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TRIM25 is an E3 ubiquitin ligase enzyme that is involved in various cellular processes, 
including regulation of the innate immune response against viruses. TRIM25-mediated 
ubiquitination of the cytosolic pattern recognition receptor RIG-I is an essential step for 
initiation of the intracellular antiviral response and has been thoroughly documented. In 
recent years, however, additional roles of TRIM25 in early innate immunity are emerging, 
including negative regulation of RIG-I, activation of the melanoma differentiation- 
associated protein 5–mitochondrial antiviral signaling protein–TRAF6 antiviral axis and 
modulation of p53 levels and activity. In addition, the ability of TRIM25 to bind RNA may 
uncover new mechanisms by which this molecule regulates intracellular signaling and/
or RNA virus replication.
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iNTRODUCTiON

The innate immune response is the first line of defense against invading pathogens. At the cel-
lular level, this response is stimulated by several cellular “pattern recognition receptors” (PRRs) 
that recognize microbial-specific molecules termed “pathogen-associated molecular patterns” 
(PAMPs). Bacterial PAMPs include lipopolysaccharide (LPS), flagellin, peptidoglycan, and cyclic 
dinucleotides, among others. Although viral proteins are able to stimulate specific PRRs, the main 
viral PAMPs are nucleic acids, including double-stranded RNA (dsRNA), uncapped single-stranded 
RNA, and viral DNA (1–3). Two main groups of PRRs that recognize virus-derived nucleic acids 
have been described according to their location: (1) membrane-spanning toll-like receptors (TLRs), 
which detect viral RNA or DNA in endosomes and (2) cytoplasmic sensors, including RIG-I-like 
receptors (RLRs), NOD-like receptors (NLRs), which recognize cytoplasmic viral RNA, and a 
group of structurally unrelated intracellular viral DNA sensors (1) (Figure 1). Binding of PAMPs to 
PRRs leads to the activation of intracellular signaling pathways that produce type I interferons and 
inflammatory cytokines (4). These pathways converge at the level of several kinases of the inhibitor 
of nuclear factor kappa-B [Ikβ] kinase (IKK) family: the canonical complex composed of IKKα, 
IKKβ and the regulatory subunit IKKγ/NEMO, and the non-canonical IKKε and TANK-binding 
kinase-1 (TBK1) (Figure 1). The IKKα/β/γcomplex activates nuclear factor kappa B (NF-κB), while 
TBK1/IKKε activates IFN-regulatory factors 3 and 7 (IRF3/7) (5, 6). In addition, PRRs trigger 
phosphorylation of several mitogen-activated protein kinases (MAPK), which leads to activation 
of activator protein-1 (AP-1). Upon translocation into the nucleus, the transcription factors NF-κB, 
IRF3/7, and AP-1 induce the expression of IFNs and other cytokines and antiviral molecules (7) 
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FigURe 1 | Main pathways of antiviral innate immunity. After recognition of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors 
(PRRs) [cGAS, RIG-I-like receptors (RLRs), toll-like receptors (TLRs), NOD-like receptors (NLRs)], the signal is propagated through adaptor proteins (STING, MAVS, 
MyD88, TRIF) to members of the TRAF ubiquitin E3 ligase family (TRAF3/6) and to kinase complexes (IKKα/β/γ, TBK1/IKKε, TAK1/TAB 1/2/3, MAPKs), which trigger 
the activation of IRF3/7, NF-κB and AP-1 transcription factors and the expression of IFN-I, proinflammatory cytokines, and other antiviral genes. The activity or 
stability of most of these proteins is regulated by ubiquitination/deubiquitination processes.
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(Figure  1). These molecules not only inhibit viral replication, 
assembly, and spread but also play a crucial role in activating the 
adaptive immune response (8).

The innate immune response is crucial for limiting viral infec-
tions, but it has to be tightly regulated to avoid immune-mediated 
tissue damage, excessive inflammation, and auto-immunity  
(9–11). In this regard, the complex interactions between mol-
ecules of intracellular signaling networks leading to the antiviral 
response are regulated by various mechanisms, of which post-
translational protein modification is one of the most relevant. 
It has been known for a long time that phosphorylation plays a 
crucial role in the regulation of such networks but, in recent years, 
reversible conjugation to ubiquitin and ubiquitin-like proteins 

has emerged as an additional and central mechanism regulating 
intracellular signaling (12–16).

