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The human immunodeficiency virus (HIV)-1 epidemic continues to represent a global 
health problem that is over-proportionally affecting women from sub-Saharan Africa. 
Besides social and environmental factors, the modulation of immunological pathways by 
sex hormones and gene dosage effects of X chromosomal-encoded genes have been 
suggested to lead to differential outcomes in HIV-1 disease. Women present with lower 
HIV-1 loads early in infection. However, the progression to AIDS for the same level of 
viremia is faster in women than in men. Type I interferons (IFNs) play a prominent role in 
the control of HIV-1 transmission and replication. Continuous stimulation of type I IFNs 
in chronic viral infections can lead to increased levels of immune activation, which can 
be higher in HIV-1-infected women than in men. A role of steroid hormone signaling 
in regulating viral replication has been postulated, which might further account for sex 
differences observed in HIV-1 infections. Here, we review recent findings and current 
knowledge on sex-specific differences in HIV-1 infections.

Keywords: type i interferon, human immunodeficiency virus 1, sex hormones, immune activation, sex differences, 
toll-like receptor 7

inTRODUCTiOn

Infections with human immunodeficiency virus (HIV)-1 still represent a global health problem 
with especially women and girls in sub-Saharan Africa being severely affected (1). The prevalence 
of HIV-1-infected girls and young women is twice as high as in men of same ages (2). While the 
overall survival does not differ between infected males and females (3, 4), women are at increased 
risk to acquire HIV-1 via heterosexual contact (5). It is now well established that sex-related 
biological factors affect HIV-1 disease manifestations and progression. During acute infection, 
HIV-1-infected females have lower HIV-1 viral load levels in comparison to men (6–9). Plasma 
viral load levels predict the size of the HIV-1 reservoir (10, 11), hence lower viral load levels in 
HIV-1-infected females might contribute to a smaller size of the HIV-1 DNA reservoir (12, 13). 
Type I interferons (IFNs) play a critical role in restricting viral replication through induction of 
host restriction factors and might contribute to this initial control of HIV-1 viremia. On the other 
hand, type I IFNs have been shown to increase systemic immune activation upon chronic viral 
infection (14, 15).

Several factors have been suggested to influence the sex bias observed in the manifestations 
of HIV-1 infections, including sex and gender differences in comorbidities as well as socioeco-
nomic factors (16, 17). Dissecting biological mechanisms from socioeconomic factors represents 
a frequently challenging process. The elucidation of the biological mechanisms that underlie 
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immunological differences between the sexes has become an 
emerging area of interest aimed at understanding the involve-
ment of steroid hormones (18–20), the direct effects of X and 
Y chromosomal-linked factors (21–23) or epigenetic modifica-
tions that influence the composition and phenotype of immune 
cells, and the role of the microbiome (24). Recent reviews have 
already covered several aspects of sex-based differences in 
HIV-1 infection (16, 25–27). This review will focus on the latest 
findings contributing to our understanding of the impact of sex-
based differences in type I IFNs on HIV-1 disease pathogenesis.

TYPe i iFns COnTROL Hiv-1 
RePLiCATiOn

The process of HIV-1 transmission through the mucosa of the 
female genital tract is comparatively unproductive (28). The 
innate immune system plays a major role in sensing incoming 
HIV-1 to initiate antiviral responses (29). HIV-1 can be recog-
nized by multiple nucleic acid sensors, including toll-like recep-
tors (TLRs) 3, 7, 8, and 9 (30), IFN-inducible protein (IFI) 16 (31), 
and cyclic GMP-AMP synthase (32). Recognition of HIV-1 by 
pattern recognition receptors leads to induction of antiviral and 
proinflammatory responses via JAK/STAT signaling, NF-κB, and 
interferon regulatory factors (IRFs) (33), ultimately resulting in 
the production of cytokines, chemokines, and type I IFNs. Type 
I IFNs are the first line of defense against viral infections, as they 
are capable of mediating immunregulatory, growth-inhibitory, 
and antiviral activities (34), through the induction of a multitude 
of interferon-stimulated genes (ISGs) that encode for antiviral 
proteins. In humans, the type I IFN family of genes consists of 13 
highly homologous IFNα subtypes, IFNβ, IFNε, IFNκ, and IFNω 
(35). All type I IFNs bind to the same IFNα/β receptor (IFNAR) 
composed of two subunits IFNAR1 and IFNAR2, with varying 
affinities for the two subunits (36, 37). IFNARs are expressed on 
most cell types and their activation induces the transcription of 
ISGs. Type I IFNs play an expanding role in restricting HIV-1 
replication (38). Productive infections in a new host were shown 
to be established by HIV-1 strains (transmitted founder viruses) 
that were much less susceptible to the antiviral effects of type I 
IFNs in vitro (39–41). In line with these antiviral effects of type 
I IFNs that have to be overcome by transmitted founder viruses, 
one recent study demonstrated that vaginal IFNβ administra-
tion in rhesus macaques upregulated the expression of ISGs in 
vaginal suspensions and prevented SHIV-1 acquisition (42). The 
distinct capacities of the 13 different IFNα subtypes in control-
ling retroviral infections have been studied using humanized 
mouse models, suggesting that IFNα8 and IFNα14 suppress 
HIV-1 replication significantly better than other IFNα subtypes 
(43). Garcia-Minambres et  al. recently described another, less 
prominent, type I IFN important in HIV-1 restriction (44). IFNε 
is expressed in the female genital tract of mice and humans and 
induces several HIV-1 restriction factors in T cells, with levels 
and antiviral effects similar to IFNα-mediated induction. IFNε 
reduced HIV-1 replication in vitro and HIV-1 strains that were 
grown in the presence of IFNε were less infectious than HIV-1 
that was produced in the absence of IFNε (44). Interestingly, 

