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Chocolate is a product processed from cocoa rich in flavonoids, antioxidant compounds, 
and bioactive ingredients that have been associated with both its healthy and sensory 
properties. Chocolate production consists of a multistep process which, starting from 
cocoa beans, involves fermentation, drying, roasting, nib grinding and refining, conching, 
and tempering. During cocoa processing, the naturally occurring antioxidants (flavo-
noids) are lost, while others, such as Maillard reaction products, are formed. The final 
content of antioxidant compounds and the antioxidant activity of chocolate is a function 
of several variables, some related to the raw material and others related to processing 
and formulation. The aim of this mini-review is to revise the literature on the impact of full 
processing on the in vitro antioxidant activity of chocolate, providing a critical analysis of 
the implications of processing on the evaluation of the antioxidant effect of chocolate in 
in vivo studies in humans.
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inTRODUCTiOn

Chocolate, thanks to its unique structure and flavor, is a food usually consumed for pleasure that has 
been recently reconsidered as a source of healthy compounds. Chocolate is rich in polyphenols such 
as flavanols, which possess antioxidant and anti-inflammatory properties and have a protective effect 
against degenerative diseases (1–6). Procyanidin and flavanol polymers also contribute to chocolate 
taste by affecting bitterness and astringency (7, 8). The polyphenol content of chocolate depends on 
many factors, some related to the raw material, and others related to processing (9, 10).

The majority of published reviews aim at analyzing the impact of processing on the polyphenol 
content of cocoa more than on its functional properties, focusing only on selected processing steps 
deemed to have a major impact on phenolic content, and, sometimes, without a specific discussion 
of all the single steps (9–11).

Abbreviations: ABTS, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid); DPPH, 2,2-diphenyl-1-picrylhydrazyl; 
FRAP, ferric reducing antioxidant power; MRPs, Maillard reaction products; TE, trolox equivalents; TEAC, trolox equivalent 
antioxidant capacity; TPC, total phenolic content; ORAC, oxygen radical antioxidant capacity; TRAP, total radical-trapping 
antioxidant parameter; NEAC, non-enzymatic antioxidant capacity; NASH, non-alcoholic steatohepatitis; CVD, cardiovascu-
lar disease.
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This mini-review aims at revising the literature on the impact 
of full processing on the in vitro antioxidant properties of choco-
late providing a critical analysis of the implication of processing 
on the antioxidant effect of chocolate in in vivo studies in humans.

CHOCOLATe PROCeSSinG in BRieF

Chocolate-making consists of a multistep process. At harvest, 
cocoa fruit contains about 30–40 seeds covered by a mucilaginous 
pulp removed by yeast and bacteria during fermentation, which 
is a key step for the development of the chocolate flavor, since it 
produces aroma precursors. After fermentation, a drying step is 
required to reduce the water content to 5–7%; this ensures product 
stability before further processing. Dried cocoa beans or nibs (i.e., 
beans without the outer shell) are then roasted to further develop 
the chocolate flavor. The next step in cocoa processing involves 
nib grinding to convert the solid nibs into a liquid paste (liquor).

For the production of dark chocolate, the basic ingredients are 
cocoa liquor, sugar, cocoa butter, and emulsifiers. Milk and other 
ingredients may be added, mixed and then refined to reduce the 
particle sizes of solids. After refining, the conching operation, 
which consists of the agitation of the chocolate mass at high 
temperatures, and finally tempering, which consists in a heating, 
cooling and mixing process, are required for the development of 
the final texture and flavor.

PHenOLiC AnTiOXiDAnTS in 
CHOCOLATe

Polyphenols are the main class of antioxidants in unfermented 
cocoa beans, and they account for approximately 2% w/w (12). 
Cocoa contains several classes of phenolic compounds among 
which, flavanols (37%), proanthocyanidins (58%), and antho-
cyanins (4%) (11).

Flavanols, and, in particular, flavan-3-ols, are the most studied 
compounds in cocoa. The main flavan-3-ols, are (−)-epicatechin 
and (+)-catechin, which have an antioxidant activity of 2.4–2.9 
trolox equivalents (TE) using the 2,2′-azino-bis(3-ethylbenzo-
thiazoline-6-sulfonic acid) (ABTS) assay and 2.2 TE using the 
ferric reducing antioxidant power (FRAP) assay, but they can 
be epimerized into (+)-epicatechin and (−)-catechin during 
processing into chocolate (5, 13).

