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It is known that apoptotic cells can have diverse effects on the tumor microenvironment. 
Emerging evidence indicates that, despite its renowned role in tumor suppression, 
apoptosis may also promote oncogenic evolution or posttherapeutic relapse through 
multiple mechanisms. These include immunomodulatory, anti-inflammatory, and trophic 
environmental responses to apoptosis, which drive tumor progression. Our group 
has introduced the term “onco-regenerative niche (ORN)” to describe a conceptual 
network of conserved cell death-driven tissue repair and regeneration mechanisms 
that are hijacked in cancer. We propose that, among the key elements of the ORN are 
extracellular vesicles (EVs), notably those derived from apoptotic tumor cells. EVs are 
membrane-delimited subcellular particles, which contain multiple classes of bioactive 
molecules including markers of the cell from which they are derived. EVs are implicated 
in an increasing number of physiological and pathological contexts as mediators of local 
and systemic intercellular communication and detection of specific EVs may be useful 
in monitoring disease progression. Here, we discuss the mechanisms by which EVs 
produced by apoptotic tumor cells—both constitutively and as a consequence of ther-
apy—may mediate host responsiveness to cell death in cancer. We also consider how 
the monitoring of such EVs and their cargoes may in the future help to improve cancer 
diagnosis, staging, and therapeutic efficacy.

Keywords: extracellular vesicle, apoptosis, exosome, ectosome, cancer pathogenesis, wound healing, 
regeneration

inTRODUCTiOn: APOPTOSiS AnD OnCOGeneSiS

Apoptosis plays important roles in regulating cell populations during ontogeny and in adult tissues. 
Emerging evidence indicates that, not only is apoptosis responsible for the well-established deletion 
of cells during organ sculpting (for example, removal of the cells of the interdigital webs during 
limb development of mammals) but also for stimulating the proliferation of cells in neighboring 
compartments, a process termed compensatory proliferation or apoptosis-induced proliferation 
(1–3). In adults, apoptosis is prominent in controlling responses to infection and other inflammatory 
stimuli and in cyclical turnover of tissues ranging from the lactating/post-lactating mammary gland 
to the turnover of epithelia. In the steady state in which cell gain is balanced by cell loss, apoptosis 
provides important tissue homeostatic signals, ensuring the safe, non-phlogistic removal of billions 
of cells daily.
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FiGURe 1 | Extracellular vesicles (EVs) produced by viable and apoptotic cells. Diagrammatic representation of the broad categories of EVs produced by viable cells 
(left) and cells undergoing apoptosis (right). Exosomes are produced through endosomal pathways involving the formation of multivesicular bodies that fuse with the 
plasma membrane. Ectosomes or microvesicles bud directly from the plasma membrane. Apo-EVs are produced in a diverse size range specifically by apoptotic 
cells—larger Apo-EVs are commonly known as apoptotic bodies. Apo-EVs can contain large cellular organelles including nuclear fragments as shown. Relatively 
little is yet known about the molecular mechanisms underlying the production of Apo-EVs/apoptotic bodies and the roots of their heterogeneity [see Ref. (18, 27), for 
reviews] or indeed their relationships with exosome or ectosome production. Preparations of Apo-EVs are likely to be contaminated by exosomes and ectosomes 
produced at least during pre-apoptosis stages of activation. Red and blue “lollipop” symbols serve to illustrate orientation of transmembrane proteins of the plasma 
membrane. Left-hand cartoon adapted from Ref. (17).
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In malignant disease, the homeostatic cell birth/cell death 
balance becomes dysregulated through acquisition of oncogenic 
mutations that lead to net expansion of transformed cell popula-
tions. In addition to the loss of normal constraints on prolifera-
tion, the capacity to evade apoptosis and survive inappropriately 
facilitates oncogenesis. Thus, mutations affecting genes that 
promote cell survival such as antiapoptotic Bcl-2 family mem-
bers and molecules active in the PI3K/Akt pathway complement 
those that promote cell proliferation (4). In the face of frequent 
mitoses, tumors that grow slowly—a typical example being basal 
cell carcinoma—display relatively high rates of apoptosis [high 
apoptotic index (AI)] (5). Less intuitively, aggressive, rapidly 
growing tumors also display high AIs. Indeed, close association 
between high AI and high proliferative rate has been reported 
for multiple aggressive cancers, including colorectal carcinoma, 
bladder, lung and breast cancers, leukemia, and lymphoma (6). 
To place these observations in perspective, it has long been 
known that in Burkitt’s lymphoma, for example, which displays 
evidence of both high mitotic and apoptotic indices in standard 
histological sections, a substantial proportion (around 70%) of 
the proliferating cells die (7). This accords with the principle that 
apoptosis is often prominent in association with proliferation in 
normal tissues.

