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Type III interferons (IFNs), also termed lambda IFNs (IFNλs) or interleukins-28/29, consti-
tute a new addition to the IFN family. They are induced upon infection and are particularly 
abundant at barrier surfaces, such as the respiratory and gastrointestinal tracts. Although 
they signal through a unique heterodimeric receptor complex comprising IFNLR1 and 
IL10RB, they activate a downstream signaling pathway remarkably similar to that of type 
I IFNs and share many functions with them. Yet, they also have important differences 
which are only now starting to unfold. Here, we review the current literature implicating 
type III IFNs in the regulation of immunity and homeostasis in the respiratory tract. We 
survey the common and unique characteristics of type III IFNs in terms of expression 
patterns, cellular targets, and biological activities and discuss their emerging role in 
first line defenses against respiratory viral infections. We further explore their immune 
modulatory functions and their involvement in the regulation of inflammatory responses 
during chronic respiratory diseases, such as asthma and chronic obstructive pulmonary 
disease. Type III IFNs are, therefore, arising as front-line guardians of immune defenses in 
the respiratory tract, fine tuning inflammation, and as potential novel therapeutics for the 
treatment of diverse respiratory diseases, including influenza virus infection and asthma.
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inTRODUCTiOn

Interferons (IFNs) have a long history. Type I IFNs were first discovered in 1957 as factors that 
“interfere” with viral replication (1). Type II IFN was identified a few years later, in 1965, as a mol-
ecule secreted by activated lymphocytes in response to antigenic stimulation (2). Yet, it was not until 
2003 that a third type of IFNs also capable of “interfering” with viral infection termed type III IFNs, 
lambda IFNs (IFNλs) or interleukins-28/29 was described (3, 4). This raised new questions as to why 
nature needs three IFN systems and new challenges as to which specific roles each type of IFN fulfils.

Type III IFNs comprise four members in humans, IFNλ1/IL-29, IFNλ2/IL-28A, IFNλ3/IL-28B, 
IFNλ4, and two (IFNλ2/IL-28A, IFNλ3/IL-28B) in mice (3–5). By comparison, type I IFNs in 
humans and most mammals are encoded by about thirteen different IFNα genes, several more 
distantly related genes and pseudogenes, and a single IFNβ gene (6), while type II IFNs consist of 
only one gene, IFNγ (7). Type III IFNs signal through a unique heterodimeric receptor complex 
comprising IFNLR1 (IFNLRA), conferring ligand specificity, and IL10RB (IL-10R2), also shared 
with IL-10 family members and required for signaling. Type I IFNs signal through IFNAR1/IFNAR2 
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and IFNγ though IFNGR1/IFNGR2. Notably, all IFNs share the 
unique ability to activate large sets of genes, collectively known as 
interferon-stimulated genes (ISGs) that inhibit viral replication, 
degrade viral nucleic acids, and induce viral resistance to neigh-
boring cells (8). As many ISGs are known to inhibit bacterial and 
parasitic infection as well (9, 10), this places IFNs at the center 
stage of antimicrobial immunity in mammals.

Among the various IFNs, type I IFNs have long been consid-
ered to constitute the primary antiviral and antibacterial defense 
mechanism in the body as they can be produced by almost 
any cell type upon infection and can signal to almost any cell 
type to confer protection (11). In contrast, IFNγ does not share 
this ubiquitous pattern of expression. Rather, its expression is 
restricted to NK  cells and T  cells, engaged later on during the 
antimicrobial immune response following the production of type 
I IFNs, IL-12, and other innate inflammatory cues, and involved 
in strengthening type I IFN-mediated defenses and regulating 
adaptive immunity (7). However, the discovery of type III IFNs 
that exhibit analogous activities and expression patterns with type 
I IFNs has complicated this paradigm, leading to the suggestion 
that type III IFNs may be more important in first line defenses 
at barrier surfaces such as the respiratory, gastrointestinal, and 
urogenital tracts (12–14). Here, we review the current literature 
implicating type III IFNs, referred throughout as IFNλs, in the 
regulation of immunity and homeostasis in the respiratory tract. 
We highlight unique antiviral and immune modulatory functions 
of IFNλs not shared with type I IFNs, and discuss why two appar-
ently similar IFN systems are needed for optimal host protection.