Flavan-3-ols may group together to form dimeric, oligomeric, 
or polymeric combinations of units that are denominated 
proanthocyanidins, among which we can include procyanidins 
(oligomers of epicatechin). Oligomeric and polymeric proantho-
cyanidins are present in raw beans but could further polymerize 
during processing (14–16). The procyanidin dimers (B1, B2, B3, 
and B5) and trimer C1, as well as oligomers, up to decamers, have 
been reported in cocoa and chocolate (12, 17–19). The average 
antioxidant activity of procyanidin dimers is about 6.5, and that 
of trimers is 7–8 TE using the ABTS assay. Monomers, dimers, 
and trimers account for almost 33% of the antioxidant activity of 
cocoa. The antioxidant activity of procyanidin polymers seems to 
increase depending on the degree of polymerization even though 
polymerization decreases the concentration of polyphenols; the 

relative contribution of decamers to the total antioxidant activity 
is low (14).

Esters of catechins, such as gallocatechins and epigallocat-
echins, can be found in raw beans (20) but could also be formed 
during processing, in particular, during roasting (16), whereas 
esters of epigallocatechins, such as epigallocatechingallate, have 
only been reported in chocolate (21).

Anthocyanins that have been reported in fresh beans (22) 
are degraded during fermentation due to hydrolysis and further 
polymerization in condensed tannins (20).

Minor phenolic compounds are also present (i.e., flavonols, 
phenolic acids, simple phenols and isocoumarins, stilbenes, and 
their glucosides), but their content is low and their contribution 
to total antioxidant activity is limited.

Apart from polyphenols, chocolate contains other process-
derived antioxidants such as Maillard reaction products (MRPs) 
that form during high temperature processing, among which 
drying, roasting, and conching.

eFFeCT OF COCOA PROCeSSinG  
On AnTiOXiDAnT ACTiviTY

The evaluation of the antioxidant (i.e., phenolics) content and 
activity much depends on the extraction solvent and procedure 
(9), which is not standardized throughout literature on cocoa, so 
data are difficult to compare. In the colorimetric assays of the 
total phenolic content (TPC), discrepancies may arise due to the 
phenolic compounds used as reference for the standard curve as 
well as to the presence of reducing compounds, interfering with 
the assay. Regarding antioxidant activity, comparison of results 
could be problematic due to the large number of heterogeneous 
tests used. The most common assays [ABTS, 2,2-diphenyl-1- 
picrylhydrazyl (DPPH), oxygen radical antioxidant capacity, total 
radical-trapping antioxidant parameter (TRAP), and FRAP] are 
based on different reaction mechanisms (single electron transfer, 
hydrogen atom transfer, or mixed mechanisms) and could give 
discordant results depending on the most abundant antioxidant 
molecules in the system and their interactions.

Cocoa Beans
Cocoa beans are the seeds of the tropical Theobroma cacao L. tree. 
There are four types of cocoa: Forastero, which comprises 95% 
of the world production of cocoa and is the most widely used; 
Criollo, which is rarely grown because of disease susceptibility; 
Trinitario, which is a more disease-resistant hybrid of Criollo 
and Forastero; and Nacional, which is grown only in Ecuador  
(20, 23). The concentration of phenolic compounds in cocoa 
beans is highly variable and depends primarily on genetics, 
and then on many other factors such as geographical regions of 
cultivation, agronomical practices and climatic conditions (20).

Generally, Criollo cocoa beans have a lower phenolic content 
compared to the Forastero variety (10). Unfortunately, few stud-
ies on the phenolic content and antioxidant properties of unfer-
mented beans are available and most results refer to beans that 
have undergone fermentation, drying or both these processes. 
When unfermented beans are considered, the total phenolic 
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content results in a range between 67 and 149 mg/g (24) or 120 
and 180 mg/g (25). Large differences in the content of total poly-
phenols and individual phenolic compounds in unfermented ripe 
seeds of Forastero, Trinitario, and Criollo cocoa of six different 
origins were reported (22). Antioxidant activities of 709 ± 17 µM 
and 240–490 mmol TE/g were reported when the DPPH test was 
used (26, 27); however, the tests differed as regards the experi-
mental conditions adopted. Values of 1.29–2.29 mmol TE/g and 
600–800  mmol TE/gdw were found with the ABTS method  
(14, 27) while reducing activities in the range 713–930  mmol 
Fe2+/gdw were obtained when using the FRAP method (14).