UBiQUiTiNATiON/DeUBiQUiTiNATiON 
PROCeSSeS ADJUST THe iNNATe 
iMMUNe ReSPONSe

Ubiquitin is a 76 amino acid (8.5  kDa) protein that can be 
covalently ligated to lysine residues of a target protein through 
its conserved C-terminal di-glycine motif (17). Ubiquitination 
is a three-step enzymatic process involving three enzymes 
with distinct functions: E1 activating, E2 conjugating, and  
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FigURe 2 | Ubiquitination/deubiquitination regulates intracellular immune pathways. (A) Ubiquitination is a three-step enzymatic process by which ubiquitin is 
covalently attached to target proteins, including ubiquitin itself. This process is reversed by deubiquitinases (DUBs). The activity of several molecules (p65, RIG-I, 
TRAF3/6, NEMO, IRF3/7, etc.) participating in intracellular immune signaling pathways is regulated by ubiquitination/deubiquitination modifications. E1, ubiquitin 
activating enzyme; E2, ubiquitin conjugating enzyme; E3, ubiquitin ligase. (B) Ubiquitin linkage types and their functional roles. Different ubiquitin linkages led to 
different conformations of ubiquitin chains that are recognized by proteins containing ubiquitin-binding domains. (C) Schematic representation of a tripartite motif 
(TRIM) molecule, including the conserved N-terminal TRIM [really interesting new gene (RING), B box, and coiled-coil (CC) domains] and a C-terminal variable 
domain (CTD). Ubiquitin-loaded E2 and substrate are recognized by the RING and CTD domains of TRIM, respectively. This brings both molecules in close proximity 
and facilitates substrate ubiquitination. Ubiquitin molecules in (A–C) are represented by a U inside a red circle. The number of Us does not represent the actual level 
of ubiquitination.
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E3 ligating (Figure  2A). The first step is the formation of a 
thioester linkage between ubiquitin and the E1. In the next 
step, ubiquitin is transferred from E1 to the active-site cysteine 
of E2. Finally, E3 assists the formation of an isopeptide bond 
between the C-terminal glycine of ubiquitin and a lysine residue 
of a target protein (18–21). Ubiquitin itself can be ubiquitinated 
and form polyubiquitin chains (polyubiquitination). Ubiquitin 
contains seven lysine residues (K6, K11, K27, K29, K33, K48, 
and K63) on which diverse chain types of polyubiquitin can 
be assembled (20) (Figure  2B). In addition, ubiquitin chains 

can also be linked in a linear (M1) fashion by attachment of 
the C-terminal glycine of an ubiquitin to the N-terminal 
methionine of another ubiquitin, resulting in a head-to-tail 
polyubiquitination (22) (Figure  2B). Different ubiquitin 
linkages fulfill different functions (Figure 2B). K48- and K63-
linked polyubiquitin chains are the best characterized. K48 
linkage targets proteins for proteasomal degradation, whereas 
K63 and M1 linkages regulate intracellular immune signals 
(14–16, 23, 24). The other linkage types are referred as “atypi-
cal” and have not been studied in much detail (25). Each chain 
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type has a different three-dimensional conformation that is 
recognized specifically by ubiquitin-binding proteins (UBPs). 
This recognition is essential for the transmission of intracellular 
signaling (26–28). Recently, it has been reported that in addi-
tion to the above described covalently attached polyubiquitin 
chains, unanchored polyubiquitin chains also contribute to the 
activation of intracellular pathways leading to the onset of the 
antiviral response (29, 30).

Ubiquitination is reversed by deubiquitinases (DUBs) that 
detach ubiquitin from the substrate (Figure  2A). This usually 
leads to termination of immune signaling. In this way, ubiquitina-
tion/deubiquitination processes dynamically regulate the early 
innate immune response and prevent immune-mediated host 
damage (13).

TRiPARTiTe MOTiF (TRiM) PROTeiNS 
ARe e3 UBiQUiTiN LigASeS

Tripartite motif proteins have E3 ubiquitin ligase activity and 
form a large family with over 70 members in humans. Their 
name is derived from the fact that they share three conserved 
N-terminal domains: a really interesting new gene (RING) 
domain, one or two B-Boxes (B1/B2) and a coiled-coil (CC) 
domain. By contrast, the C-terminal region is of variable com-
position (31, 32) (Figure 2C). The RING and B-box domains are 
both cysteine–histidine-rich domains that bind zinc atoms. The 
RING domain recognizes the ubiquitin-loaded E2 conjugating 
enzyme and promotes ubiquitin conjugation to target proteins 
(32–35) (Figure  2C). Based on conserved structural features 
with the RING domain, it has been suggested that the B-boxes 
could also contribute to E3 ubiquitin ligase activity of TRIM 
proteins (36, 37). In some TRIMs, B-box domains mediate self-
association, which may be important for TRIM oligomerization 
(38–40). The CC domain is necessary for dimerization of TRIM 
ligases (41). Finally, the variable C-terminal domain may medi-
ate interaction with specific substrates (Figure  2C). The most 
common C-terminal TRIM domain is the PRY-SPRY or B30.2 
domain, which has been proposed to be involved in protein–pro-
tein interactions and/or RNA binding (42).

