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Natural killer (NK) cells are innate cytotoxic lymphoid cells that actively prevent neoplastic 
development, growth, and metastatic dissemination in a process called cancer immu-
nosurveillance. An equilibrium between immune control and tumor growth is maintained 
as long as cancer cells evade immunosurveillance. Therapies designed to kill cancer 
cells and to simultaneously sustain host antitumor immunity are an appealing strategy to 
control tumor growth. Several chemotherapeutic agents, depending on which drugs and 
doses are used, give rise to DNA damage and cancer cell death by means of apoptosis, 
immunogenic cell death, or other forms of non-apoptotic death (i.e., mitotic catastro-
phe, senescence, and autophagy). However, it is becoming increasingly clear that they 
can trigger additional stress responses. Indeed, relevant immunostimulating effects of 
different therapeutic programs include also the activation of pathways able to promote 
their recognition by immune effector cells. Among stress-inducible immunostimulating 
proteins, changes in the expression levels of NK cell-activating and inhibitory ligands, as 
well as of death receptors on tumor cells, play a critical role in their detection and elimina-
tion by innate immune effectors, including NK cells. Here, we will review recent advances 
in chemotherapy-mediated cellular stress pathways able to stimulate NK cell effector 
functions. In particular, we will address how these cytotoxic lymphocytes sense and 
respond to different types of drug-induced stresses contributing to anticancer activity.

Keywords: natural killer cells, immunochemotherapy, cancer, stress, natural killer cell activating ligands, damage-
associated molecular patterns, death receptors, PDL-1

inTRODUCTiOn

Natural killer (NK) cells represent a crucial component of antitumor innate immune response dis­
playing cytotoxic functions and secreting several cytokines/chemokines (1, 2).

Natural killer cell cytotoxic activity regulation depends on an integrated interplay between 
inhibitory receptors and numerous activating receptors acting in concert to efficiently eliminate 
tumor cells.

Relevant activating receptors for tumor cell recognition are NKG2D that recognizes MICA/B and 
ULBPs proteins, orthologs of the mouse RAE1 molecules, DNAM­1 that binds two ligands named 
poliovirus receptor (PVR/CD155) and Nectin­2 (CD112), and the receptors NKp30, NKp44, and 
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NKp46 belonging to the natural cytotoxicity receptors and shown 
to interact with a broad spectrum of ligands (3).

Natural killer cells also express inhibitory receptors for mol­
ecules of the major histocompatibility complex (MHC) class I, 
which are Ly49 receptors in mice, killer cell immunoglobulin­like 
receptors (KIRs) that bind to HLA­A, ­B, and ­C molecules in 
humans, and the CD94­NKG2A heterodimer in both species (4). 
In addition, NK cells express two inhibitory receptors for PVR, 
called TACTILE (CD96) and TIGIT, that counterbalance the 
DNAM­1­mediated activation of NK cells (5).

The activation of NK cells leads to the release of cytotoxic gran­
ules containing perforin and various granzymes and to cytokine 
production, most prominently interferon­γ (IFN­γ) (6–8). In 
addition, the expression at the cell surface of death­inducing 
ligands belonging to the tumor necrosis factor (TNF) family, such 
as Fas ligand (FasL) and TNF­related apoptosis­inducing ligand 
(TRAIL), also drives the activation of the caspase enzymatic  cascade 
through the binding to the death receptors (DRs), namely, Fas, DR4 
(TRAIL­RI), and DR5 (TRAIL­RII), on target cells (9, 10).

More recently, immunological checkpoint molecules com­
monly associated with T cells, such as CTLA­4 and PD­1, have 
been described on NK cells as negative regulators of their immune 
function (11–13).

Conventional chemotherapies were initially designed to 
produce antiproliferative or cytotoxic effects on dividing tumor 
cells. However, as result of numerous demonstrations indicating 
that an endogenous antitumor immunity is essential for complete 
remission during tumor therapy (14–16) several antineoplastic 
drugs, even at low doses, have been reconsidered also as potential 
immunomodulatory agents (17).