Fermentation
Fermentation of the pulp surrounding the beans represents the 
first important step for the development of chocolate flavor and 
taste since it produces aroma precursors. During fermentation, 
which can last from 5 to 10 days, the combination of endogenous 
and microbial enzymatic activities, along with the rise of tem-
perature to about 50°C, and the diffusion of metabolites into and 
out of the cotyledons, allow polyphenols to polymerize and react 
with other compounds to form complexes. Fermentation is thus 
considered responsible for the decrease of the flavan-3-ol content, 
(−)-epicatechin in particular.

The level of polyphenol reduction is proportionate to the 
degree of fermentation (25, 28–30). Significant differences can 
be detected in the TPC content after fermentation as determined 
by the Folin–Ciocalteu’s reagent: a range between 120–140 mg/g 
was found by Di Mattia et al. (14); a similar range (90–120 mg/g) 
was reported by Niemenak et al. (24) and Afoakwa (20). Higher 
levels (220 mg/g) were detected by Ryan et al. (31) while lower 
contents were determined by do Carmo Brito et  al. (32). The 
antioxidant activity, as determined by the ABTS, DPPH, and 
FRAP methods, generally followed the same fate of the phenolic 
content, with reduction levels of 20–40% (14, 32). In the work by 
Suazo et al. (26), a reduction of about 80% was determined in the 
DPPH values while an increase in the total antioxidant capacity 
(+50–160%), evaluated using DPPH and ABTS methods, was 
observed in cocoa varieties after spontaneous fermentation (27).

Drying
The aim of cocoa drying is to remove water so as to reach mois-
ture content below 7% and is usually carried out by sun heating 
in static conditions but heating dryers are also used.

Sun drying reduces the polyphenol content to different extents: 
Camu et al. (29) reported a reduction from 77 to 44%, Di Mattia 
et al. (14), a 72% reduction, Hii et al. (11), a 30% reduction, and 
finally, de Brito et  al. (28), a 26% reduction. The reduction of 
polyphenols depends on climatic conditions (29), and reduction 
levels ranging from 77 to 44% were reported for the same cocoa 
sample dried in different seasons.

Sun drying not only affects the polyphenol content but also 
the antioxidant activity of cocoa beans, and a reduction of about 
70% of TPC and 80% in flavan-3-ols was shown to determine 
a decrease of 70 ± 5% in antioxidant activity depending on the 
method used (14).

Experimental data on air drying are scarce; an industrial pro-
cess carried out on a batch of 1,600 kg of cocoa beans for 11 days 

at a temperature of 60°C, decreased the content of TPC (52%) 
and flavan-3-ols (66%) inducing a 60  ±  5% decrease of anti-
oxidant activity, depending on the assay (14). Hot air drying of 
cocoa beans has also been studied in laboratory scale conditions  
(11, 33–36), and the mean reduction of total polyphenols was 
about 45%, but this could dramatically change depending on 
process conditions.

Roasting
Roasting determines the formation of the characteristic color, 
aroma, taste, and texture of roasted cocoa beans (37). Roasting 
temperatures of 120–150°C and times of 5–120  min are used  
(37, 38), and under these conditions, a decrease of flavanols and 
TPC has been observed.

During roasting, monomeric flavanols are reduced from 
0 to 95% depending on the cultivar and the roasting temperature  
(16, 18, 19). High roasting temperatures improve the rate of poly-
phenol degradation, but in some cases a lower degradation was 
observed at high temperatures due to reduced processing times 
(16). Roasting temperature being equal, polyphenol degrada-
tion could be reduced by about 20% by adopting “high” relative 
humidity (5%) roasting conditions (18).

Roasting generally depletes the antioxidant activity of cocoa. 
Arlorio et al. (39) reported a decrease between 37 and 48% after 
pre-roasting at 100°C and roasting different varieties of cocoa at 
130°C. Hu et al. (40) reported a decrease of antioxidant activity 
between 44 and 50% during roasting at high temperature (190°C) 
for short times (15 min) regardless of the assay used to test it. 
Ioannone et al. (16) observed a decrease of antioxidant activity 
during the first part of the roasting process and an increase dur-
ing roasting time due to the formation of MRPs (16, 41). They 
reported a FRAP decrease of 51 and 45% at 125 and 145°C, 
respectively, as well as a TRAP increase of 7% at 125°C and a 
TRAP decrease of 20% at 145°C at the end of roasting. Dramatic 
differences between FRAP and TRAP values could be explained 
by considering MRP formation during roasting (41) since MRPs 
show a high chain-breaking activity despite their low reducing 
potential (42). A low roasting temperature (125°C) led to higher 
TRAP values but lower FRAP values than a high roasting tem-
perature (145°C).

