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Autophagy was initially described as a catabolic pathway that recycles nutrients of 
 cytoplasmic constituents after lysosomal degradation during starvation. Since the 
immune system monitors products of lysosomal degradation via major histocompati-
bility complex (MHC) class II restricted antigen presentation, autophagy was found to 
process intracellular antigens for display on MHC class II molecules. In recent years, 
however, it has become apparent that the molecular machinery of autophagy serves 
phagocytes in many more membrane trafficking pathways, thereby regulating immunity 
to infectious disease agents. In this minireview, we will summarize the recent evidence 
that autophagy proteins regulate phagocyte endocytosis and exocytosis for myeloid cell 
activation, pathogen replication, and MHC class I and II restricted antigen presentation. 
Selective stimulation and inhibition of the respective functional modules of the autophagy 
machinery might constitute valid therapeutic options in the discussed disease settings.

Keywords: major histocompatibility complex, LC3-associated phagocytosis, iL-1, epstein–Barr virus, varicella 
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inTRODUCTiOn

Autophagy is a group of at least three pathways that deliver cytoplasmic constituents for lysosomal 
degradation (1). While microautophagy and chaperone-mediated autophagy directly operate at the 
late endosomal or lysosomal membrane for cytosolic substrate engulfment or translocation, respec-
tively, macroautophagy assembles double-membrane surrounded vesicles de novo, which are then 
transported to lysosomes. For this autophagosome generation and delivery to lysosomes, autophagy-
related gene (atg) products are essential, the first 15 of these were identified by Yoshinori Ohsumi 
in 1993 (2) and formed the basis of the molecular machinery of macroautophagy that led to his 
Nobel Prize in 2016. These Atgs are organized in complexes that integrate metabolic cues to regulate 
macroautophagy and modify membranes by lipid phosphorylation and ubiquitin-like protein con-
jugation to lipids, which result in autophagosome formation and substrate recruitment. The Atg1/
ULK1 complex is regulated through phosphorylation by mammalian target of rapamycin (mTOR) 
inhibition and AMP-activated protein kinase (AMPK) activation. These two pathways sense nutrient 
or growth factor depletion via decreased mTOR activity and low-energy levels, resulting in elevated 
AMP concentration, and via increased AMPK activity. Atg1/ULK1 in turn phosphorylates Atg6/
Beclin-1, a regulatory subunit of the VPS34 type III phosphatidylinositol 3-kinase (PI3K) complex. 
The resulting phosphoinositide mark on membranes serves as the landing platform for WIPI proteins 
that recruit via Atg16L1 binding the machinery to conjugate Atg8/LC3 to phosphatidylethanolamine, 
which might mediate both the fusion of additional membranes to this site for double-membrane 
elongation to a cup-shaped isolation membrane, resulting in fusion of these double membranes to 
autophagosomes, and substrate recruitment into the autophagosome (3–6).For this purpose, yeast 
Atg8 and its six mammalian orthologs LC3A, B, C, GABARAP, GABARAP-L1, and GABARAP-L2 
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FigURe 1 | The macroautophagy machinery regulates endocytosis. Atg8/
LC3 lipidation facilitates the internalization of receptors from the cell surface 
via recruitment of components of clathrin-mediated endocytosis. For major 
