3) that can suggest a driving of the CD4-T cells to a Th1 
phenotype. We observed an increased level of INF-γ for all the 
combinations of immunomodulatory cell lines and a mild increase 
in the cytotoxicity induced by single immunomodulatory tumor-
derived cells expressing 4-1BBL or GM-CSF (Figure  1, 96  h). 
The effect of GM-CSF increasing expression of IFN-γ by T cells 
was already reported in the literature (40). On the other hand, we 
observed an enhanced cytotoxic effect mediated by CD4 T cells 
for the double combination GM-CSF + 4-1BBL (Figure 2, 96 h) 
and the triple combination (Figure 2, 24–96 h). In both of these 
conditions, we had the highest CD4 mediated cytotoxic effect and 
detected the highest levels of secreted INF-γ (Figure 3).

The CD4-mediated cytotoxicity is sustained by literature data, 
suggesting tumor-specific CD4 T cells contribute to B16F10 elim-
ination (41–44). It was also observed that 41BB-L and OX40-L 
could trigger CD4 T  cell cytotoxic response in viral infections 
(45). In this way, as seen in Figure 2, the triple combination of 
OX40L, 4-1BBL, and GM-CSF boosts the activity of cytotoxic 
CD4 T-cells against tumor cells in vitro.

It is interesting to note, that animals challenged with mono-
therapies, using our vaccination protocol, developed tumors 
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