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Carcinogenesis is a multistep process. Besides somatic mutations in tumor cells, 
stroma-associated immunity is a major regulator of tumor growth. Tumor cells produce 
and secrete diverse mediators to create a local microenvironment that supports their 
own survival and growth. It is becoming apparent that iron acquisition, storage, and 
release in tumor cells is different from healthy counterparts. It is also appreciated that 
macrophages in the tumor microenvironment acquire a tumor-supportive, anti-inflam-
matory phenotype that promotes tumor cell proliferation, angiogenesis, and metastasis. 
Apparently, this behavior is attributed, at least in part, to the ability of macrophages to 
support tumor cells with iron. Polarization of macrophages by apoptotic tumor cells 
shifts the profile of genes involved in iron metabolism from an iron sequestering to an 
iron-release phenotype. Iron release from macrophages is supposed to be facilitated by 
ferroportin. However, lipid mediators such as sphingosine-1-phosphate, released form 
apoptotic tumor cells, upregulate lipocalin-2 (Lcn-2) in macrophages. This protein is 
known to bind siderophore-complexed iron and thus, may participate in iron transport in 
the tumor microenvironment. We describe how macrophages handle iron in the tumor 
microenvironment, discuss the relevance of an iron-release macrophage phenotype for 
tumor progression, and propose a new role for Lcn-2 in tumor-associated macrophages.

Keywords: apoptosis, phagocytosis, macrophage polarization, sphingosine-1-phosphate, lipocalin-2, tumor 
progression

MACROPHAGe UPTAKe OF DYiNG CeLLS iN THe TUMOR 
MiCROeNviRONMeNT

Among factors of the tumor microenvironment that shapes the macrophage phenotype to promote 
cancer are dying cells (1). Tumor cells and other tumor-resident cells undergoing programmed, 
apoptotic, or necroptotic, as well as accidental necrotic cell death are sensed and removed by mac-
rophages, which induces different functional macrophage programs (Table 1). While lytic forms 

Abbreviations: ANXA1, annexin A1; BDH2, 3-hydroxybutyrate dehydrogenase, type 2; CX3CL1, fractalkine; DAMP, damage-
associated molecular pattern; DHBA, dihydroxybenzoic acid; DMT-1, divalent metal transporter-1; FTH, ferritin heavy chain; 
FTL, ferritin light chain; FPN, ferroportin; HIF, hypoxia-inducible factor; HO-1, heme oxygenase-1; IL, interleukin; IRE, 
iron responsive element; IRP, iron-regulatory protein; Lcn-2, lipocalin-2; PS, phosphatidylserine; TAM, tumor-associated 
macrophage; Tf, transferring; TfR, transferrin receptor; S1P, sphingosine-1-phosphate.
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TAbLe 1 | Molecules involved in the attraction, recognition, and polarization of phagocytes by dying cells.

Mode of cell death Mode of interaction with 
phagocytes

Dying cell-derived molecules Outcome/goal

Apoptosis Attraction ATP/UTP (9), LPC (10), S1P (11), RPS19 (12), EMAPII (13), CX3CL1 (14) Early phagocyte recruitment

Recognition PS (15), CRT (16), ANXA1 (17), PTX3 (18) Corpse removal (phagocytosis)

Polarization Tolerogenic apoptosis: PS (19), S1P (20), IL-38 (21), ANXA1 (17) Immuno-suppression

Polarization Immunogenic apoptosis: CRT (16), ATP (22) Immune activation

Necrosis Attraction Primary necrosis: ATP? Phagocyte recruitment
Secondary necrosis: ANXA1 (23)

Recognition PS (24), complement (25), antibodies (25), pentraxins (25), F-actin (26) Corpse removal (macropinocytosis)

Polarization HMGB1 (27), ATP (28), DNA (29), IL-1α (30), IL-33 (31) Immune activation

Necroptosis Attraction ATP (32), others? (Early) phagocyte recruitment

Recognition PS (33), others? Corpse removal (mode unclear)

Polarization HMGB1, ATP, DNA, IL-1α, IL-33 + induced DAMPs? [reviewed in Ref. (34)] Immune activation

LPC, lysophosphatidylcholine; S1P, sphingosine-1-phosphate; RPS19, ribosomal protein S19; EMAPII, endothelial monocyte-activating polypeptide 2; PTX3, pentraxin 3;  
IL, interleukin; ANXA-1, annexin A1; CRT, calreticulin; PS, phosphatidylserine; HMGB1, high mobility group box 1; DAMP, damage-associated molecular pattern.
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of cell death such as necroptosis and necrosis predominantly 
induce inflammatory cascades that may promote tumor initia-
tion through modifying DNA and triggering cytokine-induced 
survival pathways in tumor cells (2), apoptotic cells (AC) induce 
macrophage-dependent matrix remodeling, recruitment of vas-
culature, and inhibition of antitumor inflammation (1, 3). These 
properties of AC are seen in analogy to their function during 
wound healing and regeneration (4, 5), supporting the notion 
that tumors are “wounds that do not heal” (6). The interaction of 
macrophages and dying cells, however, does not only alter their 
functional response, it also comes with a high metabolic load after 
engulfment of cell debris that needs to be handled by macrophages 
(7, 8). Hereby, macrophages can be considered an extravascular 
relay station of tumor-associated metabolism, to acquire and 
redistribute metabolic intermediates and other (bio)chemical 
substances, including iron, as outlined in more detail below (see 
Macrophage Subsets and Iron Handling). To our knowledge, 
there are no detailed studies comparing the metabolic challenges 
macrophages face when taking up apoptotic versus necroptotic 
or necrotic cells, and whether redistribution of nutrients such as 
iron differs in these circumstances. Studies toward these direc-
tions will help to aid decisions, which mode of cell death should 
be initiated in pathologies such as cancer.