IFNε expression in the female reproductive tract is hormone 
dependent, with the highest expression during the proliferative 
phase of the menstrual cycle, when estrogen levels are peaking 
(45). During the secretory phase, which is characterized by a 
peak in progesterone, IFNε levels decline (45). This decrease in 
IFNε in the presence of high progesterone might play a role in 
the suggested increase in HIV-1 acquisition in females that take 
long-acting contraceptives (46–50). Taken together, type I IFN 
levels that are increased within the first weeks of HIV-1 infection 
induce expression of HIV-1 restriction factors, which play an 
important role in restricting HIV-1 spread and replication early 
in infection.

SeX DiFFeRenCeS in TYPe i iFn 
PRODUCTiOn UPOn TLR7-MeDiATeD 
ReCOGniTiOn OF ssRnA

Plasmacytoid dendritic cells (pDCs) are innate immune cells that 
are specialized to produce type I IFNs and mediate cross-talk 
between innate and adaptive immunity. Multiple studies have 
contributed important knowledge on the role of pDCs in medi-
ating sex-specific, HIV-1-associated immune activation. pDCs 
from females produce higher levels of IFNα upon TLR7 stimula-
tion using HIV-1 derived ssRNA (20) or synthetic ligands (18, 19, 
51, 52) in comparison to men. In addition, we recently showed 
that pDCs from females express significantly higher mRNA lev-
els of all 13 IFNα subtypes and IFNβ after TLR7-stimulation of 
peripheral blood mononuclear cells (PBMCs) (52). The mRNA 
expression levels of IFNα in pDCs were correlated with the 
expression levels of IFNβ in pDCs after TLR7 stimulation, but 
were independent from secondary signaling via IFNAR (52), as 
reported for TLR9 signaling or type I IFN production by other 
cell types than pDCs (53–55). Although IFNα produced by 
pDCs is able to inhibit HIV-1 replication by exerting growth-
inhibitory and antiviral activities, the continuous exposure of 
pDCs to HIV-1 has opposing effects. HIV-1 recognition by pDCs 
leads to the expression of low levels of maturation molecules on 
pDCs and therefore skews pDCs toward a partially matured, 
persistently IFNα-secreting phenotype stimulating only weak 
T cell responses (56). The effect of chronic exposure to IFNα was 
recently studied in mice, showing that chronic IFNα stimulation 
was sufficient to suppress specific CD8 T cell responses to vac-
cinia virus infection by inducing the accumulation of suppressive 
Ly6Chi monocytes (57). HIV-1 in turn has been suggested to 
impair TLR7-mediated IFNα production by pDCs, potentially by 
binding to CD303 receptors expressed on pDCs (58).

TLR7 is encoded on the X chromosome (22). X chromosome 
inactivation (XCI) of one of the two female X chromosomes 
ensures dosage compensation in female mammals, in contrast 
to male mammals harboring only one X chromosome. Most 
genes on the X chromosome are assumed to be transcription-
ally silent; however, the process of XCI is dynamic and relies on 
dosage-dependent activators. A number of genes are known to 
escape XCI and are expressed from both the active and inactive 
X chromosome (59–62). So far, there is no evidence for a higher 
expression of TLR7 genes in pDCs from women in humans (51, 
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63), though TLR7 gene duplication has been associated with 
autoreactive B cell responses in mice (64) and increased levels of 
TLR7 and TLR8 have been found in PBMCs of patients with the 
primary Sjögren’s syndrome, an autoimmune disease with a female 
sex imbalance (65). Taken together, further research investigat-
ing the molecular mechanisms underlying TLR7 expression and 
regulation in pDCs will help to dissect the role of TLR7 signaling 
and its contribution to the sex bias in type I IFN production in 
HIV-1-infected individuals.