In this context, it has becoming always more evident that 
dying or stressed cells release or expose stress molecules, called 
damage­associated molecular patterns (DAMPs) that can alert the 
immune system (18). Moreover, many chemotherapy­mediated 
stress pathways modulate the expression of NK cell activating and 
inhibitory ligands, rendering tumor cells more immunogenic.

In this review, we will summarize the effects of different 
chemotherapeutic agents on the activity of NK cells, emphasiz­
ing the immunomodulatory effects of both conventional and low 
concentrations of drugs at the interface between stressed or dying 
cancer cells and the immune system, in the attempt of exploiting 
them for therapeutic purposes.

ReGULATiOn OF nK CeLL-ACTivATinG 
AnD -inHiBiTORY LiGAnD eXPReSSiOn 
BY CHeMOTHeRAPeUTiC DRUGS

A number of evidence indicate that chemotherapy­induced sen­
sitization of tumor cells to immune effectors plays an important 
role in anticancer therapy. Indeed, different types of drug­induced 
stresses can modulate the expression of NK  cell­activating/or 
­inhibitory ligands on cancer cells thus affecting their recognition 
and elimination by NK cells (Table 1). Besides genotoxic drugs or 
radiotherapy, many other pharmacological compounds already 
approved for the treatment of different malignancies or entered in 
clinical trials have been described to increase NK cell­activating 

ligand expression (19–27). Moreover, most of these drugs are 
also able to downregulate NK cell­inhibitory ligand expression, 
so that different and multiple mechanisms concur to make tumor 
cells more susceptible to NK cell­mediated lysis (28–32).

In the case of genotoxic drugs or DNA replication inhibitors, 
the mechanisms regulating the NKp30 ligand B7­H6 expression 
on human cancer cells remain largely unknown (23), while much 
evidence indicate a major role for the DNA damage response 
(DDR) pathway in the upregulation of the stimulatory ligands 
for the NKG2D and DNAM­1 immunoreceptors. In addition, 
ionizing radiations represent classical stimuli to induce NKG2D 
ligand upregulation, through the induction of the DDR (33). The 
activation of the kinases ATM/ATR and the production of reac­
tive oxygen species converge on the E2F1 factor able to activate 
MICA, MICB, and PVR transcription on multiple myeloma 
(MM) cells by doxorubicin and melphalan (34). On the other 
hand, a different pathway governing NKG2DLs expression by 
chemicals known to induce genotoxic stress has been character­
ized in murine lymphoma cells: DDR drives to the presence of 
cytosolic DNA and to STING/TBK1­dependent activation of 
the transcription factor IRF3, responsible for the upregulation 
of RAE1 expression (35). Interestingly, in murine leukemia cells, 
concomitantly to NKG2D ligand upregulation, DDR­activating 
therapeutic agents cause a loss of the inhibitory NK cell ligand 
Clr­b, thus enhancing the cytotoxicity mediated by NKRP1B+ 
NK cells (36).

Non­lethal heat shock mimicking hyperthermia therapy can 
promote NKG2DL expression both in human and murine cancer 
cells but with different mechanisms. MICA and MICB upregula­
tion occurs at the transcriptional level via HSF1 activation (37) 
and, with a similar mechanism, MICA and MICB expression on 
MM cells is enhanced by HSP90 chaperone inhibitors that acti­
vate this transcription factor (21). In a different way, increased 
surface expression of the mouse NKG2D ligand Mult1 depends 
on the inhibition of protein ubiquitination and lysosomal deg­
radation (38).