histocompatibility complex (MHC) class I internalization, recruitment of 
adaptor-associated kinase 1 (AAK1) facilitates MHC class I internalization and 
degradation in lysosomes. During LC3-associated phagocytosis (LAP), 
endocytosed cargo that engages receptors like TLR2 stimulates the 
conjugation and/or maintenance of Atg8/LC3 lipidation on the cytosolic side 
of the phagosome. PI3 phosphorylation recruits the Atg8/LC3 conjugation 
machinery, including Atg5, 12, and 16L1, to these phagosomes, and NADPH 
oxidase 2 (NOX2)-dependent reactive oxygen species (ROS) production is 
required for LAP. Atg8/LC3 conjugation to phagosomes regulates their fusion 
with lysosomes.
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are first processed by Atg4 to expose a C-terminal glycine for the 
ubiquitin-like conjugation reaction, which is then executed by the 
E1-like enzyme Atg7, the E2-like enzyme Atg3 and the E3-like 
enzyme Atg12-Atg5/Atg16L1. This enzymatic cascade leads 
to Atg8/LC3 coupling to the outer and inner autophagosome 
membrane. While some of these Atg8 orthologs have membrane 
fusion activity on their own, they recruit substrates often through 
intermediaries that contain LC3-interacting regions (LIRs) (6). 
These include proteins that get exposed on damaged organelles, 
such as mitochondria (7), and others that bridge ubiquitinated 
substrates, such as protein aggregates and cytosolic bacteria 
with LC3 (8, 9). The latter include sequestosome/p62, NBR1, 
NDP52, and optineurin and are often investigated as prototypic 
macroautophagy substrates. The completed autophagosome loses 
much of its LC3 from the outer membrane by deconjugation by 
Atg4, but retains some to facilitate transport along microtubules 
via FYCO1 and NDP52 recruitment (10, 11) and lysosome fusion 
via binding to PLEKHM1 (12). The much higher affinity of the 
PLEKHM1 LIR for GABARAPs might, however, indicate that 
these cytosolic functions are executed by Atg8 orthologs that do 
not belong to the LC3 subfamily (13). HOPS complex and Rab7 
recruitment then prepare for lysosome fusion, which is executed 
by the SNAREs syntaxin17, SNAP29, and VAMP8 (14). This leads 
to lysosomal degradation of not only the autophagosome cargo 
but also the inner autophagosomal membrane including the Atg8/
LC3 molecules that are still coupled to it. Therefore, Atg8/LC3 
turnover, especially of its lipidated form LC3-II, serves also as a 
measure of macroautophagy. This modular format of the mac-
roautophagy machinery lends itself to membrane modifications 
during cell biological processes that are distinct from macroau-
tophagy. For example, the cascade of ULK1 and VPS34 complexes 
can put phosphoinositide marks on non-isolation membranes 
and the cascade of VPS34 and Atg8 lipidation complexes can 
label non-autophagosomal membranes with Atg8/LC3 (15, 16). 
While these modules are successively used by macroautophagy to 
restrict intracellular pathogens, like bacteria and viruses (17–19), 
and to degrade intracellular proteins for major histocompatibility 
complex (MHC) class II restricted antigen presentation, during 
anti-viral immune responses and CD4+ T cell education (20, 21), 
individual modules are used in alternative pathways, including 
proviral roles in infectious viral particle release, restriction of 
phagocytosed bacteria, secretion of inflammatory mediators, 
and presentation of phagocytosed antigens on MHC molecules 
(22–29). The characteristics and functional roles of the respective 
pathways will be discussed in this minireview.