iFnλs eXPReSSiOn PATTeRnS AnD 
FUnCTiOnS, AnD COMPARiSOn TO  
TYPe i iFns

IFNλs are induced in response to diverse pathogens including 
DNA and RNA viruses (3, 4, 15) as well as intracellular and extra-
cellular bacteria (16, 17). In the respiratory tract, these comprise 
influenza viruses, rhinoviruses, respiratory syncytial viruses, S. 
pneumonia, H. influenza, S. aureus, and M. tuberculosis, all of 
which trigger high levels of IFNλs. Multiple pattern recognition 
receptors (PPRs) are involved in this process including endoso-
mal toll-like receptors (TLR), such as TLR3, TLR7/8, and TLR9, 
and cytosolic sensors, such as RIG-I and MDA-5, recognizing 
double-stranded or single-stranded RNA, unmenthylated DNA, 
and other microbial structures (18).

Pattern recognition receptors are abundant in the respira-
tory epithelium and immune cells lying beneath the epithelial 
layer, sampling the airway lumen or residing in the lung paren-
chyma such as conventional and plasmacytoid dendritic cells 
(DCs), alveolar and interstitial macrophages, and monocytes. 
Interestingly, although these cells broadly respond to PRR 
engagement, expression of IFNλs is selective to specific cell types, 
most prominently epithelial cells and DCs (19–22), suggesting 
the involvement of additional epigenetic, transcriptional, and 
posttranscriptional regulation, which determines the ability of 
cells to make IFNλs. Indeed, RIG-I-like receptor signaling via 
mitochrondrial antiviral signaling protein (16) in peroxisomes or 

presence of transcriptional repressors, such as ZEB1 and BLIMP-1 
(23), may provide such signals controlling IFNλ expression.

A surprising observation since the early days of their discovery 
was the ability of IFNλs to activate a remarkably similar down-
stream signaling cascade to that of type I IFNs. Despite the utiliza-
tion of distinct receptor complexes, both IFNλs and type I IFNs 
trigger the JAK/STAT pathway, leading to the phosphorylation 
and nuclear translocation of STATs, the activation of interferon-
regulatory factors, and the formation of the transcription com-
plex IFN-stimulated gene factor 3 which is critically involved 
in the induction of ISGs (24, 25). Even on direct side-by-side 
comparisons in cultured cells, it has been difficult to distinguish 
type I from type III IFN responses (26–28). It has, therefore, 
been proposed that these cytokines share their antiviral activity 
(28–30), and indeed in numerous in vitro and in vivo studies IFNλ 
was shown to be as effective as type I IFNs in treating viral or 
bacterial infections (13, 14).

In an effort to explain why the organism employs two func-
tional IFN systems with similar activities to confront infection, 
the idea of “ligand availability” was proposed (25). This was based 
on the notion that each unique infection induces a specific set 
of IFNs which accordingly determine the response. Although 
important, this “ligand-centric” view did not fit with many 
situations where both type I and type III IFNs are induced. The 
concept of “compartmentalization” was, therefore, put forward. 
This suggested that type III IFNs may be more important at 
barrier surfaces, such as the gastrointestinal epithelial layer, 
while type I IFNs may predominate once barrier surfaces are 
breached at the underlying tissues and the circulation. In support 
of that, IFNLR1 exhibits a very restricted pattern of expression 
compared to type I IFN receptors whose presence is ubiquitous, 
and is primarily found at epithelial origin cells although some 
leukocytes such as neutrophils can also express them (20, 21, 31, 
32). Evidence for “compartmentalization” has come from recent 
work with intestinal pathogens indicating that IFNλs suffice to 
clear murine rotavirus, reovirus, or norovirus infection at the 
intestinal epithelium while type I IFNs are more important for 
preventing viral spread to the lamina propria and/or systemic 
dissemination (33–36). Still, compartmentalization alone may 
not suffice to explain the utility of two IFN systems. One report, 
in particular, has suggested a dispensable role for both type I and 
type III IFNs in murine rotavirus infection in the gastrointestinal 
tract, and only a temporal requirement of type III IFNs for pro-
tection against simian rotavirus infection (37). Moreover, in the 
respiratory track such clear-cut compartmentalization does not 
exist. Rather, it appears that IFNλs and type I IFNs exhibit distinct 
functions and activities that are only now starting to emerge.