MACROPHAGe POLARiZATiON bY  
DYiNG CeLLS

Macrophage interactions with cells succumbed to different 
modes of cell death show overlapping and also discreet molecular 
features at the levels of attraction, recognition, and subsequent 
alteration of the macrophage phenotype (macrophage polari-
zation) as summarized in Table 1.

In a first step, macrophages need to be alerted to their prey. 
In the case of AC, this is mediated by the active release of 
phagocyte-attracting molecules, so-called “find-me signals.” 
Their functions are intrinsically coupled to the apoptotic machin-
ery, i.e., demanding caspase activation (35, 36). The release of 
find-me signals serves to recruit macrophages with the goal to 
efficiently clear apoptotic corpses before they undergo secondary 

necrosis. To achieve this goal, AC produce a variety of different 
find-me signals, probably dependent on the respective apoptotic 
stimulus. These include the lipids lysophosphatidylcholine and 
sphingosine-1-phosphate (S1P), the nucleotides ATP and UTP as 
well as the proteins fractalkine (CX3CL1), ribosomal protein S19, 
and endothelial monocyte-activating polypeptide 2. Moreover, 
apoptosis in the context of an inflammatory environment gener-
ates a number of different chemokines (3, 37–39). Of these, only 
CX3CL1 (14), ATP/UTP (9), and S1P (40) have been connected 
to phagocyte recruitment to AC in vivo. The diverse biochemical 
nature of these find-me signals and their different production 
kinetics (35) suggests a remarkable degree of redundancy. This 
redundancy likely ensures efficient macrophage recruitment at 
different time-points during the apoptotic cascade and from dif-
ferent locations, i.e., local macrophages versus monocytes from 
the circulation, based on short half-life versus long half-life of 
the find-me signals and their concentration in local tissues versus 
the circulation (14, 41, 42). When looking at lytic forms of cell 
death, characterized by the loss of plasma membrane integrity, 
the picture appears less clear. Secondary necrotic cells that 
were formerly apoptotic generate distinct find-me signals such 
as annexin A1 (ANXA1) fragments to sustain their clearance 
(23). Whether such ANXA1 fragments or other specific find-me 
signals are actively produced during necrosis or cells undergoing 
accidental, primary necrosis is largely unknown. A recent report 
suggests the release of nucleotides from necroptotic cells that, 
in vitro, induced a rapid and immunological silent clearance (32). 
Importantly, lytic cell death will promote the passive release of a 
number of apoptotic cell-derived find-me signals such as lipids 
or nucleotides, likely in higher quantities. The contribution of 
these molecules to necrotic/necroptotic cell clearance remains to 
be determined.

Regardless the find-me signal, phagocytes need to discriminate 
dying cells from their living neighbors. This is accomplished by the 
recognition of “eat-me” signals that are exposed by dying cells, in 
concert with the absence of “don’t eat-me” signals that restrict the 
uptake of living cells (43, 44). The most prominent eat-me signal 
that appears to be relevant to clear all dying cells, irrespective of 
the mode of cell death is the phospholipid phosphatidylserine 
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(PS) that is confined to the inner leaflet of the plasma membrane 
in living cells, but gets oxidized and redistributed to the outer 
leaflet during apoptosis (15, 45, 46). PS is also involved in 
clearance of necrotic or necroptotic cells, but whether oxidative 
modification is equally required remains unknown (24, 25, 33). 
Other eat-me signals that are specifically exposed on the plasma 
membrane of AC include calreticulin (CRT), ANXA1, and the 
long pentraxin PTX3 (37). These eat-me signals are recognized 
either directly by specific receptors including scavenger recep-
tors, complement receptors, C-type lectin receptors, a number of 
PS-specific receptors, and the pattern recognition receptor (PRR) 
CD14, or indirectly via bridging molecules that mainly promote 
the recognition of PS by Tyro, Axl, and MerTK-family receptor 
tyrosine kinases or the vitronectin receptor (VnR, αvβ3 integrin) 
(3, 47). Some of the molecular interactions that mediate apop-
totic cell recognition are employed for efficient uptake of necrotic 
debris, but specific pathways were also identified. Necrotic cell 
uptake is mediated by the classical complement pathway (C1q) 
and the mannose pathway (mannose-binding lectin and ficolins) 
recognized via complement receptors on phagocytes, antibodies, 
short pentraxins such as CRP, and serum amyloid protein via 
Fc-receptors, and also via PS recognition by VnR [reviewed in 
Ref. (25)]. Moreover, F-actin filaments in necrotic debris are 
recognized by the c-type lectin CLEC9A to facilitate clearance 
(26). The combination of different uptake receptors results in 
fundamental difference in the uptake mode. Whereas AC are 
engulfed via phagocytosis that is sensitive to PI3K inhibition, 
necrotic debris is taken up by PI3K-independent macropino-
cytosis (48). Specific uptake receptors and uptake mechanisms  
for necroptotic cells are so far not described.