Atg PROTeinS in LC3-ASSOCiATeD 
PHAgOCYTOSiS (LAP)

The most prominent of these alternative pathways is probably 
LAP. It was originally reported in 2007 that Atg8/LC3 can also 
be conjugated to phagosomal membranes, especially after the 
uptake of particulate toll-like receptor (TLR) ligands (Figure 1) 
(25). For example, the yeast cell wall component zymosan is 
often used for these assays (25, 29, 30). Apart from TLRs, a 
handful of other receptors seem to trigger LAP. These include 

the C-type lectin Dectin-1, Fc receptors during the uptake of 
antibody opsonized targets and receptors for apoptotic whole 
cells or cell fragments (30–33). During LAP, Atg8/LC3 gets con-
jugated to the cytosolic side of the phagosomal membrane and 
dissociates before phagosome fusion with lysosomes (25, 29). 
The VPS34 complex including Beclin-1 and the Atg lipidation 
machinery but not the ULK1 complex is required for this Atg8/
LC3 lipidation (29, 34). Instead reactive oxygen species (ROS) 
production by the NADPH oxidase 2 (NOX2) is either required 
for Atg8/LC3 lipidation or maintenance of Atg8/LC3 on the 
phagosomal membrane (29, 34). This also probably explains 
earlier findings that suggested ROS production by NOX2 being 
required for the recruitment of autophagosomes to endocytosed 
Salmonella bacteria (24). Furthermore, Rubicon, a negative 
regulator of autophagosome fusion with lysosomes, seems to be 
required for LAP (34, 35). In contrast to the role of Rubicon 
during autophagosome maturation, LAP vesicles have been 
reported to fuse with lysosomes more rapidly than LC3-negative 
phagosomes in mouse macrophages (25, 34, 36). This enhanced 
maturation might result from accelerated transport along 
microtubules via FYCO1 recruitment by Atg8/LC3 binding (36). 
However, in other cell types, namely human macrophages as well 
as conventional and plasmacytoid dendritic cells (DCs), LAP 
phagosomes might not rapidly fuse with lysosomes, but rather 
retain phagocytosed cargo for delayed delivery to lysosomes 
and to endogenous TLR, like TLR9, containing vesicles (29, 31). 
However, why and how phagosomes use the Atg8/LC3 mem-
brane tag to regulate their phagosome trafficking needs further 
investigations. This regulation seems to increase MHC class II 
restricted antigen presentation and to decrease inflammation. 
LAP deficiency compromised extracellular antigen presentation 
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on MHC class II molecules to CD4+ T cells (29, 30). Also in vivo, 
CD4+ T cell responses to herpes simplex virus (HSV) infection 
and ovalbumin containing apoptotic splenocyte injection were 
compromised in the absence of Atg5 in DCs (28). In addition, 
cross-presentation of antigens of Aspergillus, Chlamydia, and 
human cytomegalovirus on MHC class I molecules was found 
to be inhibited by Atg deficiency (37–39). In macrophages, the 
dominant phenotype of Atg deficiency is a hyperinflammatory 
phenotype (40), probably originating to a large extent from 
mitochondrial ROS-mediated inflammasome activation in the 
absence of macroautophagy of damaged mitochondria (41). 
Interestingly, aging of mice with macrophage deficiencies of 
Atg7, Atg5, Beclin-1, NOX2, or Rubi con developed signs of 
hyperinflammatory disease, while this phenotype was far less 
pronounced in mice with ULK1 and FIP200 deficiencies in 
macrophages (35). These findings suggested that LAP, but not 
classical macroautophagy, protects wild-type mice from this 
aging-related hyperinflammation. In addition, the development 
of lupus-like anti-DNA immune complex deposition in kidneys 
and elevated pro-inflammatory cytokine titers were detected. 
Surprisingly, the increase in inflammasome-dependent IL-1β 
production was quite pronounced, but the mechanism of LAP-
mediated inflammasome regulation remains unclear. Instead, 
deficient LAP-mediated apoptotic cell clearance might be 
mainly responsible for the observed hyperinflammatory pheno-
types, and indeed, the investigated parameters were similar to 
mice lacking apoptotic cell clearance due to deficiency of the 
TIM4 receptor in their macrophages. Thus, the VPS34 and LC3 
lipidation complexes of the macroautophagy machinery seem 
to modify phagosomes for improved antigen presentation and 
inhibition of hyperinflammation.