Constitutive apoptosis in growing tumors is likely to be caused 
by multiple stresses characteristic of rapidly expanding tissues, 
cell growth outpacing (i) supply of nutrients and oxygen and  
(ii) removal of potentially toxic metabolites. Additional causes 
of constitutive apoptosis include survival pathway “insufficiency” 
(caused by genetic mutation), antitumor immunity, and cell 
competition effects. Apoptosis of tumor cells is also the basis for 

the effectiveness of anticancer chemotherapies and radiotherapy. 
Recent evidence indicates that microenvironmental tissue repair 
and regenerative responses to tumor cell apoptosis are critically 
important in promoting net tumor growth and posttherapeutic 
tumor repopulation/relapse (8–11). We propose that extracellular 
vesicles (EVs) play key roles in potentiating the microenviron-
mental effects of apoptosis in tumors.

evs: CLASSeS, CARGOeS, AnD 
FUnCTiOnAL PROPeRTieS in CAnCeR

EVs are subcellular membrane-delimited particles, which can 
be released from cells both constitutively and in response to 
activation or stress. Although there is a lack of consensus on 
properties and nomenclature within the EV field, it is gener-
ally accepted that there are at least three different types of 
EVs, which have been classified according to size, biogenesis, 
or isolation technique (12–18) (Figure  1). Exosomes are the 
smallest category (30–150  nm) formed from endosomal 
membranes and released from the cell by exocytosis of multi-
vesicular bodies. Ectosomes or microvesicles (100–1,000 nm) 
bud directly from the plasma membrane. Apoptotic bodies 
(typically described as 1,000–5,000  nm) are formed during 
apoptosis, and apoptotic cell-derived vesicles have very broad 
size ranges (our unpublished observations). Relatively large 
EVs (ectosome-like), >2  μm in diameter and not apparently 
associated with apoptosis, have also been described, showing 
intact organelles but not nuclear components [see, for example, 
Ref. (19)]. EV cargoes are diverse, ranging from nucleic acids 
such as miRNA, mRNA, and DNA, to lipids, and cytosolic and 
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membrane proteins. It is thought that the sequestering of specific 
cargoes into EVs is directed, but the mechanisms by which this 
occurs have not yet been fully elucidated. EVs can be detected 
in most bodily fluids, including blood, urine, saliva, amniotic 
fluid, breast milk, and ascites. There has been a growing interest 
in using circulating EVs as carriers of biomarkers of disease, 
especially since EVs carry markers of their cell of origin and 
may represent the pathophysiological status of the cells (12–17, 
20–22). EVs are involved in the regulation of tumor growth, 
progression, and antitumor immunity, in the latter context 
showing potential application in antitumor vaccination [see Ref. 
(23–26) and forthcoming Frontiers in Immunology Research 
Topic: The Immunomodulatory Properties of Extracellular Vesicles 
from Pathogens, Immune Cells and Non-Immune Cells].