Treatment of different tumor cell types with epigenetic 
drugs, like histone deacetylase inhibitors (HDACi) and DNA­
methyltransferase inhibitors (DNMTi) (25–27, 39–43), leads to 
the upregulation of NKG2DLs and PVR surface levels, although it 
downregulates B7­H6 expression (44). For DNMTi the molecular 
mechanisms underlying NKG2DLs upregulation are still unclear, 
while different pathways cooperate in the regulation of these 
molecules in response to HDACi, and this might depend on 
the type of tumor and the dose of the drug used. In particular, 
valproic acid (VPA) has been reported to upregulate MICA/B 
with a mechanism dependent on PI3K/Akt pathway in pancreatic 
cancer cells (40), while the involvement of ERK in MICA/B and 
ULBP2 upregulation in response to VPA has been shown in MM 
cells (45). Moreover, Yang and colleagues proposed that the capa­
bility of the HDACi suberoylanilide­hydroxamic acid (SAHA) to 
increase MICA expression in hepatoma cancer cells is dependent 
on miR­17­92 cluster (46).

In MM cells, the bromodomain and extra terminal domain 
inhibitors (BETi) and immunomodulatory drugs (IMiDs) can 
block the repressive activity of the transcription factors IRF4 and 
IKZF1/3 on MICA and PVR promoters (19, 47). In addition, 
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TABLe 1 | Chemotherapy-induced pathways and molecular targets able to modulate natural killer (NK) cell activating ligands and PDL-1 on cancer cells.

Class of chemotherapeutic agent Pathway/molecular 
target

Ligand nK cell 
cytotoxicity

Cancer cell type Reference

PROTeASOMe inHiBiTOR

Bortezomib DNA damage response 
(DDR)

MICA nd Multiple myeloma 
(MM)

(24)

Low doses: 0.75–10 nM nd MICA/B, PVR, Nec-2 + MM (52)

nd MICA/B ULBP1–3, PVR, 
Nec-2

nd MM (22)

nd MICA/B + Hepatocellular 
carcinoma

(114)

HiSTOne DeACeTYLASe inHiBiTORS

Low dose: valproic acid (1 mM) nd MICA/B + Hepatocellular 
carcinoma

(41)

ERK MICA/B, ULBP2 + MM (45)

PI3K/Akt MICA/B + Pancreatic cancer (40)

Trichostatin A HDAC1/MICA promoter MICA/B + Leukemia (42)

Suberoylanilide-hydroxamic acid miR-17-92 MICA + Hepatocellular 
carcinoma

(46)

GenOTOXiC AGenTS

Low doses: doxorubicin (0.05–3.5 μM); melphalan 
(1.5–22 µM)

Reactive oxygen species-
dependent DDR

MICA/B, ULBP1–3, PVR, 
Nec-2

+ MM (22, 34)

Cisplatin nd B7-H6 + Tumor cell lines (23)

Ara-C, aphidicolin STING/TBK/IRF3 RAE1 nd B cell lymphoma (35)

GSK inHiBiTORS

Low doses: LiCl (10 mM), BIO (1.5 µM), SB21 (5 µM) STAT3 inhibition MICA + MM (20)

BeT inHiBiTORS

Low dose: JQ1 (0.5 µM) IRF4 MICA + MM (19)

BRD4 PDL-1 nd Lymphoma (28)

HSP90 inhibitors

Low doses: radicicol (2 µM), 17-AAG (1 µM) HSR MICA/B + MM (21)

MiCROTUBULe ASSeMBLY inHiBiTORS

Low dose: vincristine (0.05 µg/ml) p38 MAPK PVR, MICA, ULBP1 + MM (50)

Cytochalasin D

Nocodazole

Docetaxel

DDR

Endoplasmic reticulum 
stress response

MICA, ULBP1–3, PVR, 
Nec-2, B7-H6

+ Tumor cell lines (51)

iMMUnOMODULATORY DRUGS

Low dose: lenalidomide (10 µM) IKZF1/3, IRF4 MICA, PVR + MM (47)

Effects on an increased NK cell recognition and killing of drug-treated tumor cells are also reported (+). Low doses of drugs that do not affect cell vitality are indicated.
nd, not done.
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both these therapeutic agents can downregulate the expression 
of PD­L1 on cancer cells (28, 29, 31, 32). Indeed, BETi interrupt 
the activity of the epigenetic reader protein BRD4 on PD­L1 
promoter region, by significantly reducing both the constitutive 
and IFN­γ inducible expression of this ligand. In this regard, the 
downstream mediators of IFN­γ signaling, JAK kinases, can be 
pharmacologically blocked to negatively regulate PD­L1 expres­
sion in cancer cells (48). Furthermore, drugs disrupting RAF/
MEK/ERK signaling pathway, such as Sorafenib and the TLR3 
agonists poly­IC, can synergistically reduce the percentage of 
tumor cells expressing PD­L1 and enhance NK and T cell activa­
tion in a mouse model of hepatocarcinoma (49).