Atg PROTeinS in ReCePTOR 
inTeRnALiZATiOn AnD MHC CLASS i 
AnTigen PReSenTATiOn

In addition to this role of Atg8/LC3 lipidation in influencing 
phagosome fate, recent studies have suggested that recruitment 
of the receptor internalization machinery can also benefit from 
Atg8/LC3 binding (Figure 1). In pioneering studies, Alzheimer 
precursor protein (APP) was shown to be degraded by an ULK1, 
Atg6/Beclin-1, and Atg5-dependent mechanism (42). The 
internalization of APP that is required for this degradation is 
mediated by clathrin-dependent phagocytosis, which requires 
the adaptor protein 2 (AP2) complex. AP2α1 was identified as 
a Atg8/LC3 interactor by the same group (43). It contains a LIR 
motif, and mutating it abolished efficient APP internalization 
and degradation. Furthermore, phosphorylation or the APP-
degrading enzyme presenelin 1 facilitated APP degradation, 
possibly by syntaxin 17-mediated fusion with lysosomes (44, 
45). Thus, Atg8/LC3-mediated AP2 recruitment and syntaxin 
17-mediated fusion with lysosomes seem to cause efficient 
degradation of APP and its C-terminal fragment from the cell 
membrane. However, AP2 recruitment to Atg8/LC3 does not 
seem to be the only connection of the autophagic machinery to 
clathrin-mediated endocytosis. A LIR motif was also detected in 

the clathrin heavy chain itself (6). However, it remains unclear 
what functional consequences this has beyond the biochemical 
interaction. Finally, as a third component of clathrin-mediated 
endocytosis that might depend on the macroautophagy machin-
ery for its efficient recruitment to cell membrane receptors, the 
adaptor-associated kinase 1 (AAK1) was recently identified as 
an Atg8/LC3 interactor and contains predicted LIR motifs (46). 
AAK1 phosphorylates the μ subunit of the AP2 complex for 
more efficient clathrin-dependent internalization but might also 
facilitate clathrin-independent endocytosis (47, 48). In Atg5- or 
Atg7-deficient mouse DCs, MHC class I surface levels were 
increased, while B and T cells in the same mice showed no dif-
ferences in MHC class I surface levels in vivo (46). This increased 
surface expression resulted from diminished internalization, and 
AAK1 was not efficiently recruited to MHC class I molecules in 
Atg5- or Atg7-deficient DCs. This resulted in increased CD8+ 
T cell stimulation in vitro and elevated CD8+ T cell responses to 
influenza A virus (IAV) and lymphocytic choriomeningitis virus 
infection in  vivo, as well as improved immune control of IAV. 
However, not only classical MHC class I molecules are affected 
by diminished clathrin-dependent receptor internalization in the 
absence of Atg8/LC3 lipidation but also the non-classical MHC 
class I molecule CD1d gets stabilized on the cell surface of Atg5-
deficient DCs (49). These non-classical MHC class I molecules 
present glycolipids to NKT cells (50). The increased CD1d sur-
face stabilization in the absence of Atg-dependent internalization 
led to increased NKT cell stimulation in vitro and in vivo (49). 
Furthermore, the NKT cell-dependent pathogen Sphingomonas 
paucimobilis was more efficiently restricted in mice with Atg5 
deficiency in their DCs. These studies suggest that Atg/LC3 
lipidation assists clathrin-mediated phagocytosis by recruiting 
different components of the respective endocytic pathway to the 
cell membrane.