Signals emanating from these numerous interactions between 
the phagocyte and its prey initiate not only corpse engulfment 
but also powerfully modulate inflammatory responses of the 
phagocytes [reviewed in Ref. (49)]. These responses are often 
fundamentally different when comparing apoptosis with cell 
death modes that are characterized by the loss of plasma mem-
brane integrity and the subsequent spilling of intracellular com-
ponents into the extracellular space. Many of such intracellularly 
confined molecules are considered as danger signals that are 
sensed by pathogen recognition receptors (PRRs) on phagocytes 
that also sense microbial components, and therefore trigger 
pro-inflammatory pathways. Such damage-associated molecular 
patterns (DAMPs) comprise high mobility group box 1, a protein 
usually found in complex with chromatin in the nucleus that 
activates toll-like receptors (TLR)-2, 4, 9 and the receptor for 
advanced glycation end products, the interleukins IL-1α and 
IL-33, DNA that is recognized by TLRs, and ATP that activates 
purine receptors including P2RX7. These pathways may be also 
exploited to trigger antitumor immunity (34, 50–53). Similar 
ligand receptor interactions may be assumed when considering 
the effect of necroptotic cells on the functional phenotype of their 
phagocytes based on the lytic nature of necroptotic cell death 
(53). An interesting difference is that necroptosis, as a form of 
regulated cell death, allows the transcriptional upregulation of 
additional DAMPs such as heat-shock proteins (34).

In contrast to necrosis or necroptosis, apoptotic cell death 
is usually considered as anti-inflammatory or immunologically 

silent. This is triggered at least partially through the recognition 
of PS, since mice lacking non-PS eat-me signal receptors such 
as CD14, CD36, and αvβ3 integrin do not show major signs of 
auto-inflammation (54, 55). PS recognition on AC by mac-
rophages suppressed the production of inflammatory cytokines, 
dependent on the autocrine production of transforming growth 
factor-β, platelet-activating factor, and prostaglandin E2 (PGE2) 
(19). Inhibition of inflammatory cytokine release from mac-
rophage interacting with AC was further linked to inhibition of 
the classical NF-κB pathway (p65/p50 heterodimers) through 
transcriptional repression via the nuclear hormone receptor 
peroxisome proliferator-activated receptor γ (PPARγ) (56–59), or 
through PPARγ-dependent upregulation of phagocytic receptors 
such as MerTK (60). MerTK activation in turn interferes with 
NF-κB signaling (61). Besides inhibiting NF-κB, PS recognition 
on AC reduced the formation of nitric oxide (NO) and NADPH 
oxidase-dependent reactive oxygen species in macrophages 
(62–64). Therapeutically, targeting PS in tumors induced inflam-
matory macrophage activation to suppress tumor growth and 
progression in prostate tumors (65). MerTK-deficient mice 
with autochthonous mammary carcinoma were protected from 
metastasis, which was initiated by the interaction of macrophages 
with AC during mammary gland involution after pregnancy (66). 
Thus, PS recognition creates a feed-forward loop to guarantee 
efficient corpse removal and blocks a number of inflammatory 
pathways. This likely promotes efficient and immunologically 
silent corpse removal during homeostasis, but is exploited by 
tumors to promote carcinogenesis.

Also soluble factors produced by AC contribute to limiting 
inflammation, including the find-me signals CX3CL1 and S1P 
(3, 40, 67). Besides, AC release signals that exclusively limit 
destructive inflammation. The IL-1 family receptor antagonist 
IL-38 was proteolytically processed and released from AC 
and specifically inhibited the generation of Th17  cells, which 
are associated with chronic inflammation (21). In conclusion, 
apoptosis induces the production of membrane-bound and 
soluble cues that serve to ensure immunologically silent clear-
ance by phagocytes.

The question remains why necrosis retains its inflammatory 
potential despite PS recognition being part of the program to 
remove necrotic debris. One explanation is that other signaling 
pathways are activated in necrotic versus AC due to alternative PS 
receptor usage and associated signaling pathways. For instance, 
apoptotic cell recognition activates the PI3K pathway, which is 
critical to limit inflammation (68), whereas removal of necrotic 
debris does not require PI3K (48). Alternatively, the context of PS 
recognition may matter, as phagocytes face necrotic cell-derived 
DAMPs before or simultaneously when engaging PS. Along this 
line, apoptotic cell recognition under conditions of danger, indi-
cated by, e.g., ER stress or the presence of pathogens, promotes 
inflammation rather than restricting it. For instance, infected 
AC trigger autoimmune T cell (Th17) generation (69). Also, the 
potentially immunogenic molecule CRT on the surface of AC, 
which requires autophagy or ER stress linked to the execution of 
apoptosis, is recognized through the LDL-receptor-related pro-
tein on phagocytes (16, 70, 71). The find-me signal ATP, besides 
ensuring corpse clearance, can bind P2X purinoceptor 7 (P2RX7) 
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to induce activation of the NOD-Like receptor family, pyrin 
domain containing 3 (NLRP3) inflammasome and subsequent 
IL-1β release. These examples illustrate that apoptosis does not 
always restrict inflammation, which may explain why necrosis 
can trigger inflammation despite PS recognition. In wounds, 
this ensures that inflammation proceeds as long as pathogens 
or other noxa are present. In tumors, the response to apoptosis 
likely depends on the microenvironment. Immunosuppressive 
apoptosis is exploited by the tumor to fuel its growth (1),  
whereas induction of immunogenic cell death may be exploited 
therapeutically to initiate protective immunity (72).