Regarding drugs that disrupt the microtubule assembly, 
sub­lethal doses of Vincristine can activate p38 MAPK and 
regulate NKG2DL expression both at transcriptional and post­
transcriptional level in MM cells (50). Moreover, Cytochalasin 
D, nocodazole, and docetaxel can enhance NKG2D, DNAM­1, 
and NKp30 ligands on tumor cell surface, with MICA upregula­
tion being dependent on both DNA damage and endoplasmic 
reticulum (ER) stress response (51).

Different studies have been done by using proteasome 
inhibitors in MM cells. In this regard, low doses of bortezomib 
can induce the upregulation of both NKG2D and DNAM­1 
ligands (22, 52, 53), and in accordance with these data, Jinushi 
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TABLe 2 | Chemotherapy-induced pathways and molecular targets able to modulate death receptors (DRs) on cancer cells.

Class of chemotherapeutic agent Pathway/molecular target DR Cancer cell type Reference

PROTeASOMe inHiBiTORS

Low doses: bortezomib (5–20 nM) DNA damage response DR5 Tumor cell lines, renal 
carcinoma

(66, 67)

MG132 CHOP DR5 Prostate cancer (71)

HiSTOne DeACeTYLASe inHiBiTORS

Sodium butyrate Sp1 DR5 (caspase-3 activation) Colorectal carcinoma (59)

Trichostatin A (TSA), suberoylanilide-hydroxamic acid (SAHA)

Sodium butyrate

p53-independent mechanism DR5 (caspase member 
activation)

Tumor cell lines (60)

Low doses: SAHA (500 nM), TSA (50 nM) p21, p27, E2F DR4, DR5 (increase of 
proapototic Bcl-2 family 
members)

Multiple myeloma (64)

VPA nd DR5, FAS Leukemia (65)

GenOTOXiC AGenTS

Cisplatin, mitomycin, doxorubicin, methotrexate, etoposide p53-dependent mechanism FAS, DR5, DR4 Tumor cell lines (72–74, 77)

Etoposide NF-κB DR5 Tumor cell lines (76)

Doxorubicin, Ara-C, etoposide p53-independent mechanism DR5 Leukemia cell lines (81)

Low doses of drugs that do not affect cell vitality are indicated.
nd, not done.
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and colleagues reported a DDR­ATM­dependent upregulation 
of MICA surface levels (24). On the other hand, no significant 
change in NKG2DL expression was observed upon bortezomib 
treatment by Shi and colleagues (30). Interestingly, the latter 
study described the capability of bortezomib to downregulate 
HLA class I surface expression by sensitizing MM cells to 
NK cell–mediated lysis (30).

Chemotherapeutic agents can also contribute to the post­
translational regulation of NK activating ligand expression by 
promoting the release of soluble NKG2DLs through the modula­
tion of the expression and activity of metalloproteinases (MMP) 
and ADAM enzymes on cancer cells (54). Although an increased 
stimulation of the shedding process in response to genotoxic 
agents has been reported (55), some studies using different drugs 
describe an inhibitory effect. Indeed, gemcitabine treatment 
impaired ULBP2 shedding through downregulation of ADAM10 
in pancreatic cancer (56). Likewise, the hypomethylating agents, 
azacitidine and decitabine, reduced MICA, MICB, and ULBP2 
release in AML by increasing TIMP3 expression, a potent inhibi­
tor of MMP family (57).