Tripartite motif E3 ligases regulate many cellular processes, 
including development, cell growth, differentiation, cancer, and 
innate immune response (32, 43–45). Several TRIMs have been 
reported to exhibit antiviral activity either directly or through 
regulation of antiviral cell signaling (45–53).

TRiM25 RegULATeS iNTRACeLLULAR 
SigNALiNg

TRIM25 is a type I and type II IFN-inducible E3 ligase (54) that 
was first identified as an “estrogen-responsive finger protein” 
(EFP) (55). It is composed of a RING domain, two B-boxes 
domains, a CC dimerization domain and a C-terminal SPRY 
domain (Figure 3).

TRIM25 is involved in numerous cellular processes, such as 
development, cancer, and innate immunity (56). Regulation of 
RIG-I signaling by K63-linked polyubiquitination is one of the 
best-characterized roles of TRIM25 (57). Recognition of viral 

RNA by RIG-I exposes its 2CARD domain for binding to the 
C-terminal SPRY domain of TRIM25 (Figure 3). The RING E3 
ligase activity of TRIM25 then conjugates K63-polyubiquitin 
chains to residues K99, K169, K172, K181, K190, and K193 of 
RIG-I (57–59) (Figure 3). The K63-linked ubiquitin chains on 
RIG-I promotes its interaction with “mitochondrial antiviral 
signaling protein” (MAVS, also known as CARDIF, IPS1, or 
VISA) and subsequent downstream activation of intracellular 
antiviral signaling (57, 59, 60) (Figure 3). K172 seems to play a 
central role in this process, since the K172R mutation severely 
reduces ubiquitination of the CARD domain of RIG-I and subse-
quent binding to MAVS (57, 59). Interestingly, phosphorylation 
of the CARD domains of RIG-I prevents CARD ubiquitination, 
indicating that phosphatases need to first dephosphorylate 
CARD-RIG-I and allow TRIM25-mediated polyubiquitina-
tion (61–64). In addition to anchored ubiquitin, RIG-I can be 
activated by binding through its CARD domains to unanchored 
ubiquitin chains assembled by TRIM25 (30). Following RIG-I 
activation, TRIM25-mediated K48-linked ubiquitination and 
subsequent proteasomal degradation of the larger MAVS iso-
form seems to be required for the downstream signaling that 
leads to type I IFN (65), although other studies have shown 
opposite results (66) (Figure 3). Studies in mouse embryonic 
fibroblasts deficient in TRIM25 demonstrated its importance 
in RIG-I activation and IFN-β production in response to viral 
infection (57). All those experiments demonstrated the essential 
role of TRIM25 in RIG-I activation and signaling. Nevertheless, 
the RIPLET E3 ligase has also been shown to be involved in 
RIG-I polyubiquitination and sustained activation (67, 68). 
RIPLET, such as TRIM25, has an N-terminal RING domain 
and a C-terminal SPRY domain. However, RIPLET lacks B-box 
domains and does not belong to the TRIM family. Although it 
has been reported that RIPLET can mediate K63 polyubiqui-
tination of K172 in the CARD domain of RIG-I (67), it does 
not seem that TRIM25 and RIPLET play a redundant role in 
the activation of RIG-I, since RIPLET mainly generates K63 
ubiquitin chains in the RIG-I C-terminal regulatory domain 
(68, 69). Some redundancy in RIG-I activation by different 
TRIM proteins may, however, exist. For example, TRIM4, which 
belong to the same subgroup as TRIM25 in the TRIM protein 
family and share with it similar structural characteristics, can 
also target RIG-I for K63 polyubiquitination in K154, K164, and 
K172 of its CARD domain, which results in the activation IRF3 
and NF-κB, and IFN-β production (70).

TRIM25 may, however, have a dual role in RIG-I regulation, 
as it has been recently reported that TRIM25 negatively regulates 
RIG-I through stabilization of the ubiquitin-like protein FAT10. 
FAT10 non-covalently binds to RIG-I and sequesters it from the 
signaling platform inhibiting IRF3 and NF-κB activation (71) 
(Figure 3). This mechanism may contribute to limit the inflam-
matory response and reduce host damage, since FAT10 is accu-
mulated subsequently to production of inflammatory cytokines 
late during virus infections (71).