Conching
Conching is a unit operation based on the agitation of chocolate 
mass at high temperatures (above 50°C); it is an essential step 
for the development of proper viscosity and the attainment of 
final texture and flavor (23, 43). Different time/temperature 
combinations are selected according to the final product to be 
manufactured. In dark chocolates, temperatures ranging from 70 
to 90°C can be used; variations in conching time and temperature 
combinations modify chocolate texture and flavor (44–46). Little 
attention has been paid to conching and its effect on polyphenol 
content and antioxidant properties. However, the conching 
process does not impair the phenolic content and pattern, as well 
as antioxidant activity since small yet not significant variations 
(3%) were found, regardless of the time/temperature combina-
tion applied (47–49). The same results were reported by Di Mattia 
et al. (15) for the TPC; however, authors reported a significant 
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FiGURe 1 | Residual antioxidant activity of cocoa processed products after 
each processing step. *Mean of sun drying and hot air drying data; **data 
calculated on the mean of sun drying and hot air drying data. The top of the 
error bar of the second point on the x-axis overlaps with the figure frame.
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increase of trolox equivalent antioxidant capacity (+16% on aver-
age) after conching.

Complete Process
The content and antiradical activity of cocoa beans, nibs, cocoa 
mass, and finished dark chocolate obtained from fermented 
beans from different geographical origins have been studied 
(50). Generally a progressive decrease of the phenolic content 
was observed upon processing, with roasting playing a major role. 
Nonetheless, the most significant losses in both phenolic content 
and antioxidant activity emerged in the final steps of process-
ing, and in particular between the conched and non-tempered 
chocolate and the dark chocolate. The authors remarked that the 
results were ascribable to a dilution and even to an antagonistic 
effect produced by the addition of other ingredients. However, 
it is not clear if the authors considered the recovery of phenolic 
compounds on the basis of the amount used in the recipe (40% 
of cocoa mass).

Despite few attempts, the concurrent evaluation of the changes 
of polyphenol content and antioxidant activity upon all the 
processing steps is actually lacking and further investigations are 
needed. A general trend of the variation of antioxidant activity 
during processing is shown in Figure 1, obtained by taking into 
account the losses reported in works where single manufacturing 
steps were considered.

AnTiOXiDAnT eFFeCT OF  
CHOCOLATe IN VIVO

As far as chronic intervention studies in humans are concerned, 
there are no published studies that consider the effect of process-
ing on the antioxidant properties of chocolate. This is a big gap 
in literature that deeply impairs the massive amount of work 
performed on chocolate processing optimization.

Literature data from 10 human chronic intervention stud-
ies investigating the effect of chocolate intake on plasma and 
urinary levels of markers of antioxidant function, isoprostanes, 
and non-enzymatic antioxidant capacity (NEAC) were reviewed, 
and the results are presented on Table 1, where type of chocolate, 
number of intervention days, number of subjects, dose/day, effect 
on isoprostanes, effect on NEAC, and effect on polyphenols were 
described. Plasma/serum/urine isoprostanes, plasma NEAC, 
and polyphenols were assessed in nine, six, and seven studies, 
respectively.

On the basis of existing data, only one study showed an effect 
of chocolate on markers of antioxidant functions in humans. An 
increase in plasma polyphenol levels, namely, epicatechin, cat-
echin, epicatechin-3O-methylether, and total phenolics, follow-
ing a cocoa-based product supplementation period was detected 
in three studies out of seven. Increases were not correlated to any 
changes in markers of antioxidant function except for Loffredo 
et al. (57).

Although, from this analysis, it could be inferred that antioxi-
dant networks do not respond very well to dietary supplementa-
tion with chocolate, some considerations are required. First of 
all, we need to consider the high heterogeneity of the reviewed 
studies, involving not only very different chocolate sources and 
doses of supplementation but also different size power, type of 
subjects, and duration of the supplementation; all variables that 
might affect the outcome of the trial.

It seems that all the different formulations that were used in 
the studies, such as tablets and chocolate drinks, failed to display 
any significant effect. Moreover, in agreement with previous 
evidences in vivo (1), milk chocolate does not produce any sig-
nificant antioxidant effect in humans, and it has been utilized as 
control (57) in the only study where an effect was detected with 
dark chocolate.

