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Recent progress in regulatory T  cells (Tregs) biology emphasizes the importance of 
understanding tissue-resident Tregs in response to tissue-specific environment. Now, 
emerging evidence suggests that pancreatic-resident forkhead box P3+ Tregs have 
distinguishable effects on the suppression of over-exuberant immune responses in 
autoimmune type 1 diabetes (T1D). Thus, there is growing interest in elucidating the role 
of pancreatic-resident Tregs that function and evolve in the local environment. In this 
review, we discuss the phenotype and function of Tregs residing in pancreatic tissues 
and pancreatic lymph nodes, with emphasis on the unique subpopulations of Tregs that 
control the disease progression in the context of T1D. Specifically, we discuss known 
and possible modulators that influence the survival, migration, and maintenance of 
pancreatic Tregs.

Keywords: type 1 diabetes, regulatory T cells, pancreatic-resident regulatory T, immune suppression, non-obese 
diabetic mice

iNTRODUCTiON

Type 1 diabetes (T1D) is an autoimmune disease, during which immune homeostasis is destroyed 
and immune cells selectively attack pancreatic β cells. The development of T1D involves a com-
plex crosstalk among immune cells of both the innate and adaptive immune systems (1). Of note, 
the dual roles of immune cells are often observed in β cell destruction depending on cell subsets, 
activation pathways, and immune microenvironment (2, 3). Thus, the specialized suppressive 
subsets that antagonize over-exuberant immune responses are important in inhibiting β cell 
destruction.

Regulatory T cells (Tregs) are critical regulators by performing suppressive functions through 
several well-established mechanisms (4). Studies in animal models, particularly in non-obese dia-
betic (NOD) mice, have demonstrated a strong association of Tregs and T1D. These cells deficiency 
in NOD mice accelerated disease progression (5). Therapies targeted to Tregs have also been reported 
in early phase clinical trials (6–8). However, different studies in T1D patients have reported conflict-
ing results, with respect to the frequency or absolute numbers, as well as functional defect of Tregs 
from peripheral blood (9–13). As such, considering heterogeneity and diversity of circulating Tregs, 
do distinct subpopulations of Tregs engage as an important player and regulate the pathophysiology 
in the home tissue of T1D?
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Actually, distinguishable Treg subsets that reside in tissues 
have attracted interest. Those tissue-resident Tregs exhibit 
spe cific phenotype and function in response to local cues, 
thereby promoting tissue homeostasis (14, 15). The specialized 
distribution of Tregs has provoked the assessment of how target 
tissue-resident Tregs control the development of diabetes. Now, 
it is evident that pancreatic-resident Treg subsets distinct from 
the Treg population that exist in peripheral blood and spleen 
(9, 16, 17). In this review, we focused on the unique features of 
Tregs residing in the target tissues, namely pancreatic tissues 
and pancreatic lymph nodes (PLNs), and how these special 
Tregs were maintained and functioned throughout diabetes 
progression.

PHeNOTYPe OF Tregs iN PANCReATiC 
TiSSUeS AND PLNs

Regulatory T  cells constitute 10–15% of the total CD4+ T  cell 
population in whole body but constitute a much higher propor-
tion in local tissues such as visceral adipose tissue and intestinal 
tissue (18, 19). The question of whether proportion of pancreatic-
resident Tregs has a similar tendency has been examined with 
NOD mice. In NOD mice, a small population of forkhead box P3 
(Foxp3)+ Tregs (8–20% of CD4+ T cells) resided in pancreatic tis-
sues, in comparison with 10–15% Tregs within CD4+ T cell com-
partment in lymphoid organs such as PLNs and spleen (20, 21). 
It gradually fluctuated with age and disease progression both in 
PLNs and pancreatic tissues (20–22). Controversial results were 
obtained when detecting Foxp3 transcripts (16), whose expres-
sion was important for the establishment and maintenance of 
Treg features (4). The study demonstrated that the levels of Foxp3 
failed to be detected in the PLNs of prediabetic and diabetic mice 
(16). Divergent results are likely to reflect the mice with differ-
ent gene manipulation (NOD mice versus Foxp3-GFP reporter 
mice), disease stages, timing and technology of Treg purification, 
and Treg subpopulation involved. It will be important to obtain 
a more global view of Treg proportion with age and disease 
development in T1D.