Thus, antitumor therapeutics can work also as activators of 
different “stress pathways” that enhance tumor sensitivity to 
NK cell cytolysis by modulating the expression of the activating 
and inhibitory ligands on tumor cells.

MODULATiOn OF DRs BY CAnCeR 
THeRAPeUTiC AGenTS

Many cancer therapeutic drugs can induce DR expression and 
redistribution (58) (Table 2). Several studies described a role for 

different types of HDACi in the upregulation of TRAIL receptors 
on various malignant tumor cells (59–63). In this context, SAHA 
and trichostatin A (TSA) were shown to increase cell­surface 
expression of DR4 and DR5 in human MM cell lines (64). A study 
from Insinga et al. showed that different DR and their ligands (i.e., 
TRAIL, DR5, FasL, and Fas) are upregulated by HDACi on leu­
kemic cells, but not in the normal counterpart of hematopoietic 
progenitors, promoting tumor apoptosis through the activation 
of the DR pathway (65).

A number of studies showed that bortezomib upregulated sur­
face expression of TRAIL receptors on a variety of human tumor 
cell lines, enhancing their susceptibility to NK cell lysis with a 
mechanism mainly dependent on TRAIL (66). In another model, 
a bortezomib­treated murine renal carcinoma cell line is more 
susceptible to both NK­cell perforin/granzyme and recombinant 
TRAIL­mediated apoptosis, resulting in enhanced caspase­8 
activity (67). Indeed, in human non­small cell lung cancer cells 
this drug has been shown to trigger TRAIL­induced apoptosis 
via DR5 upregulation (68). Several pieces of evidence reported 
that another proteasome inhibitor, namely, MG132, increases 
DR5 expression cooperating in establishing apoptosis in several 
cancer cells (69–71).

DR4 and DR5 were demonstrated to be DNA damaging­
inducible and p53­regulated genes (72–76). Accordingly, many 
DNA damaging chemotherapeutic agents can regulate DR 
expression, rendering cancer cells more sensitive to DR­elicited 
apoptosis (74, 75, 77–81).

Altogether, these results suggest that the extrinsic apoptotic 
pathway has an important role in chemotherapy­induced apop­
tosis through the promotion of DRs­mediated recognition by 
cytotoxic lymphocytes. In addition, chemotherapies can promote 
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the cell death by regulating the balance between pro­ and antia­
poptotic proteins toward apoptosis. Many evidence show that 
drugs may control the cell intrinsic apoptosis by altering Bax and 
Bcl­2 expression in different tumor cells (82–86).

CHeMOTHeRAPY-inDUCeD DAMPs 
ALeRTinG nK CeLLS

Many anticancer chemotherapies increase the immunogenic 
potential of cancer cells mainly through the establishment of 
immunogenic cell death, or other forms of non­apoptotic death, 
including autophagy, and the release of the so­called DAMPs, 
such as high­mobility group box 1 proteins (HMGB1), ATP, heat 
shock proteins (HSPs), and the ER chaperone calreticulin (87).

Damage­associated molecular patterns are intracellularly 
sequestered in normal physiological conditions, but they can be 
actively secreted or aberrantly exposed on the cell surface under 
conditions of cellular stress.

Engagement of various target receptors present on immune 
cells by DAMPs leads to the elicitation of a potent antitumor 
immunity. Mostly, DAMPs have been proposed to activate local 
APCs, thus promoting the adaptive immune system. For example, 
both HSP70 and HMGB1 boost dendritic cell (DC) maturation 
through toll­like receptor 4, favoring the induction of antigen­
specific T cell­mediated antitumor immune responses (88, 89). 
Less is known about DAMP contribution to NK cell stimulation; 
thus, we will focus the attention on HMGB1 and HSPs, due to their 
ability to exert different effects on NK cell­mediated functions.