EVs both from tumor cells and from stromal cell components 
of the tumor microenvironment can promote cancer growth and 
metastasis. Accruing evidence indicates that the pro-oncogenic 
properties of EVs are mediated via multiple mechanisms, 
reflecting the multitude of cargoes and the complex biological 
composition of EVs. For example, tumor cell-derived EVs can 
promote tumor growth and angiogenesis through transferral of 
mutant receptors, angiogenic proteins, and RNAs from tumor 
cells to neighboring cells, including endothelial cells and mutant 
growth receptor-deficient tumor cells in the tumor microen-
vironment (22, 28, 29). EVs can promote tumor metastasis 
through horizontal transfer of oncogenic molecules from cancer 
cells to bone marrow-derived stromal cells (30) or directly from 
malignant tumor cells to relatively benign counterparts, endow-
ing the recipient cells with metastatic properties (31). EVs from 
tumor cells also endow stromal cells with switched metabolic 
pathways (32) and can alter the activation status of fibroblasts 
to resemble that of cancer-associated fibroblasts (CAFs) (33, 34). 
Furthermore, EVs derived from the stromal or immune cells 
of tumors have regulatory properties in cancer. For example, 
M2-polarized tumor-associated macrophages (TAMs) have been 
shown to transfer microRNA-21 to gastric cancer cells, suppress-
ing apoptosis, and thereby causing cisplatin resistance (35).

APOPTOTiC TUMOR CeLL-DeRiveD evs

Apoptotic cells in tumors communicate with neighboring cells 
not only by intercellular contact but also via soluble and 
EV-encapsulated signal mediators (36, 37). EVs from apoptotic 
cells display a broad size heterogeneity from around 50  nm to 
several microns and the term “apoptotic body” is often used to 
describe the larger varieties—commonly >1,000 nm—of apop-
totic cell-derived EVs (Apo-EVs) (18). However, the terminology 
describing the different types of membrane-delimited subcellular- 
sized particles released from apoptotic cells is currently a mat-
ter of discussion, as a standardized nomenclature has not been 
established to date (38). We favor the concept that Apo-EVs 
represent a continuum (albeit heterogeneous) of vesicles released 
from apoptotic cells with wide variation in size, including those 
classed as apoptotic bodies (Figure  1). Although there seems 
little doubt that Apo-EVs will prove to be heterogeneous in other 
ways [e.g., some carrying genomic DNA and/or organelles such 
as mitochondria, together with heterogeneity in macromolecule 

content (39–42)], the critical definition of an Apo-EV is a vesicle 
that is apoptosis dependent. Clearly EVs may be released from 
apoptotic cells as a consequence of pre-apoptosis stress signals or 
as a result of post-apoptotic necrosis. The need for more informa-
tion about the EVs released throughout the apoptotic process is 
reinforced by evidence of significant levels of proteins such as 
histones that are loaded into Apo-EVs prior to the loss of plasma 
membrane integrity (40). Since Apo-EVs encapsulate a wide 
variety of bioactive molecules and cellular organelles (39–43), 
they can be characterized as metabolically active structures that 
provide apoptotic cells with the ability to transduce signals over 
relatively long distances (6, 36, 37, 44).