iFnλs FUnCTiOnS in AnTiviRAL 
iMMUniTY in THe ReSPiRATORY TRACT

The respiratory tract is among the sites of the body where type III 
IFNs are most abundantly expressed. The primary target of res-
piratory pathogens, such as influenza viruses and rhinoviruses, 
is the nose and tracheal epithelium of the upper respiratory tract 
but the lower airway epithelium and lung parenchyma can also 
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FiGURe 1 | Fine tuning of the innate antiviral immune response by type I and type III interferons (IFNs) in the lung. Type III IFNs are produced first, upon infection of 
airway epithelial cells, and act as the first line of defense to limit virus spread at the epithelial barrier without triggering inflammation. If infection escapes type III IFN 
control, type I IFNs are induced that provide the second line of defense, enhancing viral resistance beyond the respiratory epithelium and activating pro-inflammatory 
responses essential for providing protection but also causing immunopathology.
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be reached. Accordingly, primary nose and airway epithelial cells, 
and bronchial and alveolar epithelial cell lines, can all express 
high levels of IFNλs following infection in culture (31, 38–40). 
However, smooth muscle cells, fibroblasts, and immune cells such 
as conventional and plasmacytoid DCs can also express IFNλs 
(20, 22, 41, 42), suggesting that when the epithelial barrier is 
breached, additional sources of IFNλ production exist.

Type I IFNs are also induced by respiratory pathogens (11, 43).  
Respiratory epithelial cells express IFNβ while IFNα subtypes 
are primarily produced by immune cells. Smooth muscle cells 
and fibroblasts can also make them (43). Numerous studies 
over the years have demonstrated the key importance of type 
I IFNs in providing antiviral protection against influenza and 
parainfluenza viruses, rhinoviruses, respiratory syncytial viruses, 
adenoviruses, and others. Ifnar−/− animals, in particular, have 
been shown to be particularly susceptible to such infections while 
recombinant type I IFN treatment has been shown to prevent 
infection (11, 44).

IFNλs have, therefore, been considered to be of secondary 
importance till recently. Although initial studies in mice have 
shown that IFNλs are the predominant IFNs produced in response 
to infection (45) and that Ifnlr1−/−Ifnar1−/− animals are more sus-
ceptible to influenza virus infection compared to Ifnar1−/− animals, 
specific non-redundant functions of IFNλs in Ifnlr1−/− mice could 
not be described (20, 28, 46–48). IFNλs induce ISGs but so do 
type I IFNs. IFNλs can also activate NK cells when overexpressed 
(49), and endogenous IFNλ production seems to be required for 
optimal NK cell activity but these effects are indirect as NK cells 
do not express IFNLR1 (50). In addition, type I IFNs are direct 
and more potent activators of NK  cells (51). Yet, recent more 
refined studies have started to uncover unique roles of IFNλs 
which cannot be substituted by type I IFNs. These have shown 
that IFNλs are the primary and earlier IFNs induced following 

viral infection, conferring viral resistance to the respiratory 
mucosa and limiting initial viral spread (32). When viral load is 
low, this suffices to confront infection. However, when viral load 
is high in the first place or escapes IFNλ control, type I IFNs are 
triggered in order to enhance the organism’s antiviral defenses. 
Accordingly, Ifnlr1−/− animals exhibit markedly enhanced viral 
burden following infection with low viral load and upregulated 
type I IFN levels, highlighting the essential role IFNλs play in 
these processes (Figure 1). Central to IFNλ-mediated antiviral 
protection is the respiratory epithelium. This is the site where 
IFNλs are first induced and primarily act, limiting initial viral 
spread. However, neutrophils are also important as they express 
high levels of IFNLR1 and respond to IFNλ signaling to deal 
with their uptaken viral load, preventing the virus from infecting 
neighboring epithelial cells (32).