Atg PROTeinS in inFLAMMATORY 
MeDiATOR AnD AnTigen ReLeASe

The above-described pathways still utilize Atg proteins for 
lysosomal degradation, albeit not through intracellular delivery, 
but degradation of endocytosed cargo and surface receptors. 
However, as a non-catabolic function of the macroautophagy 
machinery, it was noted that antigen release for efficient cross-
presentation on MHC class I molecules requires Atgs in antigen 
donor cells (51, 52). This role during unconventional secretion 
was first demonstrated for IAV-infected cells or tumor cells in 
these two initial studies. The respective vesicles, which might be 
related to Atg8/LC3 containing exosomes that originate from 
multivesicular bodies (53), can be forced to be released in higher 
numbers by inhibiting lysosomal degradation and to incorporate 
defective ribosomal products by proteasome inhibition (54, 55). 
Therefore, they have been coined defective ribosomal products-
containing autophagosome-rich blebs (DRibbles). Moreover, 
they contain some TLR and NOD2 agonists to activate antigen-
presenting cells, at the same time as they transfer antigen (56). 
These formulations have been used to vaccinate mice against a 
variety of tumor challenges (57–60). Thus, autophagic cargo gets 
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FigURe 2 | The macroautophagy machinery supports unconventional 
exocytosis. Atg8/LC3-conjugated membranes facilitate the release of 
packages of picornaviruses (poliovirus and coxsackievirus) and of 
herpesviruses [varicella zoster virus (VZV) and Epstein–Barr virus (EBV)]. 
Unconventional ER targeting signal peptide-independent secretion of 
caspase-processed IL-1β also required Atg8/LC3 lipidation for release. Golgi 
reassembly and stacking proteins (GRASPs) and the SNAREs Sec22b, 
syntaxin 3 and 4, and SNAPs 23 and 29 are involved in this release and 
fusion of Atg8/LC3-coupled membranes with the cell membrane.
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released from transformed and infected cells in vesicles that can 
be efficiently taken up and activate antigen-presenting cells to 
induce antitumor immune responses.

These findings point toward unconventional ER targeting sig-
nal peptide-independent secretion by the autophagic machinery. 
Indeed, acyl coenzyme A-binding protein has been described 
to be secreted by yeast and ameba in an autophagy-dependent 
fashion (61, 62). This secretion is Golgi reassembly and stacking 
protein (GRASP) dependent. Similarly, the secretion of caspase-
processed IL-1β is also dependent on Atgs in mammalian cells 
(Figure  2) (26, 27). It is worthwhile pointing out that the net 
outcome of Atg deficiency in myeloid cells as a major source of 
inflammasome-dependent IL-1β release is usually hyperinflam-
mation (40) and that IL-1β usually leaves these cells during 
pyroptosis via gasdermin-dependent cell lysis (63, 64). However, 
in cells in which mature IL-1β is expressed without inflamma-
some activation and pyroptosis, IL-1β is released in a GRASP- 
and Atg-dependent fashion that involves the SNAREs Sec22b, 
syntaxin 3 and 4, as well as SNAPs 23 and 29 for membrane fusion  
(65). The cell type and physiological condition under which such 
Atg-dependent IL-1β secretion, however, occurs still needs to 
be identified. Additional cargo for this unconventional secre-
tion pathway includes ferritin (65), HMGB1 (66), and secretory 
lysosomes (67). These studies suggest that Atg proteins support 

unconventional secretion, but how substrates are selected for 
this secretion versus degradation by autophagy still needs to be 
characterized.

Atg PROTeinS in viRAL ReLeASe

Viruses might be able to teach us how Atg-dependent secretion 
versus degradation can be regulated, because a number of them 
seem to harness Atg8/LC3-coupled membranes for their release 
(16). The first virus that was found to stabilize Atg8/LC3-associated 
membranes was a picornavirus, i.e., poliovirus (68). The release of 
poliovirus was dependent on these structures (69), and it was pro-
posed that viral RNA replication and capsid assembly occurs in 
Atg8/LC3-coated double-membrane-surrounded vesicles, which 
then fuse with the cell membrane after acidification (70). Although 
poliovirus and related picornaviruses are non-enveloped, it was 
recently observed that they are released from cells in packages 
of multiple viral particles enveloped in a lipidated Atg8/LC3-
positive membrane (Figure 2), topologically similar to the inner 
autophagosome membrane (23). Similarly, the closely related 
picornavirus coxsackievirus B is also released in packages that 
are surrounded with LC3-II-containing membranes (71). These 
packages might explain why coxsackievirus B spreads efficiently 
through cultures of cells with an intact macroautophagy machin-
ery (72). This benefit for viral dissemination could result from 
protection by the surrounding Atg8/LC3-coupled membrane 
and its phosphatidylserine (PS) content in the outer membrane 
leaflet, which allows for efficient uptake by phagocytes via scav-
enger receptors that usually clear apoptotic cells (23). Indeed, ER 
and Golgi membranes seem to have substantial amounts of PS 
in both inner and outer leaflet, and sampling from this source of 
autophagic membranes might endow viruses with an envelope 
lipid composition that is beneficial for infection via clearance 
pathways for apoptotic cells (73).