TRIM25 also functions as an E3 ligase to conjugate the ubiq-
uitin-like protein ISG15 to target proteins in a process termed 
ISGylation (72). Furthermore, auto-ISGylation of TRIM25 
negatively regulates its ISG15 E3 ligase activity (73) (Figure 3). 
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FigURe 3 | TRIM25 participates in several innate immune-related processes and its activity is regulated by cellular and viral proteins. See text for detailed 
description of the individual processes. Ubiquitin molecules are represented by a U inside a red circle. Interactions and inhibitory processes are represented by red 
lines. The number of Us does not represent the actual level of ubiquitination.
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More than 300 proteins, both cellular and pathogen-encoded, 
have been identified as targets for ISG15 conjugation (74). In 
general, ISGylation, as well as free ISG15, has broad-spectrum 
antiviral effects (75–83), although a pro-viral effect has been 
described in the case of hepatitis C virus (84–86). Furthermore, 
human ISG15 has been shown to stabilize USP18, a negative 
regulator of the type I IFN receptor (87). In addition, it has 
been reported that some viruses have developed mechanisms 
to counteract the antiviral actions of ISG15, reflecting the 
importance of this molecule in the response against virus 
infections (88, 89).

In addition to RIG-I, TRIM25 also positively regulates the 
melanoma differentiation-associated protein 5 (MDA5)–MAVS–
TRAF6 antiviral axis leading to activation of NF-κB (90). Also, it 
has been recently reported that the antiviral action of zing-finger 
antiviral protein (ZAP), a cellular protein that inhibits viral 
mRNAs translation, is enhanced by interaction with the SPRY 
domain of TRIM25 (91, 92).

TRIM25 may also associate with p53, and it has been proposed 
that this association promotes p53 degradation, since TRIM25 
silencing increased the accumulation of p53 and reduced prolif-
eration and migration of lung cancer cells (93). By contrast, other 
study showed that TRIM25 enhanced p53 levels by preventing 

their ubiquitination and proteasomal degradation (94). Despite 
increasing p53 levels, TRIM25 also inhibited p53 activity by pre-
venting its acetylation by p300, an essential modification for the 
transcriptional activation of p53 target genes (Figure 3) (94). In 
any case, the regulation of p53 levels and/or activity by TRIM25 
may have a deep impact on the innate immune response against 
infecting pathogens, as it has been reported that p53 upregulates 
the expression of interferon-stimulated genes (ISGs) either 
directly or through upregulation of IRF9, a component of the ISG 
factor 3 (ISGF3) (95–100).

An interesting observation is that TRIM25 can bind RNA 
through its central CC domain (101–103) (Figure 3). This opens 
new possibilities by which TRIM25 may influence intracellular 
signaling and/or replication of RNA viruses. It has been proposed 
that TRIM25 may use the RNA as a scaffold to get close to and 
modify its targets, including RIG-I and viral ribonucleoproteins 
(56). By contrast, as described below, some RNA viruses may take 
advantage of the capacity of TRIM25 to bind RNA to inhibit its 
function (104).

In conclusion, it is becoming evident that TRIM25 acts on 
multiple steps of signaling pathways inside the cell. Both positive 
and negative regulations of these pathways have been reported, 
adding complexity and relevance to the role of TRIM25 in the 
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intracellular innate response. Pieces of evidence of the physi-
ological relevance of TRIM25 in vivo, however, are indirect. For 
example, TRIM25 polymorphisms have been associated with 
differences in the humoral response and secretion of some 
cytokines following measles virus vaccination in children (105); 
and, as described below, particular virus infections of mice also 
suggest a role of TRIM25 in regulating RIG-I in vivo (66, 106). 
Finally, the fact that TRIM25 has been under positive selection 
pressure in primates (107, 108) and that it is a targeted by some 
viral proteins (see next section) also indicates an important role 
of this molecule in the in vivo immunity against viruses.

TRiM25 ACTiviTY iS CONTROLLeD BY 
CeLLULAR AND viRAL PROTeiNS

A strong innate immune response, including RIG-I-mediated 
signaling, is necessary for virus clearance but it has to be tightly 
regulated to prevent excessive inflammation. Therefore, it is 
not surprising that immune signaling pathways are regulated 
by numerous positive and negative interactions, many of 
which are targeted by virus proteins in order to facilitate virus 
replication.