Although several studies have been forthcoming in recent 
years, the structural characteristics, contents, and functional 
attributes of Apo-EVs in cancer remain poorly defined (6, 18, 44),  
particularly since apoptosis dependence of putative Apo-EVs 
has not been stringently investigated, for example, by comparing 
EVs from apoptotic and non-apoptotic cells subjected to identical 
stress signals. Notwithstanding this limitation, we highlight the 
potential for Apo-EVs and their cargoes to play important roles in 
the regulation of tumor growth and progression. Thus, it has been 
shown that cancer cells under stress transfer genetically active 
material to their neighbors and given that EVs are rich in nucleic 
acids—including both DNA and RNA [the former likely to be 
especially enriched specifically in Apo-EVs (our unpublished 
observations)]—they are likely to play a significant role in this 
communication (45). Furthermore, stromal cell-derived EVs 
(<100 nm) released as a consequence of cell stress may provide 
key signals supporting the neighboring tumor cells’ capacity to 
metastasize, promoting proliferation and inhibiting apoptosis 
(46). Immunological functional heterogeneity of Apo-EVs is 
evident from studies indicating that, on the one hand they can 
be immunosuppressive (26), while on the other (albeit in a dif-
ferent context), immunostimulatory (41). Horizontal transfer 
of potentially oncogenic genomic DNA through phagocytosis 
of apoptotic bodies and its control through p53-mediated DNA 
damage responses has been demonstrated (47–49), raising the 
possibility that cells receiving Apo-EVs may, even transiently, 
express gene signatures from apoptotic tumor cells, with impli-
cations for tumor growth. It is also conceivable that oncogene 
transfer through Apo-EVs could lead to sustained transformation 
of recipient cells. Indeed, the production of EVs by tumor cells 
in response to anticancer therapies—which are well known to 
induce apoptosis in tumor cells—suggests that EV production 
is detrimental to therapeutic success (50–52). Mechanisms 
of EV-mediated drug resistance are beginning to emerge. For 
example, in pancreatic ductal adenocarcinoma (PDAC), EVs 
produced by CAFs as a consequence of chemotherapy transfer 
Snail and miR-146a to PDAC cells, enhancing both their survival 
and proliferation during treatment (53). Further work will clarify 
roles specifically for Apo-EV in tumor growth and progression 
pre- and posttherapy.

THe OnCO-ReGeneRATive niCHe (ORn)

Our group has proposed that Apo-EVs are key components in a 
conceptual tissue repair microenvironmental “module” we have 
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termed the ORN (6, 44). This concept is based upon the well-
rehearsed comparison of tumors to “wounds that fail to heal” or, 
perhaps more accurately, “wounds that fail to stop repairing.” We 
propose that the ORN represents a microenvironmental signaling 
network driven by apoptosis and involving tumor cells, non-tumor 
stromal and immune cells, connective tissue, soluble factors, and 
EVs. The putative network engenders pro-repair and regenerative 
responses that promote tumor cell proliferation, angiogenesis, 
and invasiveness while at the same time suppressing antitumor 
immunity. Currently, the ORN remains conceptual, serving as a 
platform for rationalized experimentation to test the hypothesis 
that conserved tissue repair and regenerative responses to cell 
death in tumors provide fundamental pro-oncogenic signals 
that can facilitate tumor growth, metastasis, and posttherapeutic 
relapse.

Intercellular communication events concerning apoptotic 
cells, which lie at the heart of the ORN, involve TAMs, endothelial 
cells, and viable tumor cells among others including additional 
immune cells, CAFs, and mesenchymal stromal cells. Little is yet 
known about the mechanisms by which Apo-EVs interact with 
neighboring cells of the tumor microenvironment although 
EVs released by apoptotic cells harbor “find-me” signals that 
facilitate the directed migration of phagocytes to apoptotic cells. 
In some studies, active chemotactic molecules associated with 
EVs (CX3CL1 and ICAM-3) have been described (54–56). In 
the context of phagocytosis, apoptotic cells are able to activate 
multiple lineages of cells in addition to macrophages, includ-
ing dendritic cells, epithelial cells, bone marrow stromal cells, 
muscle cells, fibroblasts, and endothelial cells. Although direct 
cell-to-cell contact is an obviously essential prerequisite for 
phagocytosis of apoptotic cell bodies, information is currently 
limited on the potential roles of Apo-EVs in activating the 
phagocytes of apoptotic cells. Given the multiple modes by 
which EVs can interact with cellular targets, we speculate that 
both receptor-dependent and independent mechanisms oper-
ate in the ORN to provide communication pathways between 
apoptotic cell-derived EVs and other cells in the microenviron-
ment—both phagocytes and non-phagocytes, non-transformed 
and transformed cells (Figure 2). First-line candidate receptors 
would be those already known to function in apoptotic cell 
clearance, especially the phosphatidylserine (PS)-binding 
glycoproteins, be they opsonins such as Gas6, Protein S, or 
MFG-E8, or cell surface PS receptors such as TIM-4, BAI-1, 
and Stabilin 2 [reviewed recently by Ref. (57)], especially since 
the majority of EVs, including those released from apoptotic 
cells tend to expose PS [(12) and our unpublished observa-
tions]. Additional, PS-independent mechanisms may also be 
involved, and mechanisms of activation of the cellular targets of 
Apo-EVs would be expected to include agonistic or antagonistic 
receptor ligation, localized release or transfer of highly labile, 
biologically active molecules and transfer of proteins, nucleic 
acids, and metabolites as has been described for EVs in other 
contexts.