High­mobility group box 1 protein is an endogenous nuclear 
factor released both by activated immune cells or injured non­
immune cells, and in the extracellular milieu acts as a DAMP 
alerting the immune system to danger and triggering immune 
response activation through the interaction either with multiple 
TLRs and the receptor for advanced glycation end products 
(RAGE), expressed on a variety of cells (90). In this regard, the 
chemotherapeutic agent cyclophosphamide has been recently 
shown to facilitate NK cell activation through a process involv­
ing HMGB1 release in a glioma mouse model (91). Accordingly, 
it was demonstrated that in HMGB1­deficient tumors, different 
innate immune cells, including NK cells, have impaired ability to 
reach the tumor tissue in response to DNA alkylating agent treat­
ments (92). In addition, HMGB1 can be released by NK cells and 
can stimulate NK cell chemotaxis through RAGE, thus further 
amplifying their response to tumors (93) and can also play an 
important role in the cross­talk between NK and DC, by promot­
ing DC maturation (94, 95). Interestingly, HGMB1 can induce 
autophagy (96), which may control the regulation of the innate 
and adaptive immune responses contributing to enhance antigen 
processing and presentation (97).

Heat shock proteins are localized in most intracellular com­
partments where they act as molecular chaperone by supporting 
protein folding and transport across membranes. Several studies 
demonstrated an unusual HSP70 cell membrane localization 
on transformed tumor cells (98–100). As already mentioned, 
stressful conditions can cause HSPs mobilization to the plasma 
membrane, or their release from cells, thus acting as potent 
danger signals. In this respect, therapeutic treatments including 

radio and chemotherapy have been shown to produce an aug­
mentation of HSP70 cell­surface expression on tumor cells (101, 
102). Several studies have shown that membrane­bound HSP70 
directly promotes NK  cell mediated cytotoxicity in  vitro (103, 
104) and in vivo (105) thus, there is an increasing interest in the 
therapeutic potential of targeting HSP70. Interestingly, Elsner 
and colleagues have shown a synergistic potentiating effect of 
two stress­inducible immunological danger signals HSP70 and 
NKG2D ligands on cytotoxicity of human (106) and mouse 
NK cells (107), suggesting that the drug­mediated upregulation 
of activating ligands and HSP70 on the cancer cell surface might 
be an encouraging strategy aimed at promoting the antitumor 
NK cell responses. Moreover, several pieces of evidence demon­
strate that extracellular­located HSPs can be associated to extra­
cellular vesicles (108–112), and a number of chemotherapeutic 
agents, including etoposide (109), melphalan (110), cisplatin, and 
5­fluorouracil (112), have been shown to stimulate an enhanced 
secretion of exosomes from different types of cancer cells. 
Notably, colon carcinoma­derived HSP70 associated to exosomes 
can stimulate NK cell migration and cytotoxic activity (108). In 
addition, we have recently demonstrated that HSP70 on the sur­
face of MM­derived exosomes triggers NK cell­mediated IFN­γ 
production through a mechanism dependent on TLR2 (110).

DiReCT eFFeCTS OF CHeMOTHeRAPY 
On nK CeLL-MeDiATeD FUnCTiOnS

Alterations of NK cell activities upon administration of chemo­
therapeutic drugs can be different in terms of cytotoxicity and 
immunoregulatory activity; indeed, standard chemotherapeutic 
protocols used in the treatment of cancer patients mainly suppress 
NK cell­mediated killing against cancer cells and their cytokine 
production. However, several studies aimed at analyzing the 
NK cell behavior in patients undergoing cytotoxic chemotherapy 
have demonstrated different and variable effects depending on 
both the type and the dose of the drug used.