iRON HANDLiNG PROTeiNS iN 
MACROPHAGeS

In humans, approximately 60% of total body iron is present in 
erythrocytes, bound to heme in hemoglobin (73). About 2 mil-
lion senescent red blood cells (RBCs) are cleared per second from 
the circulation by tissue-specific macrophages (74). Senescent 
erythrocytes get recognized by macrophages due to alterations 
in the membrane protein Band 3 that only is displayed by aged 
erythrocytes (75, 76). Additionally, PS is exposed on the outer 
leaflet of the cell membrane (77) and membrane rigidity is 
increased to foster recognition by macrophages (78). A daily 
turnover of about 20 mg iron makes macrophages essential play-
ers in iron metabolism, as we only take up 1–2 mg iron with our 
daily nutrition. In order to fulfill their essential roles in systemic 
iron homeostasis, macrophages evolved a variety of pathways to 
take up, recycle, store, or release iron. The majority of iron is 
delivered by transferrin (Tf), the main iron-transport protein in 
the blood, circulating between the reticuloendothelial system, 
and the bone marrow in order to guarantee hematopoiesis. Tf 
binds to the transferrin receptor (TfR) and following internaliza-
tion, iron is released from Tf in the endosome. Subsequently, 
the divalent metal transporter-1 (DMT-1) shuttles iron from the 
endosome into the cytoplasm. In addition, macrophages recycle 
phagolysosomal iron through natural resistance-associated 
macrophage protein 1 (Nramp-1), a divalent metal transporter 
homologous to DMT-1 (79). If iron supply exceeds its demands, 
iron can be stored by the iron storage protein ferritin, consist-
ing of ferritin heavy chain (FTH) and ferritin light chain (FTL) 
subunits. FTH and FTL differ in their function, as FTH has a 
ferroxidase activity and FTL is important for iron core nucleation 
(80). By transforming soluble and reactive ferrous iron (Fe2+) of 
the cytoplasmic labile iron pool (LIP) into the insoluble ferric iron 
(Fe3+) and store Fe3+ within the soluble ferritin shell, cells avoid 
the potential damage of redox active iron, i.e., Fenton chemistry. 
Consequently, the intracellular iron amount must be tightly 
regulated. Iron is sensed by the iron-regulatory proteins (IRPs) 
IRP1 and IRP2. When intracellular iron is low, IRPs bind to iron 
responsive elements (IREs) in the untranslated regions (UTRs) 
of certain mRNAs. Binding of IRPs to IREs in the 5′-UTR attenu-
ates translation, whereas binding to IREs in the 3′-UTR stabilizes 
respective mRNAs and fosters translation. Mechanistically, when 
iron is high, mRNAs of TfR and DMT-1 are unstable, which 
decreases iron uptake and transport. Simultaneously, iron stor-
age is supported by releasing a translational blockade of FTH 

and FTL. Iron export from cells is achieved through ferroportin 
(FPN), the only known ferrous iron exporter. Although details of 
the transport remain unclear, the transport of ferrous iron (Fe2+) 
requires ferroxidase activity to convert it to ferric iron (Fe+3) in 
order to load it onto Tf. The oxidation to ferric iron is catalyzed 
by either free or GPI-anchored ceruloplasmin (CP) or the 
transmembrane protein hephestin that are copper-containing 
ferroxidases in order to stabilize FPN to facilitate iron efflux (81) 
and assure efficient Tf-loading. This makes FPN an important 
checkpoint to adjust global and local iron homeostasis and to 
adjust iron storage versus its release (82). The protein amount 
of FPN is controlled by the peptide hormone hepcidin, which 
primarily is produced in the liver. Hepcidin regulates FPN stabil-
ity by inducing its internalization and proteasomal degradation 
thus, affecting the systemic iron level (83) by reducing iron 
export. Consequently, hepcidin expression and release from 
the liver increases with the systemic iron amount and decreases 
under iron deprived conditions to guarantee macrophage iron 
supply for erythropoiesis. This is crucial as iron supply is the rate-
limiting step during erythropoiesis (84). As shown in Figure 1, 
heme bound to the heme-sequestering protein hemopexin (Hpx) 
is taken up by the hemopexin receptor (CD91), while CD163 
binds haptoglobin-transported hemoglobin (85).