The outcome of a study may also depend on the kind of 
subjects involved, namely, on their health condition. As previ-
ously stated, elevated levels of isoprostanes have been reported 
in individuals with diseases, or related risk factors, in which 
oxidative stress is involved; these subjects are supposed to have a 
higher requirement of antioxidants and, thus, to better respond to 
dietary intervention. In this respect, it is interesting to highlight 
that the only study where chocolate displayed an antioxidant 
effect in humans was conducted on subjects with non-alcoholic 
steatohepatitis diseases characterized by a non-physiological 
condition of oxidative stress. When oxidative stress is ongoing, 
endogenous antioxidants are not able to inhibit the production of 
free radicals efficiently; therefore, the contribution of exogenous 
antioxidants in diets may be crucial to support the endogenous 
redox system providing a clear effect on antioxidant status 
markers in humans (59–61). This aspect might explain the lack 
of effect observed for chocolate products, since all the studies, 
except the one where chocolate was effective, were conducted 
on healthy subjects characterized by a physiological equilibrium 
of free radicals and antioxidants. A systematic review (62) and 
a meta-analysis (63) support this hypothesis by showing that 
plant food, as well as chocolate supplementation, displays a bet-
ter efficiency on antioxidant defense markers when the trials are 
conducted on subjects with oxidative stress-related risk factors 
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TABLe 1 | Chronic intervention studies in humans providing cocoa-based products: effect on F2-IsoP, NEAC,a and PP.a

Food Days Subjects Dose/day F2-isoP neACa PPa Reference

Flavonoid-rich dark chocolate 14 11 46 g ↔ Plasma ↔ ↑ EC (2)
Cocoa tablets 28 13 6 Tablets ↔ Plasma ↔ ↑ EC, C (51)
Dark chocolate and cocoa powder drink 42 25 36.90 g of dark chocolate 

and 30.95 g of cocoa 
powder drink

↔ Urine ↔ ↔ Total phenols (52)

Dark chocolate 21 15 75 g ↔ Plasma ↔ (53)
Polyphenols-rich dark chocolate 21 15 75 g ↔ Plasma ↔ (53)
Polyphenols-rich dark chocolate 126 22 with prehypertension 

or stage 1 hypertension
6.3 g ↔ Plasma ↔ EC, C, procyanidin 

B2, procyanidin B2 
gallate

(54)

PP-rich milk chocolate 14 28 105 g ↔ ↔ C, EC (55)
Flavonoid-rich dark chocolate 14 20 45 g ↔ Serum (56)
Dark chocolate 14 19 NASH 1 40 g ↓ Serum ↑ ECMet, TP (57)
Milk chocolate 14 19 NASH 1 40 g ↔ Serum ECMet,b ↔ TP (57)

aPlasma and/or serum measurements.
↑, increase; ↔, no change; ↓, decrease; F2-IsoP, F2-isoprostanes; NEAC, non-enzymatic antioxidant capacity; PP, polyphenols; NASH, non-alcoholic steatohepatitis; EC, epicatechin; 
C, catechin; ECMet, epicatechin-3O-methylether.
bDiscrepancy between table and text. Modified from Petrosino and Serafini (58).
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rather than on healthy subjects. Moreover, in a large clinical trial 
on subjects characterized by cardiovascular disease risk factors, 
the PREDIMED study, it was shown that the efficiency of the sup-
plementation of Mediterranean diet with antioxidant rich foods 
for 1 year was correlated with the baseline levels of antioxidant 
defenses (64). Subjects starting from lower levels of plasma 
NEAC showed a higher increase in NEAC compared to subjects 
starting from higher baseline levels of antioxidants, highlighting 
the importance of the redox “condition” of the subject on the 
efficiency of antioxidant supplementation.

COnCLUSiOn

Chocolate processing affects the content of total polyphenols as 
well as the antioxidant activity of chocolate and proper technol-
ogy could “optimize” polyphenol retention and the in  vitro 
antioxidant activity of chocolate. This work highlights the need 

to provide evidence of chocolate functionality in human beings to 
identify a proper technological process for chocolate processing. 
This is a necessary step to suggest to consumers the “optimal” 
doses of chocolate, which optimizes the functional effect by 
avoiding potential side effects, such as a high-energy load.

Human trials should be conducted mainly on subjects 
characterized by oxidative stress conditions, sharing a common 
requirement for dietary antioxidants, to increase the chance of 
observing an antioxidant effect in vivo.
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