Herpesviruses might also use this pathway for envelope acqui-
sition. They acquire their second and final envelope from ER and 
Golgi membranes in the cytosol (74). Indeed, a γ-herpesvirus, 
i.e., Epstein–Barr virus (EBV), was found to stabilize Atg8/
LC3-coupled membranes during lytic replication (22, 75). Loss 
of Atg proteins inhibited the release of infectious EBV particles  
(22, 75), and viral DNA was trapped in the cytosolic fraction 
(22). Similar to poliovirus packages, lipidated Atg8/LC3 enriched 
with EBV particle purification from the supernatant of virus 
replicating (Figure  2), but not latently EBV genome carrying 
cells (22). Furthermore, Atg8/LC3 could be observed in purified 
virus particles by immunoelectron microscopy (22). However, 
EBV is not the only herpesvirus that seems to use autophagic 
membranes. The α-herpesvirus varicella zoster virus (VZV) also 
exits cells with Atg8/LC3-coated membranes, and its replication 
is inhibited by Atg silencing (76, 77). It is worthwhile noting 
that apart from EBV and VZV, α- and γ-herpesviruses contain 
also members, namely HSV and Kaposi sarcoma-associated 
herpesvirus (KSHV), which instead of utilizing Atg-dependent 
membranes inhibit their generation (78–80). Even though these 
viruses are closely related, their differences on cellular tropism 
might dictate why HSV and KSHV rather inhibit, while VZV and 
EBV utilize autophagic membranes during replication.
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As a last example for redirecting autophagic membranes to 
the cell surface, influenza A virus (IAV) infection will be dis-
cussed. IAV infection also accumulated Atg8/LC3-conjugated 
membranes upon infection (81–83). Autophagosomes did not 
fuse with lysosomes upon IAV infection, but instead accumulated 
around the nucleus, and Atg8/LC3-positive membranes were 
rerouted to the cell membrane (81, 82). Both accumulation and 
rerouting are caused by matrix protein 2 (MP2) of IAV. MP2 
contains a LIR motif that is required for Atg8/LC3-positive 
membrane accumulation on the cell surface (82), and MP2 pro-
ton channel activity contributes to the block in lysosome fusion 
and perinuclear accumulation of autophagosomes (83). This 
auto phagic membrane rerouting provides sufficient membranes 
for filamentous budding of IAV, which increases the stability of 
the resulting IAV particles, possibly via changing the membrane 
composition of the IAV envelope (82). However, Atg8/LC3 itself 
is not incorporated into infectious IAV particles. Nevertheless, 
Atg proteins seem to be used by viruses to select membranes for 
their envelopes to improve viral transmission.

COnCLUSiOn AnD OUTLOOK

Macroautophagy uses a membrane remodeling machinery of Atg 
proteins to form autophagosomes around cargo that is destined 
for lysosomal degradation. This machinery acts in a modular for-
mat for activation of PI3K activity by phosphorylation via ULK1, 
for PI3P deposition on membranes, which is then used for the 

recruitment of the Atg8/LC3 lipidation machinery. These mod-
ules of autophagosome formation can be used in other membrane 
remodeling pathways, in which substrates need to be recruited 
to lipid bilayers via PI3P or Atg8/LC3. For example, LAP uses 
only the PI3K and Atg8/LC3 lipidation modules. Future research 
will need to unravel how the Atg modules are distributed to the 
different tasks and how the resulting membrane marks result 
in different cell biological outcomes. A detailed understanding 
might allow us to harness Atg proteins for therapeutic approaches 
against infectious diseases, cancer, neurodegeneration, hyperin-
flammatory diseases, and aging.
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