Cyclophilin A (CypA), a peptidyl-prolyl cis/trans isomerase, 
positively regulates RIG-I signaling by two different mechanisms 
(66): (a) CypA promotes the interaction between RIG-I and 
TRIM25, which results in increased TRIM25-mediated K63-
linked ubiquitination and activation of RIG-I (Figure 3) and (b) 
CypA competes with TRIM25 for the interaction with MAVS, 
which reduces TRIM25-induced K48-linked ubiquitination and 
proteasomal degradation of MAVS (Figure  3). Accordingly, 
infection of CypA knockout (KO) mice with Sendai virus resulted 
in reduced expression of type I IFNs and ISGs, higher viral load, 
and severer histopathology in lungs, as compared with wild-type 
infections (66). However, it remains to be elucidated whether 
these in vivo effects in KO mice are mediated by the lack of the 
CypA-dependent regulation of TRIM25 activity or by a different 
mechanism.

The linear ubiquitination assembly complex (LUBAC), com-
posed of the E3 ligases heme-oxidized IRP2 ubiquitin ligase-1 
(HOIL-1L) and HOIL-1-interacting protein (HOIP), negatively 
regulates RIG-I signaling using two different mechanisms 
(109): (a) LUBAC ubiquitinates the C-terminal SPRY domain 
of TRIM25, leading to TRIM25 degradation by the protea-
some (Figure  3). TRIM25 ubiquitination depends on the RBR 
(RING-IBR-RING) domains of both HOIL-1L and HOIP; (b) The 
Npl4-type zinc finger (NZF) domain of HOIL-1L competes with 
TRIM25 for RIG-I interaction, thereby blocking ubiquitination 
and activation of RIG-I by TRIM25 (109) (Figure 3). Recently, 
the ubiquitin-specific protease 15 (USP15), a TRIM25-interacting 
protein, was reported to neutralize the inhibitory effect of LUBAC 
(110). USP15 binds to TRIM25 in viral infections, detaching the 
K48-linked ubiquitin chains assembled by LUBAC on TRIM25, 
thereby stabilizing the TRIM25 protein levels and promoting a 
sustained antiviral response (Figure 3).

TRK-fused gene (TFG) protein, which is another protein that 
interacts with TRIM25, has also been reported to inhibit the 

antiviral signaling mediated by RIG-I, although it is not sure that 
the interaction between TFG and TRIM25 itself is imperative for 
that effect (111).

It has been reported that some viral proteins are able to inter-
act with TRIM25 and inhibit RIG-I activation. For example, 
the non-structural protein 1 (NS1) of influenza A virus (IAV) 
interacts with the CC domain of TRIM25 preventing its dimeri-
zation and K63-linked ubiquitination of the RIG-I CARDs, 
thereby suppressing RIG-I signal transduction (60, 106, 112) 
(Figure 3). This interaction seems to be mediated by residues 
E96/E97 in NS1, since an E96A/E97A NS1 mutant cannot 
interact with TRIM25, and also did not inhibit ubiquitination-
mediated RIG-I signaling (106). Interestingly, in contrast to the 
wild-type virus, the E96A/E97A NS1 mutant was not virulent 
in mice (106). Since residues 96 and 97 have not been associ-
ated with other NS1 functions, it is tempting to speculate that 
the interaction between TRIM25 and NS1 is required for IAV 
virulence. In addition to its role in inhibiting RIG-I activation, 
the TRIM25-binding domain of IAV NS1 is needed for suppres-
sion of IL-1β secretion mediated by NLRP3 in macrophages, 
suggesting that TRIM25 may also be involved in the activation 
of this pathway (113, 114).

Another example of TRIM25 regulation by viral proteins is the 
N proteins of the severe acute respiratory syndrome coronavirus 
(SARS-CoV), which binds to the SPRY domain of TRIM25, 
thereby inhibiting activation of RIG-I by TRIM25 ubiquitination 
(115) (Figure 3).

Finally, it has been recently reported that subgenomic RNA 
from dengue virus binds TRIM25, preventing its USP15-
dependent deubiquitination necessary for efficient RIG-I activa-
tion (104).

CONCLUDiNg ReMARKS

Emerging data show that the mechanisms by which TRIM25 
may modulate the innate immune response against viruses are 
multiple and more complex than previously thought. TRIM25 
has a dual role in RIG-I regulation: while TRIM25-mediated 
ubiquitination of RIG-I is essential for the transmission of down-
stream signaling, TRIM25 stabilization of FAT10 blocks active 
RIG-I. In addition, TRIM25 inhibits p53 acetylation, a modifica-
tion indispensable for p53 antiviral activity. Finally, the ability 
of TRIM25 to bind RNA suggests new lines of investigation to 
uncover additional mechanisms of action and potential targets of 
this molecule. This complexity also increases the opportunities to 
develop novel strategies to regulate the innate immune response 
in order to reduce viral replication and/or avoid undesired exces-
sive inflammation.
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