Human Treg in local pancreas has been studied only to a lim-
ited extent, but available evidence indicates that amount of Foxp3 
expressed in CD4+ T cells and in CD25bright T cells was similar 
within the PLNs of diabetic and non-diabetic donors (9). With 
difficult access to human tissues, these findings accomplished by 
experimental model are difficult to validate in humans. Therefore, 
the precise changes of pancreatic-resident Treg subsets need to be 
elucidated in T1D.

Comparative transcriptome analysis revealed that pancreatic-
Tregs have quite different profile from their counterparts in spleen, 
including differential expression of suppressive mediators (Il10, 
Fgl2, and Lag3), chemokine receptors (Cxcr3 and Ccr5), and tran-
scription factors that typically denote cell activation (Nr4a2, Fos, 
and Jun) (21). Although some of their major suppressive media-
tors such as Il10 and Lag3 also engaged in other tissue-resident 
Tregs, principal components analysis revealed that differential 
expression genes in pancreatic-Tregs involved in cell growth 
and proliferation (21). Transcriptional profiling studies which 

compared pancreatic-Tregs and effector T cells (Teffs) helped to 
further dissect differential roles of pancreatic-Tregs. Again, genes 
encoding functional molecules such as glucocorticoid-induced 
TNF receptor (GITR), CD103, Nrp-1, IL-10, and CTLA-4 were 
overexpressed, genes encoding transcription or signaling factors 
such as OBF-1, Tcf7, Eomesodermin, and Smad1 were under-
represented (23).

These data indicate that pancreatic-Treg populations have a 
tissue-specialized transcriptome, which may reflect their unique 
features in proliferation, retention, and function within pancreas 
in the context of T1D. Of note, there exists no information on the 
phenotypic particularities of Tregs residing in human pancreas, 
additional analysis of T1D patients are needed. In addition, skew-
ing TCR repertoire from PLN of T1D patients has been reported 
(24), but no data demonstrated whether pancreatic Treg TCRs 
were involved.

UNiQUe SUBPOPULATiONS  
OF Tregs iN PANCReATiC  
TiSSUeS AND PLNs

iCOS+ Treg Subset in Pancreatic Tissues
ICOS, a CD28 superfamily related molecule, is involved in T cell 
activation and survival (25, 26). Several works assessing the 
function of ICOS have been performed in the context of T1D. 
Systematic blockade of ICOS in NOD mice resulted in T1D 
exacerbation, and ICOS expression was dramatically reduced as 
the T1D progression, suggesting ICOS might play a protective 
role in T1D (23, 27). ICOS blockade led to an increased frequency 
of Teffs and a decreased Tregs in pancreatic tissues, but not in 
the PLN (23, 27). ICOS blockade also affected gene signatures 
of pancreatic-Tregs such as functional molecules IL-10, GITR, 
SOCS-2, Tcf7, Eomesodermin, and Myb, suggesting that ICOS 
blockade induced phenotype shift away from the Treg profile 
(23). The proportion of Treg expressing ICOS in pancreatic tis-
sues was about 8% of CD4+ T cells, 50% of Foxp3+ Tregs, but only 
a small proportion in PLN (~2% of CD4+ T cells, ~18% of Foxp3+ 
Tregs) (27). The fact that ICOS was preferentially expressed in 
pancreatic-Tregs suggested their distinctive functional properties 
in T1D.