Overall, iron metabolism is tightly regulated by a network 
of proteins to guarantee iron homeostasis with specific mac-
rophage subsets in key positions to fulfill their role in iron 
recycling by erythrophagocytosis and iron release to sustain 
erythropoiesis.

MACROPHAGe SUbSeTS AND iRON 
HANDLiNG

The major macrophages subsets involved in systemic iron home-
ostasis consist of red pulp macrophages in the spleen and Kupffer 
cells in the liver. Their main function is to phagocytose damaged 
or senescent erythrocytes to recover iron. Therefore, phagocy-
tosed erythrocytes are exposed to reactive oxygen species and 
hydrolytic enzymes in the erythrolysosomal compartment, with 
the subsequent release of hemoglobin and heme. Heme is then 
degraded by heme oxygenase-1 (HO-1) to carbon monoxide, 
biliverdin, and free iron, which usually joins the chelatable LIP 
or is stored (86). Heme also induces the expression of the tran-
scription factor Spi-C, which is essential for the differentiation of 
red pulp macrophages (87) and erythroid island macrophages in 
the bone marrow (88), with no other macrophage subset being 
affected. Consequently, Spi-C knockout mice accumulate iron in 
the red pulp of the spleen, as RBCs are trapped but inefficiently 
phagocytosed (87). Red pulp macrophages, compared to other 
macrophage subsets, show a specialized gene signature required 
for enhanced iron recycling in order to fulfill their crucial meta-
bolic function in systemic iron homeostasis.

However, macrophages are highly plastic cells regarding their 
functional properties, responding to a great number of inflamma-
tory stimuli (89, 90). As extremes within a continuum, two oppos-
ing states of macrophage activation were identified. Macrophages 
activated by T helper 1 (Th1) cell-derived interferon-γ (IFN-γ), 
in combination with TLR ligands such as lipopolysaccharide 
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FiGURe 1 | Iron handling in macrophages. Macrophages take up, metabolize, store, and export iron. Classically activated macrophages sequester iron by taking  
up transferrin (Tf) bound iron via the Tf-receptor (TfR) or accumulating ferrous iron (Fe2+) via zinc transporters ZIP8 and ZIP14. Iron export via ferroportin (FPN) is 
impaired by binding of hepcidin (HAMP), thus causing iron storage in ferritin. In alternatively activated macrophages, the uptake of hemopexin-heme (Hpx-heme)  
by CD91 or haptoglobin-hemoglobin by CD163 into endosomes as well as phagocytosis of senescent erythrocytes into erythrophagosomes results in the release  
of heme via the heme transporter HRG1 to the cytosol. The subsequent activation of heme oxygenase-1 (HO-1) further degrades heme into iron, CO, and biliverdin, 
which is further processed to bilirubin. Fe2+ is exported from alternatively activated macrophages through FPN and oxidized to ferric iron (Fe3+) iron by ceruloplasmin 
(CP), which is essential for efficient binding to Tf. Secretion of ferritin-bound iron represents an alternative route of iron export.

TAbLe 2 | Iron regulated genes in classically and alternatively activated 
macrophages.

Classically 
activated

Alternatively 
activated

Receptors
Transferrin receptor (TfR) ↓ ↑
CD91 ↓ ↑
CD163 ↓ ↑

Recycling
Heme oxygenase-1 (HO-1) ↓ ↑

Trafficking
Ferroportin (FPN) ↓ ↑
Divalent metal transporter 1 (DTM-1) ↑ ↑
Transferrin ↑ ↑