Beyond the “timing” component, these studies have also 
uncovered a fundamental functional difference between type I 
and IFNλs. They demonstrated that although type I IFNs trig-
ger robust pro-inflammatory responses characterized by the 
upregulation of diverse cytokines and chemokines, including 
TNF, IL-1b, and IL-6 (32, 52), IFNλs lack this function. They only 
induce the expression of ISGs without affecting the production of 
inflammatory mediators (32). Accordingly, recombinant IFNλ2 
administration in experimental animals suppressed the immuno-
inflammatory cascade triggered by respiratory viral infection, 
whereas IFNα exerted the opposite effect (32, 53). Interestingly, 
the expression of ISGs triggered by IFNλs follows slower and more 
prolonged kinetics compared to type I IFNs which induce faster 
but only transient expression of ISGs (26, 32, 54, 55). Central to 
the antiviral and/or pro-inflammatory activities of type I IFNs and 
IFNλs are neutrophils, which constitute the predominant leuko-
cytes mediating initial antimicrobial immunity (56), and secret-
ing cytokines and chemokines early during infection (57, 58).  
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FiGURe 2 | Immune modulatory and antiviral functions of type III interferons (IFNs) in asthma. Steady-state production of type III IFNs during stable asthma 
suppresses effector Th2 cell responses and keeps chronic inflammation and disease symptoms under control. Deficient or lower type III IFN production leads to 
reduced control of Th2 cell responses and chronic inflammation, and renders patients more susceptible to viral infections, both leading to more frequent and 
more severe asthma exacerbations. A similar mechanism of deficient type III IFN production may also account for chronic obstructive pulmonary disease 
exacerbations.
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Although neutrophils respond to both IFNs to augment antiviral 
defenses, they exhibit pro-inflammatory activation only in 
response to type I IFNs (32), a finding that awaits confirmation in 
humans. Also, IFNλs directly affect neutrophil pro-inflammatory 
function, in both mice and humans, by suppressing reactive oxy-
gen species production and degranulation of neutrophils, thereby 
limiting their tissue damaging functions and preserving barrier 
integrity (59).

Teleologically, this makes sense. Increased pro-inflammatory 
responses are needed for optimal protection against viral infec-
tion. However, they can also cause increased tissue damage, 
impaired respiratory function, and disease symptoms, and should 
not, therefore, be triggered unnecessarily. This is, in line with the 
emerging paradigm (schematically shown in Figure  1) placing 
type I IFNs as a second line of defense that only deal with respira-
tory infections that escape IFNλ control, at the expense though 
of host fitness.

iFnλs FUnCTiOnS in CHROniC 
ReSPiRATORY DiSeASeS

Research on IFNλs has mostly focused on their role in infections 
as these constitute the primary triggers of their expression in vitro 
and in  vivo. Yet, it has been demonstrated that in settings of 
chronic inflammation IFNλs can also be induced independently 
of infectious insults, possibly through the action of cytokines 
and other inflammatory or environmental cues. Thus, during the 
development of allergic airway inflammation in mice significant 
levels of IFNλs have been detected in the bronchoalveolar lavage 
of these animals and have been shown to be required for reducing 

the inflammatory burden in the lung and keep allergic airway 
disease (AAD) under control (60). Accordingly, Ifnlr1−/− mice 
exhibit markedly worsened AAD while wild-type animals treated 
intranasally with recombinant IFNλ2 demonstrate significantly 
reduced type 2 inflammation and ameliorated disease. Although 
the molecular details of the mechanisms involved remain 
incompletely understood, these involve IFNλ signaling on lung 
conventional DCs, suppression of Th2 response, and induction 
of IFNγ (60). Interestingly, increased IFNλ mRNA levels have 
been detected in the sputum of asthmatic patients compared 
to healthy individuals, in the absence of evidence of viral infec-
tion, and have been shown to correlate in steroid-naïve patients 
with milder asthma symptoms, suggesting that IFNλs may also 
exhibit similar protective activities in human disease as well (61). 
Steady-state production of IFNλs appears, therefore, to be the key 
to keeping inflammation in asthma under control and reducing 
disease symptoms (Figure 2).