In this regard, by producing IFN­γ, NK  cells induce CD8+ 
T  cells to become CTLs, and also help to differentiate CD4+ 
T  cells toward a Th1 response. Moreover, NK  cell­derived 
cytokines might also regulate antitumor antibody production 
by B cells. Thus, therapeutic strategies able to preserve NK func­
tions in cancer patients are of pivotal importance, particularly 
those eligible for monoclonal antibody­based treatments. In 
this context, metronomic low cyclophosphamide (CTX) regi­
men was shown to potently stimulate NK functions in terms of 
cytokine production and antitumor immunity (18). A number 
of drugs, including bortezomib, genotoxic agents, and epigenetic 
drugs, exert immunosuppressive effects at high concentrations, 
whereas at sub­lethal doses, they can render tumor cells more 
immunogenic without affecting the immune cell activity (113). 
As an example, low doses of bortezomib capable of stimulating 
NK cell activating ligand expression on MM (22, 52), do not alter 
NK cell degranulation against sensitive targets (52). In another 
study, low concentrations of bortezomib reduced IFN­γ produc­
tion without affecting NK  cell cytotoxicity (114). Moreover, a 
combination of bortezomib with exogenous cytokine treatment 
enhanced the cytotoxic effects of NK cells against cancer cells in 
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two different models (115, 116). The treatment of NK cells with 
sub­lethal doses of doxorubicin, able to upregulate NKG2D and 
DNAM­1 ligands on MM cells, does not change the capacity of 
NK cell to degranulate in response to target cells, as well as the 
ability to produce IFN­γ (34). Although the wide range of HDACi, 
structurally different from each other, can have both stimulatory 
and inhibitory effects on immune cell function, the most of them 
(i.e., romidepsin, vorinostat, TSA, and VPA) have been shown to 
suppress NK cell activity at therapeutically relevant concentra­
tions (117–119). However, some reports describe a beneficial 
effect on NK cells as for the narrow­spectrum HDACi entinostat 
that can increase NKG2D expression on NK cells without affect­
ing their cytotoxic activity (120). Furthermore, a recent study 
demonstrates that the HDACi panobinostat has the capability 
to potentiate the antitumor effects of trastuzumab by stimulat­
ing the antibody­dependent cell­mediated cytotoxicity (ADCC) 
mediated by NK  cells (121). Regarding the DNTMi decitabine 
and 5­azacytidine, treatment of NK cells leads to increased reac­
tivity toward different tumor cells (122, 123), while another study 
describes that 5­azacytidine exposure compromises their activity 
in AML and MDS patients (124).

Immunomodulatory drugs (lenalidomide, pomalidomide, 
and thalidomide) exert strong immunomodulatory effects 
involving both innate and adaptive immunity. In particular, 
these compounds activate both NK and T cells by inducing their 
proliferation, cytokine production, and cytotoxic activity (125) 
and promising clinical trials have been reported their use for 
the treatment of hematological malignancies, such as myeloma, 
lymphoma, and leukemia, as well as of solid tumors (126–128). 
Interestingly, Lagrue and colleagues demonstrated that lenalido­
mide enhances NK  cell response (IFN­γ production and cyto­
toxicity) by augmenting actin remodeling, thus rendering them 

able to respond to lower densities of activating ligands on tumor 
cells (126). Furthermore, lenalidomide has synergistic effects on 
NK cell functions when used in combination with monoclonal 
antibodies able to promote ADCC that are already approved in 
therapeutic protocols, such as rituximab or elotuzumab (129, 
130); indeed, novel strategies in the treatment of MM combines 
the use of lenalidomide and the anti­inhibitory KIR antibody 
(IPH2101) (131, 132).

COnCLUSiOn

The modulation of the expression and/or the release of stress 
molecules has emerged as a new paradigm of the therapeutic 
possibilities associated with the use of chemotherapy (Figure 1). 
In this context, the characterization of novel drugs and regulatory 
pathways activated by cellular stress modifiers able to affect tumor 
growth and, at the same time, to improve the activities mediated 
by cytotoxic lymphocytes such as NK  cells, will importantly 
contribute to the developing field of chemo­immunotherapy.
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FiGURe 1 | Antitumor efficacy of chemotherapy. Chemotherapeutic agents activate molecular pathways eliciting upregulation and/or the release of stress molecules 
that promote tumor cell recognition and elimination by natural killer (NK) cells. Moreover, chemotherapy can also downregulate the expression of ligands such as 
PD-L1 and major histocompatibility complex (MHC)-I of inhibitory receptors.
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