Storage
Ferritin (FT) ↑ ↓

Regulation
Hepcidin (HAMP) ↑ ↓
Iron-regulatory proteins (IRP) ↓ ↑

Oxidreductase
Ceruloplasmin (CP) ↓ ↑

Regulation of genes related to iron metabolism in classically versus alternatively 
activated macrophages (93, 94). ↑ upregulation, ↓ downregulation.
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(LPS) creates cells with a strong pro-inflammatory profile. These 
“classically activated” macrophages generate pro-inflammatory 
mediators such tumor necrosis factor-α, IL-1β, IL-6, IL-12, and 
IL-23, reactive oxygen and nitrogen species, and present antigens 
to T  cells. Classically activated macrophages are efficient in 
microbial host defense and show antitumor activity. In contrast, 
macrophages stimulated by activated T helper 2 (Th2) cell-derived 
IL-4 or IL-13, or by IL-10, produce alternative sets of cytokines, 
functionally oppose the repertoire of classically activated mac-
rophages, and help to resolve inflammation. Additionally, such 
“alternatively activated” macrophages express specific phagocytic 
receptors, combat extracellular parasites, and help to promote 
tissue remodeling by producing extracellular matrix and growth 
factors (89–91). Taking their functional diversity into account, it 
is not surprising that macrophages also show distinct properties 
in handling iron (92). Iron recycling by macrophages comprises 
the steps of uptake, storage, and release. These are critical features, 
as there is no way to get rid of body iron, except during bleeding 
or sloughing of mucosa and/or skin. As part of their functional 
repertoire upon activation of tissue-resident macrophages or 
differentiation of newly recruited, tissue-infiltrating monocytes, 
macrophages evolved multiple ways to handle iron (Table  2) 
according to diverse microenvironmental stimuli.
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The groups of Recalcati and Cairo (93) discovered that 
classically activated macrophages tend to accumulate iron, 
whereas alternatively activated macrophages provide recycled 
iron to their microenvironment. To do so, classically activated 
macrophages maximize iron uptake directly via the TfR, and 
indirectly via the Nramp-1 and DMT-1 as well as through stor-
age by ferritin, whereas they downregulate FPN-mediated iron 
export. During inflammation, this serves to deplete invading 
pathogens from iron (95–99). In addition, bacteria-derived LPS 
and pro-inflammatory cytokines cause macrophages to express 
hepcidin (83), which degrades FPN and adds to restrain iron. 
Thus, under infectious/inflammatory conditions, macrophages 
are a major site for storing iron. Acute phase proteins as well as 
the formation of reactive oxygen species and NO join to induce 
a macrophage iron-sequestration phenotype, mainly achieved by 
downregulating FPN. Opposed to these functions, alternatively 
activated macrophages provide iron to their local microenviron-
ment (93, 94). Taking into account that alternatively activated 
macrophages express scavenger receptors that not only serve 
as PRRs but also sense and clear AC these macrophages accu-
mulate hemoglobin during hemodialysis or inflammation. The 
inflammatory-promoting actions of free heme are antagonized 
(100–102), thereby fostering the resolution of inflammation. 
Moreover, the redox-sensitive transcription factor nuclear factor 
erythoid 2-like 2 gets activated with concomitant transcription 
of the iron exporter FPN and the heme-degrading enzyme HO-1 
(40). In alternatively activated macrophages, heme-recycled iron 
joins the LIP for a rapid release via FPN, while in inflammatory 
macrophages iron is stored in ferritin. Iron export may also add 
to stabilize hypoxia-inducible factor (HIF) in macrophages, as 
iron is a prerequisite for the activity prolyl hydroxylases (PHD) 
as part of the HIF-degrading machinery (103). Lowering iron 
deactivates PHD enzymes, which stabilizes HIF-1α (104). Active 
HIF-1 causes target gene activation of, e.g., arginase-1, which are 
part of the alternative macrophage signature (105). These con-
siderations suggest that in alternatively activated macrophages 
iron from the LIP is preferentially provided to the local micro-
environment. In turn, this source of extracellular iron, provided 
by macrophages, may add to promote tissue regeneration, but 
may also be part of the tumor-promoting capacity of tumor-
associated macrophages (TAMs). Mechanistically, an increased 
pool of iron stimulates proliferation of fibroblasts or tumor cells 
in the neighborhood of macrophages. The question remains 
how cancer cells acquire iron from their local microenviron-
ment that includes, among others, macrophages. Conclusively, 
macrophages residing in the tumor stroma may provide iron to 
their local microenvironment, which includes the expression of 
alternative iron-transport mechanisms.

TAMs AND iRON iN THe TUMOR 
MiCROeNviRONMeNT

Cell division, growth, and survival of malignant cells require 
iron. Therefore, tumor cells enhance iron import and storage 
mechanisms and decrease iron export. It is already known that 
tumor cells adopt an iron-utilization phenotype, tightly linked to 

intracellular iron sequestration (106). This is achieved by upregu-
lating the TfR (107) and hepcidin (108) as well as downregulating 
FPN (109). In contrast to tumor cells, inflammatory cells of the 
stroma, e.g., infiltrating macrophages and lymphocytes, acquire 
an “iron-donor” phenotype (110), which is accomplished by 
upregulating the iron exporter FPN. Mechanistically, our and 
other labs noticed that IL-10- or IL-4-stimulated macrophages 
export iron to accelerate tumor growth by supplying iron to 
actively proliferating tumor cells (93, 94). This may point to a 
so far unappreciated facet of stromal cells in promoting tumor 
progression by supplying iron in order to facilitate the transi-
tion from pre-malignant lesions to invasive tumors. It was also 
speculated that tumor cells specifically hijack the process of 
erythrophagocytosis by macrophages to sustain their survival 
and proliferation. Knutson and coworkers illustrated the role of 
FPN in J774 macrophages in releasing 59Fe after phagocytosis 
of 59Fe-labeled RBCs (111). Erythrophagocytosis not necessarily 
is restricted to the systemic level, but may also occur locally 
under conditions of increased blood flow. In this respect, tumor 
cells may benefit from tumor angiogenesis and an increased 
migration of cells into tumor tissue (112), which fosters the con-
vergence of TAMs with erythrocytes. Of note, tumor vessels are 
often leaky and it can be speculated that macrophages residing 
close to these vessels are particularly prone to recycle and donate 
iron to tumor cells (113). So far it remains unclear whether 
the physiological process of erythrophagocytosis alters genes 
that regulate iron metabolism in a way similar to those seen in 
alternatively activated macrophages or TAMs. TAMs alter their 
gene expression profile in favor of a tumor-supportive, iron-
release phenotype (Figure 2). This is reflected by an increased 
expression of CD163, the high-affinity scavenger receptor for 
haptoglobin bound to hemoglobin (114). Subsequent to the 
uptake of hemoglobin or haptoglobin, released heme is then 
degraded via HO-1 and induces the downregulation of the 
transcription factor Bach-1, thereby allowing the transcription 
of FPN (115). Thus, at least in macrophages, heme may work as 
a modulator of FPN expression, independent of hepcidin. As 
a substantial part of plasma iron is provided by macrophages, 
recycled from senescent RBCs, it is surprising that mice carrying 
a knockout of FPN in macrophages only showed mild signs of 
anemia (116). One explanation could be that macrophages can 
export heme via the feline leukemia virus C receptor transporter 
(117), which might substitute for a loss of FPN. Moreover, in 
an inflammatory environment, ferritin can be secreted from 
lymphocytes and macrophages in the tumor stroma (118, 119). 
In line, extracellular ferritin causes proliferation of breast cancer 
cells, independent of its iron content. Another explanation, as 
discussed below, might be the development of additional or 
alternative iron-transport mechanisms.