The effect of IFNλs to Th2 responses is not limited to the 
setting of AAD but may be of wider importance. IFNλs can 
suppress the development of primary immune responses in vivo 
as well (60). Also, IFNλs can inhibit Th2 responses in  vitro in 
human cells through the reduction of GATA3 and IL-13, and 
possibly through the increase of IFNγ (62, 63). What remains 
to be clarified though is how exactly IFNλs are mediating these 
effects. There is a consensus that T cells do not directly respond to 
IFNλs to induce ISGs, the signature tag of type III IFN signaling 
(20, 59, 60). On the contrary, conventional DCs (60, 64, 65) and 
plasmacytoid DCs (20, 66–68) of either human or mouse origin, 
have been shown in several studies to upregulate ISGs and alter 
their function upon IFNλ stimulation. However, even in this case 
the situation is not crystal clear as there have also been reports 
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that conventional (20, 59, 68) and plasmacytoid DCs (59) do not 
respond to IFNλs, possibly reflecting differences in their origin 
(e.g., spleen vs bone marrow or blood), culture or differentiation 
protocol, and cytokine environment (e.g., presence of IL-3, IL-4, 
GM-CSF, or other). More comprehensive studies addressing the 
responsiveness of various DC populations and subpopulations 
to IFNλ are, therefore, urgently needed. Noteworthy, it has been 
shown that IFNλs can induce the proliferation of Foxp3+ regula-
tory T cells in vitro (64, 65) but confirmation of these findings 
in vivo is still awaited.

IFNλs are also particularly important during asthma exacer-
bations. The induction of type I and type III IFNs following viral 
infection is deficient in allergic asthmatic patients with poorly 
controlled asthma, either because of the strongly Th2-polarized 
environment at the respiratory mucosa and the use of corticos-
teroids that generically suppress IFN production and function 
(e.g., through the induction of SOCS1) or because of epigenetic 
changes that prevent optimal IFNλ gene expression and transla-
tion (31, 69, 70). In either case, this renders allergic asthmatic 
patients distinctly susceptible to viral exacerbations of asthma, 
the main cause of hospitalizations and life-threatening situations 
in this disease (71). These exacerbations are characterized by 
sudden upregulation of epithelial-derived cytokines, such as 
IL-25 and IL-33, and rapid aggravation of type 2 responses in the 
airways, which can all be regulated by type I and type III IFNs 
(Figure 2). Indeed, a Phase II clinical study, administering inhal-
able IFNβ in a range of asthmatic patients with moderate to severe 
asthma, demonstrated significant improvement in the “difficult 
to treat” group of patients, highlighting the potential benefit of 
this approach (72). Although the treatment was overall well toler-
ated, the long-known adverse effects of type I IFNs, such as fever, 
diarrhea, and flu-like disease, are still an issue of concern. IFNλs 
are, therefore, currently being considered as a better alternative 
to type I IFNs for treating asthma exacerbations as they exhibit 
reduced adverse effects and a safer pharmacological profile.

Deficient IFN production of the respiratory epithelium has 
also been observed in chronic obstructive pulmonary disease 
(COPD), another disease characterized by frequent virally induced 
exacerbations. Bronchial epithelial cells from COPD patients are 
not capable of mounting a full IFN response upon viral infection 
(73). This is possibly due to cigarette smoke exposure as bronchial 
epithelial cells from smokers had significantly reduced IFNβ and 
IFNλ levels compared to non-smokers (74). Administration of 
recombinant IFNλs may, therefore, be beneficial for the treatment 

of COPD exacerbations as well. Whether IFNλs are also impor-
tant at “steady state” during stable disease and whether they can 
be involved in other chronic respiratory diseases remains to be 
investigated.

COnCLUSiOn AnD FUTURe DiReCTiOnS

Over the last years, major progress in our understanding of the 
unique functions of IFNλs, not shared with type I IFNs, has taken 
place. This has revealed the importance of IFNλs in front-line 
antiviral defenses in the body, especially the respiratory and gas-
trointestinal tracts, acting in synergy with type I IFNs to fine tune 
immunity for optimal protection and minimal host damage. This 
has also uncovered the significance of IFNλs in keeping inflam-
mation under control and preventing exacerbations in asthma, 
supporting their potential use for the treatment of diverse respira-
tory diseases. Despite that, key gaps of knowledge exist. Thus, it 
remains largely unexplored whether IFNλs are also important in 
immunity against bacterial or fungal infections of the respiratory 
tract, or barrier surfaces in general and how these are positioned 
by comparison to type I IFNs. It also remains unclear whether 
IFNλs are important in adaptive immune responses against infec-
tions, such as antibody and cytotoxic T cell responses, including 
immunological memory, which are well known to be affected 
by type I IFNs. Moreover, it remains to be established whether 
IFNλs are important in other chronic respiratory disorders 
beyond asthma and COPD, and how they can affect the course 
of the disease process. Further studies toward these directions 
are, therefore, urgently needed before these highly promising 
therapeutic candidates can be effectively exploited in the clinic.
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