Although limited mechanistic information is yet available, 
we propose that EVs released into the tumor microenviron-
ment have multiple tumor-modulating activities. Apoptotic 
cells activate diverse responses in neighboring cells, producing 

mitogens, anti-inflammatory mediators, pro-angiogenic factors, 
and matrix-degrading enzymes in addition to chemoattractants 
(6, 10, 44). Given their biological potential as we have already 
discussed, it seems likely that Apo-EVs will prove to harbor key 
bioactive molecules that mediate at least some of the aforemen-
tioned tumor-modulating activities.

CLiniCAL POTenTiAL OF APOPTOTiC 
TUMOR CeLL-DeRiveD evs

It is widely accepted that EVs contain biomolecules indicative 
of the cell from which they derive, its state of activation, its 
metabolic activity, and in some cases its genotype. Since EVs 
are accessible in various body fluids, their cargoes may be 
useful as non-invasive biomarkers for diagnosis and prognosis 
of disease, including cancer. Recent investigations serve to 
highlight the association of EVs and their cargoes with diverse 
cancer types. For example, a recent study of EVs isolated from 
blood of colorectal cancer patients, based on EpCAM+ selection, 
found increased levels of specific miRNAs in patients compared 
to healthy controls, which decreased after surgical removal of 
the tumor (59). EVs from patients with liver cancer (hepatocel-
lular carcinoma and cholangiocarcinoma) are measurable and 
distinct from EVs derived from non-cancerous chronic liver 
disease such as cirrhosis (60). A study of multiple myeloma 
showed that the number of EVs expressing the plasma cell 
marker CD138 in the blood of patients corresponded to both 
disease state and therapeutic outcome, giving both diagnostic 
and prognostic relevance to the detection of EVs in this disease 
(61). In PDAC patients, mutant KRAS DNA can be detected with 
a higher frequency in circulating EVs than the more prevalent 
method of cell-free circulating DNA (62). Detection of miRNA 
in the EVs of Hodgkin lymphoma patients was followed along 
the course of treatment and was found to decrease concordantly 
with the FDG-PET scans that are routinely used to monitor 
this cancer type, and in patients with relapsing disease those 
miRNA levels were seen to rise (63). In breast cancer, the TRPC5 
receptor channel, shown to be essential for chemoresistance, can 
be detected on circulating EVs and used to predict treatment 
response and relapse (64). In prostate cancer, two proteins—
ADSV and TGM4—found in urinary EVs, can in combination 
predict not only the presence of the disease but also relapse of 
the patient after treatment (65).