Lcn-2 MAY FUNCTiON AS AN iRON 
TRANSPORTeR iN THe TUMOR 
MiCROeNviRONMeNT

Taking into consideration that cancer cells have a higher demand 
for iron, it is tempting to speculate that tumor cells hijack 
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macrophages to turn them into an iron-delivery cell. In this 
regard, we noticed that the high-affinity iron-carrier Lcn-2 is 
part of the pro-tumor macrophage phenotype and upregulated 
following macrophage-apoptotic cell interactions.

Lipocalin-2 belongs to the lipocalin superfamily. These 
proteins are known for their bacteriostatic effects by capturing 
and depleting siderophores (120). Furthermore, recent evidence 
suggests that Lcn-2 stimulates growth and differentiation 
in various cells (121). Exogenous Lcn-2 causes marker gene 
expression profiles that reflect early epithelial progenitors and 
epithelial cell proliferation (122). Our work revealed that apop-
totic tumor cells stimulated protein expression and secretion of 
Lcn-2 in macrophages along with their functional shift toward 
an alternative phenotype (123, 124). Macrophage-derived Lcn-2 
stimulates cancer cell proliferation (124), tumor cell dissemina-
tion, metastasis (125), and tumor lymphangiogenesis (126). 
Mice lacking Lcn-2 developed significantly less tumors, while an 
impact on metastases was not consistently observed (127–129). 
The impact of Lcn-2 on metastasis might depend on the cel-
lular source, with at least macrophage-derived Lcn2 promoting 

metastasis in mammary carcinoma (125, 126). Studies in humans 
pointed to Lcn-2 as a pro-tumorigenic factor in breast cancer, 
correlated with decreased survival and reduced responsiveness 
to neoadjuvant chemotherapy (130, 131). Mechanistically, 
overexpression of Lcn-2 in non-invasive human MCF-7 breast 
cancer cells elicits an aggressive phenotype that promotes 
growth and metastasis by inducing epithelial-to-mesenchymal 
transition (132). So far most studies focused on the role of 
Lcn-2 in stabilizing matrix metalloproteinase-9 to explain 
cancer metastasis, linked to extracellular matrix degradation, 
migration, and invasion. Furthermore, Lcn-2 coordinates the 
expression of vascular endothelial growth factor and causes 
the induction of angiogenesis in the tumor microenvironment 
(133). Interestingly, Lcn-2 was mainly examined in tumor cells. 
The possibility that Lcn-2 is also provided by tumor-infiltrating 
immune cells was not fully appreciated. However, own results 
provided evidence that TAM express increasing amounts of 
Lcn-2 (124, 134).

We previously showed that the interaction of macrophages 
with AC shapes the macrophage phenotype and function (11). 
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Importantly, macrophage activation upon their interaction 
with AC was independent of phagocytosis or cell-cell contact, 
but demanded the release of S1P from AC (135). Moreover, we 
demonstrated a critical involvement of sphingosine kinase 2 
in the production of S1P during tumor cell apoptosis (20). We 
further obtained evidence that Lcn-2 was expressed in primary 
human macrophages in response to dying MCF-7 breast cancer 
cells (123). Mechanistically, Lcn-2 production was connected 
to S1P release from apoptotic cancer cells. S1P elicited signal 
transducer and activator of transcription 3-dependent induc-
tion of Lcn-2 in macrophages. siRNA studies in primary 
human macrophages and the use of bone marrow-derived 
macrophages from S1P receptor knockout mice suggested that 
the S1PR1 was required for Lcn-2 induction in macrophages 
(126). We substantiated Lcn-2 as a key macrophage pheno-
type determinant, with parallel actions during physiological 
tissue regeneration and repair mechanisms (123), but also 
under pathophysiological conditions such as tumor develop-
ment. In human and experimental tumors, tumor-infiltrating 
macrophages are massively exposed to apoptotic tumor cells, 
since cells at core tumor regions undergo cell death as a con-
sequence of oxygen and nutrient deprivation. Therefore, we 
speculate that dying tumor cells educate macrophages at core 
tumor regions in order to access additional iron via Lcn-2. 
However, it is presently unclear whether the pro-tumor actions 
of Lcn-2 depend on its iron loading or not. Previously, it was 
shown that iron-loaded holo-Lcn-2 favors cellular survival 
and proliferation by increasing the intracellular iron content 
and the induction of Bcl-2 (136). In contrast, the uptake to  
iron-free apo-Lcn-2 causes cell death, which was correlated to 
the expression of Bim.