iMPACT OF HORMOneS  
On Hiv-1 DiSeASe

Steroid hormones have also been shown to modulate TLR-
dependent responses of pDCs in humans. Estrogens and 
estrogen receptor-dependent regulations play key roles in 
dendritic cell development and function (66). pDCs from 
postmenopausal women display reduced TLR7-responsiveness 
and IFNα production in comparison to women of reproductive 
age. Estrogen replacement therapy of postmenopausal women 
increased the percentage of IFNα-producing pDCs after TLR7 
and TLR9 stimulation (18). In vitro blockage of ER signaling 
during pDC-differentiation dampened the IFNα response of 
pDCs after TLR7 stimulation (63). IFNα-induction by pDCs is 
regulated by IRFs at the transcriptional level (67). IRF5 is one  
of the central mediators of TLR7 signaling (68, 69) and has 
recently been shown to be expressed at higher basal levels in 
pDCs from females in comparison to males (19). While upregu-
lation of IRF5 levels in pDCs resulted in increased IFNα secre-
tion by pDCs, genetic ablation of the Esr1 gene reduced IRF5 
mRNA expression in pDCs and subsequent IFNα production in 
response to TLR7 stimulation (19).

Sex hormones have also been reported to directly modulate 
host factors that play a role in HIV-1 acquisition (25). Generally, 
progesterone increases susceptibility to viral infections whereas 
estrogen protects against HIV-1 acquisition (70, 71). Studies of 
rhesus macaques support this general concept, as simian immu-
nodeficiency virus (SIV) susceptibility was highest in the luteal 
phase of the menstrual cycle (high progesterone) compared 
with the follicular phase (high estrogen) (72). Several studies 
report an increase in expression of HIV-1 receptors on cervi-
cal CD4 T cells mediated by progesterone (73–75), supporting 
the reported increase in HIV-1 acquisition. Nevertheless, 
one in  vitro study suggests that progesterone decreases the 
upregulation of CCR5 on CD4 T cells in peripheral blood (76). 
Furthermore, Meditz et al. showed that postmenopausal women, 
who have lower levels of progesterone, have elevated cervical 
CCR5 expression, which may increase their risk for HIV-1 
acquisition (77). Estrogen exerts several biphasic effects on 
cells of the immune system, including modulation of T helper 1  
versus T helper 2 cell differentiation (22) and expansion of 
regulatory T cells (78). Animal studies have shown that topical 
estrogen protects against vaginal SIV transmission in rhesus 
macaques (79). Estrogen was shown to downregulate the sus-
ceptibility of CD4 T  cells and macrophages to HIV-1 in  vitro 
(80), yet some studies suggest that in vivo hormone treatment 

with estrogens and antiandrogens in men to female transsexuals 
upregulates CCR5 on CD4 T cells over time (81), and also in 
mice (82).

The direct influence of steroid hormones on viral replication 
capacity of HIV-1 has been investigated in a few studies. Estradiol 
and progesterone can potentially regulate HIV-1 replication by 
directly altering HIV-1 transcriptional activation (83); however, 
the current results are controversial. In one study, in  vitro 
estradiol treatment was shown to inhibit production of HIV-1 
(84), while another study suggested an estrogen-based increase 
of transcriptional activity of HIV-1 LTRs (85). In addition, 
hormonal effects on HIV-1 replication were shown to be donor 
and HIV-1 subtype specific (86). Further studies are required to 
determine how the hormonal milieu might shape the outcome  
of HIV-1 infection in  vivo and to identify the underlying 
molecular mechanisms.

SeX DiFFeRenCeS in iMMUne 
ACTivATiOn in CHROniC ReTROviRAL 
inFeCTiOnS OF MAMMALS