ICOS+ Tregs exhibited a much greater proliferative capacity 
compared with ICOS−Foxp3+ Tregs (27). And ICOS+ Tregs 
were more potent than ICOS− Tregs at suppressing Teffs (27). 
Consistently, ICOS− Tregs were unable to prevent T1D onset 
(27). These results implied defective function of ICOS− Tregs 
in inflamed islets. Furthermore, irrespective of proliferative 
potential, pancreatic-ICOS+ Tregs had similar activation status 
with ICOS− Tregs (27), suggesting that ICOS+ Tregs represented 
memory Tregs in islets. Of note, although ICOS− Tregs had 
the capacity to develop into ICOS+ Tregs via TCR stimulation 
in vitro, those induced-Tregs did not suppress Teffs as efficiently 
as wild type ICOS+ Tregs (27). Similar findings have been 
reported for human Tregs that were isolated from thymus and 
periphery (28). Therefore, ICOS might be an intrinsic imprint 
that operated unique feature of Treg subsets during their 
development.
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Functionally, IL-10 secreted by ICOS+ Treg contributed to 
their function in preventing diabetes (27). More specifically, 
IL-10-secreting Tregs were prone to residing in pancreas, but 
not in PLNs (27). Their frequency, particularly in the pancreas, 
dropped severely in genetic models of ICOS−/− mice compared 
with those in WT mice (27). It seems that ICOS expression is 
required for IL-10 production by Tregs, especially those resid-
ing in the pancreas. It should be noted that signals delivered 
though ICOS have also suggested inducing IL-10 expression in 
other T cell subsets (29–32). In addition, ICOS+ Tregs have been 
identified in inflammatory skin, which developed from natural 
Tregs rather than adaptive Tregs (33). Similarly, skin ICOS+ Tregs 
expressed IL-10, as well as other proinflammatory cytokines IL-17 
and IFN-γ (33). These data argue that ICOS+ Tregs might not 
be pancreatic-specific Tregs, but their accumulation in pancreas 
suggested pancreatic-specific environment tailored their func-
tion that might be related to contribution in T1D.

The molecular signals which controlled the survival and 
function of ICOS+ Tregs have also been clarified. ICOS+ Tregs 
were more susceptible to death after IL-2 withdrawn and resisted 
from apoptosis after IL-2 treatment (27). IL-2-mediated activa-
tion of the STAT5 pathway was responsible for ICOS expression 
(20). That might exist a possible IL-2-ICOS positive feedback 
loop in pancreatic-Treg homeostasis (20, 34). The interaction 
between IL-2 and ICOS that co-regulates ICOS+ Tregs need to 
be elucidated.

iCOS+ Treg Subset in PLNs
As described above, the proportions of ICOS+ Treg in pancreas 
is significantly higher than those in PLN. However, ICOS+ 
Treg subsets in PLN typically expressed chemokine recep-
tor CXCR3, which was not found in pancreatic Tregs (35). 
Transcriptional factor T-bet imprinted on PLN ICOS+ Tregs, 
but it was unknown whether these Tregs depended on T-bet 
for their generation in the PLN. Interesting, ICOS+CXCR3+ 
Tregs expressed IFN-γ in PLNs, which correlated with degree 
of pancreatic inflammation (35). The data suggest that PLN 
ICOS+ Tregs adopt a Th1-like phenotype that correlates with 
Th1-polarized inflammation in the pancreas. Similarly, it has 
confirmed that in response to IFN-γ, Tregs upregulated T-bet 
expression, which secondly promoted CXCR3 expression on 
Tregs and accumulated at sites of Th1  cell-mediated inflam-
mation (36). It seems likely that CXCR3 was dedicated to 
controlling potential migration process in the home tissue and 
PLN (see below). It will be interesting to explore the origin 
of PLN ICOS+ Tregs—whether they migrate from pancreatic 
ICOS+ Tregs and accomplish their phenotypic features by local 
cues in PLNs, or whether they derive solely from population of 
lymphoid Tregs in PLNs.