Importantly, Lcn-2 does not directly bind iron. The iron-
trafficking function of Lcn-2 largely depends on its association 
with bacterial or mammalian siderophores. Siderophores 
are iron-chelating molecules that were first described in 
bacteria (137–139). Devireddy et  al. recently reported that 
mammals also produce iron-sequestring agents to enhance 
innate immune responses. Along this line, the mammalian 
siderophore 2,5-dihydroxybenzoic acid (2,5-DHBA) was 
characterized (140), which is structurally similar to the 
bacterial enterobactin. Lcn-2 interacts with siderophores in 
order to control bacterial growth as part of the innate immune 
response. Consequently, mice lacking Lcn-2 are more prone 
to a number of pathogens (141). Since siderophore-binding 
constitutes the limiting factor for Lcn-2-dependent iron 
handling, it is important to understand the function, regula-
tion, and sources of mammalian siderophores. Several of the 
biological functions of Lcn-2 have already been linked to 
its association with the iron-loaded siderophore 2,5-DHBA 
(136). In the tumor, it might be speculated that tumor cells 
evolved a strategy to produce and secrete siderophores in 
order to sequester iron. Consequently, siderophore shuttling 
from tumor cells to TAM would allow Lcn-2 iron loading and 
the reverse transport of iron-loaded Lcn-2. Up to now, it is 
unclear how siderophores are taken up by mammalian cells. 
It also remains unknown whether 2,5-DHBA acts alone as 
the iron-chelating siderophore or whether it functions as the 

iron-binding moiety of a more complex siderophore structure 
as described for 2,3-DHBA in enterobactin. Regarding its 
production in mammalian cells, it was previously described 
that the mammalian enzyme 3-hydroxybutyrate dehydroge-
nase, type 2 (BDH2) synthesizes 2,5-DHBA. Unfortunately, 
the exact mechanism how BDH2 synthesizes 2,5-DHBA still 
remains elusive but the knockdown of BDH2 completely 
depleted cellular 2,5-DHBA (140). BDH2 knockout mice 
developed severe anemia and splenic iron overload (142) thus, 
confirming the requirement of 2,5-DHBA for iron transport 
(140). Additionally, the knockdown of BDH2 in mammalian 
cells points to an important role of 2,5-DHBA in balancing the 
LIP. A knockdown of BDH2 is linked to high cytoplasmic iron 
content and elevated levels of reactive oxygen species, whereas 
mitochondria became iron deficient (140). This increases an 
oxidative stress signature (143). Intriguingly, the expression 
of BDH2 negatively correlated with patient survival suffering 
from normal acute myeloid leukemia (144). However, regard-
ing the clinical importance of siderophores, especially in 
tumors, more investigations are needed. Independent of their 
putative endogenous roles in pathology, sidrophores represent 
an attractive target for therapeutic approaches, e.g., as iron-
chelating drugs in cancer therapy or iron-overload diseases, 
due to their high iron affinity (145, 146). Another possibility 
would be the use of siderophores as “trojan horse” in order 
to deliver antibiotics or other toxic compounds to resistant 
bacteria (147) and possibly tumor cells.

CONCLUSiON

In the tumor microenvironment, macrophages are subjected 
to an intense cross talk with tumor cells. Signal exchange is 
facilitated by chemically diverse, soluble mediators as well as 
communication by cell-cell contacts. This comprises the release 
of S1P from apoptotic tumor cells. As a consequence of the 
liaison between innate immune and tumor cells, the phenotype 
of macrophages changes. They become less cytotoxic and their 
cytokine mediator profile supports rather than antagonizes 
tumor progression to basically support all hallmarks of cancer 
(Figure 2).

Tumor cells with their high capacity to proliferate show a 
strong demand for accumulating iron. Consequently, it seems 
rational that TAMs gain an iron-release phenotype, thereby 
allowing tumor cells to access additional sources of iron. In the 
tumor context, macrophages may be forced by S1P to upregulate 
a so far unappreciated iron export system, the key component 
being Lcn-2. Although highly speculative, one can envision 
that the siderophore 2,5-DHBA is produced and released from 
tumor cells, travels to macrophages to load iron and in turn 
shuttles back to tumor cells to unload its cargo. Surplus iron 
in tumor cells is now being used to foster growth and survival 
and to add to the distinct phases of tumor dissemination and 
metastasis. This unique iron distribution system may offer 
the advantage to interfere pharmacologically and thus, more 
selective than manipulating the overall iron homeostasis 
in our body. Selectivity may be obtained if we successfully 
chelate iron in TAMs, interfere with expression regulation of 
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macrophage Lcn-2 or the proposed shuttling of the mammalian  
siderophore.

While the overarching role of TAMs during tumor progres-
sion is undisputed, underlying molecular mechanisms are less 
clear. We believe that altering mechanisms of iron handling 
in tumor and stroma cells, i.e., macrophages has to be added 
to the list of changes that occur in the tumor microenviron-
ment and shape the unique macrophage phenotype found  
in tumors.
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