It is now well established that systemic immune activation 
is a strong predictor for HIV-1 disease progression to AIDS. 
Consistent with the finding that innate immune function is 
linked to higher responses to TLR7 stimulation of pDCs and 
subsequent type I IFN production, HIV-1-infected women have 
higher expression levels of ISGs than men for the same level 
of viral load (87). Furthermore, the surface expression levels 
of the common IFN-α/β receptor subunit 2 (IFNAR2) are sig-
nificantly higher on pDCs from females in comparison to males 
and tends to be higher on other antigen-presenting cells from 
females as well (52). The increase in ISG expression in female 
HIV-1-infected individuals might explain increased levels of 
T cell activation (CD4/8+ CD38+ HLA-DR+) in HIV-1-infected 
females in comparison to male HIV-1-infected individuals for 
the same level of viral load (20). Higher expression levels of 
IFNAR2 might contribute to the increased levels of ISG expres-
sion in females in comparison to males. In addition, higher levels 
of IFNα have been associated with decreased CD4 counts (88), 
which is in line with one study showing that increased expression 
of ISGs in CD4 T cells was associated with CD4 T cell depletion 
in HIV-1-infected individuals (89). The importance of type I 
IFNs in HIV-1 infections, as well as the timing of their effects, 
was studied in SIV infections of rhesus macaques (90). Blockage 
of IFN α/β receptors in rhesus macaques reduced antiviral gene 
expression and reservoir size during acute infections; however, 
continued IFNα2a treatment led to a desensitisation toward 
type I IFNs, resulting in decreased antiviral gene expression, 
increased reservoir size and accelerated CD4 T  cell loss (90). 
Several mechanisms that underlie the association of immune 
activation and progression to AIDS have been proposed (14). 
Overall, it appears that the timing of type I IFN-induced innate 
response to HIV/SIV infection largely influences overall disease 
pathogenesis.

Several markers of inflammation and immune activation, 
such as C-reactive protein, sCD14, IL-6, and TNFα, have been 
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associated with increased progression and mortality in HIV-1 
infections (91–93). A novel non-human primate model for the 
investigation of sex differences in HIV-1 disease progression was 
recently used to study sex differences in local innate immune 
activation and gut microbiota (94). Viral load, disease progres-
sion, microbiota, and immunological parameters were studied in 
rhesus macaques infected with SHIV-1. This non-human primate 
model showed the same sex bias in SHIV-1 infection as observed 
for HIV-1 in humans and linked an earlier and more robust pro-
inflammatory immune response as well as increased expansion 
of Proteobacteria in the female rectal mucosa to the increased 
disease susceptibility in female macaques (94).

A recent longitudinal study investigated sex differences in 
inflammatory and immune activation markers in HIV-1-infected 
women and men after initiation of combination antiretroviral 
treatment (cART). After cART initiation, women experienced 
less cART-associated reduction in inflammation and immune 
activation, indicated by higher levels of IFNγ and TNFα 48 weeks 
after initiation of therapy (95). Another study analyzed sex dif-
ferences in soluble markers in plasma and cerebrospinal fluid 
(CSF) in HIV-1-infected treatment-naive individuals with or 
without cognitive impairment from Thailand. Soluble markers 
were quantified before and 48  weeks after cART initiation to 
identify variations in markers that may contribute to differences 
in disease progression (96). In chronic untreated HIV-1 infec-
tion, up to 50% of infected individuals have been reported to 
have cognitive impairment, commonly termed HIV-1-associated 
neurological disorders (97). Treatment naive, HIV-1-infected 
women with impaired cognition had elevated levels of neopterin 
and TNF-RII, both correlative markers for HIV-1 progression 
and efficiency of cART, compared to women with normal 
cognition in both plasma and CSF, whereas no associations 
were observed between these markers and cognition in men. 
Furthermore, sex-specific differences in the levels of a number 
of markers, including MCP-1, IL-8, IL-10, I-FABP, and sCD14, 

were detected in response to treatment (96). This study therefore 
proposed sex-specific differences in markers that were associated 
with cognitive impairment and chronic inflammation. Overall, 
these data suggest that changes in soluble markers vary before 
and after initiation of antiretroviral therapy between chronically 
HIV-1-infected women and men and might be predictive for 
HIV-1 disease outcomes.

COnCLUSiOn

The precise role of type I IFNs in HIV-1 disease progression still 
remains insufficiently understood. The outcomes of type I IFNs 
on disease outcome are multifactorial and appear to depend 
on timing and extend of the induction (local versus systemic), 
as well as on the specific IFNα subtypes that are induced. Sex 
differences in type I IFN responses are now widely accepted; 
however, the underlying mechanisms that lead to sex-based 
differences in type I IFN production and their impact on infec-
tious diseases such as HIV-1, but also on autoimmune diseases, 
remain less well understood. The frequent under-representation 
of women in clinical studies furthermore impedes research 
progress in that area. Thoughtful designed experimental and 
clinical studies will have to fill in the current gaps in knowledge 
concerning the impact of chromosomal effects and/or hormo-
nal influences on innate immune responses and the subsequent 
consequences for HIV-1 disease progression.
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