CXCR3+ Treg Subset in Pancreatic Tissues
CXCR3+ Tregs are another subpopulation that is abundant in 
the pancreas (making up nearly half of insulitic Tregs) but less 
frequent in spleen and PLNs (21). The proportions of pancreatic 
CXCR3+ Tregs were negatively correlated with the size of the islet 
infiltration, suggesting their roles in preventing inflammation 

(21). The transcription factor T-bet might contribute to the 
generation of CXCR3+ Tregs; when this factor was specifically 
deleted in Tregs, the expression of CXCR3+ Tregs was fully 
ablated, providing a potential mechanism through which 
CXCR3 expression was maintained in Tregs (21). Of note, an 
unusual property of pancreatic CXCR3+ Tregs is their capacity 
to control sex bias of T1D incidence in NOD mice (21). As such, 
a global understanding of pancreatic CXCR3+ Tregs in immune 
system could help explain sex difference in immune response 
and identify individuals with higher risk of immune-mediated 
diseases (37).

iL-10- and TGF-β-expressing  
Treg Subsets
TGF-β-expressing Treg is one of the effector subpopulations that 
residing in PLNs and pancreatic tissues (38). The levels of TGF-β 
in Tregs correlated with delay in diabetes development (38). TGF-
β from Tregs acted on diabetogenic T cells via TGF-β-TGF-βR 
signals in vivo (38). However, T cell-specific disruption of TGF-β 
resulted in expansion of Tregs (39, 40), especially a significant 
increase in the frequency and number of Foxp3+ Tregs in the 
PLNs (41). Interestingly, TGFβRII-deficient Foxp3+ Tregs also 
expressed higher levels of T-bet and CXCR3 (41), which indicated 
TGF signals were dispensable for the development, maintenance, 
and function of pancreatic-resident Tregs (21).

In addition to TGF-β, IL-10 expression was also found in 
subsets of pancreatic-resident Tregs (27). IL-10, as an important 
immunomodulatory cytokine, is described to reduce IFN-γ in 
pancreatic β cells and prevent diabetes progression (42). IL-10 
further promoted differentiation of IL-10-secreting Tregs, which 
formed a positive regulatory loop in IL-10 production and IL-10+ 
Treg induction (43). However, a recent study using national case-
control data has challenged the notion of IL-10 as a protective 
role in T1D (44). It was suggested that IL-10 from neonatal 
blood was positively associated with T1D risk (44). Nonetheless, 
as described above, intra-islet Tregs mediated T1D protection 
was related to their production of IL-10 (27). In addition, the 
frequency of IL-10-secreting Tregs in pancreas is much greater 
than those in PLNs, and little IL-10 can be detected in PLN (27). 
The results suggested IL-10-secreting Tregs were prone to retain 
in pancreas in the context of T1D.

To conclude, our present knowledge indicates that there are at 
least three subsets can be distinguished on the basis of ICOS and 
CXCR3 that are resident in pancreatic tissues and PLNs; these 
Tregs express functional molecules such as IL-10 and TGF-β, 
which help to maintain immune homeostasis in the pancreas. 
Interestingly, pancreatic ICOS+ Tregs exhibit little similarity with 
those in PLN in terms of functional molecules expression and 
potential regulatory mechanisms, although these cells perform 
their protective effects in T1D. The diversity of Treg subsets in 
pancreas and PLNs allows functional diversity in response to 
tissue-specific environment changes. Of note, recent advances 
in studies of pancreatic-resident Tregs failed to confirm whether 
they were pancreatic-specific Tregs. Thus, the identification of 
markers for pancreatic-resident Tregs will be crucial for further 
studies on their function features in T1D.
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FACTORS THAT ReGULATe Tregs  
iN PANCReATiC TiSSUeS AND PLNs

iL-2-Mediated Pancreatic-Treg 
Development in the Context of T1D
IL-2 signaling pathways are required for progression, functional 
programming, and expansion of Tregs (45, 46). Variants in the 
IL-2 gene predisposed to diabetes by reducing IL-2 production, 
which in turn impaired a feedback mechanism involving in 
Treg activity (47, 48). Diabetes susceptibility in NOD mice was 
reversed by treatment with IL-2, with increased Treg numbers 
and function (49, 50). Several works assessing the function of 
IL-2 in patients with T1D have showed only low dose of IL-2 
played a protective role by inducing peripheral immune regula-
tion (6, 51, 52). However, it is worth noting that this effect was 
not observed in Tregs-deficient mice (49), suggesting low-dose of 
IL-2 was inefficient to induce diabetes remission in the absence of 
naturally occurring Tregs.