These examples illustrate that there is conceptual concord-
ance between the biological activities of EVs in mechanistic 
cancer models and their association with disease status in human 
patients. As yet, however, the particular significance of Apo-EVs 
in human malignant disease remains unclear. We speculate that 
a fraction of the Apo-EVs from cells of the tumor microenviron-
ment, including tumor cells themselves, macrophages, and other 
immune cells, together with fibroblasts, mesenchymal stem cells, 
and endothelial cells, would gain access to the circulation [note 
the well-established circulation of tumor cells and nucleosomes 
in cancer patients (66, 67)] and as such would be readily ame-
nable to analysis using appropriate technologies (vide infra) 
and could potentially provide useful diagnostic and prognostic 
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well as with viable tumor cells. Although little is yet known of the modes of interaction of Apo-EVs with recipient cells, it seems reasonable to assume that at least 
some of the molecules [see text and Ref. (57)] involved in clearance of apoptotic cells (and relatively large apoptotic bodies) will prove to be shared by smaller 
varieties of Apo-EVs. In this context, it is noteworthy that receptor-mediated cellular interaction of EVs involves the phosphatidylserine receptor TIM-4 and the 
integrins αvβ3 and αvβ5 (58), all of which are well defined as phagocyte receptors for apoptotic cells. Novel pathways also seem likely. Here, the surface of Apo-EVs 
is shown to display signals (green “lollipop” symbols), putatively involved in engagement with appropriate receptors on cells of the niche. We propose that, in 
addition to being targeted for degradation in phagolysosomes, Apo-EVs may transfer cargoes, including surface receptors and nucleic acids, to recipient cells, as 
has been described for other EV types, thereby altering cellular functional activities (red arrows) and intercellular communication (e.g., black arrow), culminating in the 
pro-oncogenic activities of the ORN such as the promotion of clonal tumor cell growth, angiogenesis, and metastasis, together with inhibition of antitumor immunity.
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information of benefit to patient care. As well as providing valu-
able cargo information, EVs (and possibly Apo-EVs too) may 
also antagonize cancer therapies by acting as “decoy” vehicles for 
therapeutic antibodies, thereby diluting effective biopharmaceu-
tical delivery to tumor cells. This has been shown to be the case 
for the anti-CD20 therapeutic antibody Rituximab, which binds 
EVs produced by lymphoma cells, effectively protecting the cells 
from immunotherapeutic destruction (68). Similarly, EVs from 
HER2+ breast cancer carry HER2 molecules that can bind to the 
anti-HER2 therapeutic antibody, trastuzumab, compromising 

its effectiveness (69). Thus, EVs, possibly including Apo-EVs, 
are capable of inactivating therapy as well as promoting tumor 
growth, and so reducing EV production may provide a novel 
strategy to improve therapeutic responses.

COnCLUSiOn

Although EVs, including Apo-EVs, show much promise for use 
both in diagnosis and treatment monitoring, and potentially 
even as therapeutic targets, there are many hurdles to overcome 
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before this can be translated effectively to the clinic. Perhaps 
the most significant challenge is EV heterogeneity and lack of 
standardization in terms of EV isolation and characterization in 
clinical samples (or indeed any samples). Much research effort is 
focused on purification of EV populations using advanced plat-
forms such as immunomagnetic isolation and immunoaffinity 
arrays (70, 71), which also hold potential to become miniatur-
ized, enabling the development and application of point-of-care 
technologies in the clinical setting. Methods of characterization 
are also a challenge, as the size of the smallest EVs pushes many 
techniques beyond their lower limits of reliability. However, 
progress is likely to be speedy, following the rapid progress in 
nanometrology that has occurred in recent years. The relatively 
recent explosion in EV interest and research has led to signifi-
cant progress, not least in clinical oncology diagnostics (see, for 
example, products from Exosome Diagnostics http://www.
exosomedx.com).

Because of their structure and highly specific cargoes, EVs are 
likely to prove to be most useful targets for biomarker screening in 
cancer, as well as in other disease settings. It is anticipated that new 
technologies will allow screening of tiny, readily accessible biopsy 

samples, most commonly blood, and that the vesicular nature 
of EVs will provide for concentration and protection of valuable 
biomarker cargoes, including labile molecules. Resolution of the 
phenotypic and functional heterogeneity of EVs is already under 
way, and we predict that substantial advances will continue to be 
made in EV research in the near future, not least in the functional 
attributes of Apo-EVs and their relevance to human cancer diag-
nosis, prognosis, and therapy.
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