Interestingly, pancreatic Tregs were more sensitive to IL-2 
than their counterparts in PLNs and other sites in the context 
of T1D (49). IL-2 treatment increased proportion of Tregs in the 
pancreas of prediabetic mice; by contrast, when high percentage 
of pancreatic Tregs were already present in mice with new-onset 
diabetes, IL-2 treatment failed to increase pancreatic Treg num-
bers (49). It has ruled out the IL-2-mediated Treg increased was 
associated with proliferation. In addition, IL-2 signals promoted 
Treg survival (49), recruitment, and conversion of CD4+ T cells 
into Tregs (53). In addition to the effect of IL-2 on pancreatic 
Treg numbers, IL-2 directly induced pancreatic Treg activity by 
increasing expression of molecules associated with Treg function 
such as CD25, Foxp3, CTLA-4, ICOS, and GITR (20). This led to 
immune suppressive regulation in the target organ during T1D 
development.

Notably, IL-2 can stimulate the expansion and differentiation 
of cells expressing IL-2R (eg. CD8+ T cells, NK cells) during the 
immune response (54), which may lead to tissue destruction in the 
context of T1D. Thus, it needs to know how IL-2 can specifically 
and selectively target to Tregs, particularly pancreatic-residing 
Tregs in T1D.

β-Cell-Specific iL-2 Targets  
to Pancreatic Tregs
Although systemic administration of IL-2 promoted pancreatic 
Tregs function in T1D, IL-2-mediated pleiotropic and potentially 
toxic effects were found in some cases. Therefore, IL-2 must spe-
cifically target to pancreas to boost suppressive Tregs while avoid-
ing potential toxic effects. In view of this, Mark et al. developed 
β-cell-specific IL-2 delivery system, in which adenoassociated 
virus vector gene delivery was used to localize IL-2 expression 
to the islets of NOD mice (55). Consistent with systematic 
IL-2, β-cell-specific IL-2 was sufficient to prevent the onset of 
diabetes long term at late preclinical stages but failed to induce 
remission in recent-onset diabetic NOD mice (55). Specifically, 
β-cell-specific IL-2 administration preferentially affected islet 
Foxp3+ Tregs, which was characterized by a phenotypic shift 
toward CD62LHighFoxp3+ Tregs (55). Furthermore, β-cell-specific 

IL-2 has the potent capacity to increase CD25 expression, but 
not CTLA-4, GITR, and ICOS (55). It is worth noting that 
long-term maintenance of pancreatic-Treg was associated with 
enhanced survival in β-cell-specific IL-2 treated mice, reflecting 
by increased expression of anti-apoptotic Bcl-2 and Bcl-xL (55). 
Also, β-cell-specific IL-2 did not promote persistent proliferation 
of Tregs in the islets (55). Functionally, CD62LHighFoxp3+ Tregs 
had more robust suppressor function; this effect was not associ-
ated with elevated levels of IL-10 or TGF-β (55). Although β-cell-
specific IL-2 exhibited functional similarity with systemic IL-2 in 
preventing T1D, these data suggest that targeting β cells might be 
clinically efficacious in retaining intra-islet Tregs function in the 
context of T1D.

T-bet-Mediated Stability  
of Pancreatic-CXCR3+ Tregs
The transcription factor T-bet in Tregs promotes Th1  cell- 
specific suppressive activity (56, 57). First, T-bet mediates Treg 
migration: T-bet-deficient Tregs failed to upregulate CXCR3, 
which impaired their recruitment to sites of Th1 responses that 
were rich in its ligands CXCL9 and CXCL10 (36, 57). Second, T-bet 
selectively influences cytokine production: selective ablation of 
T-bet in Tregs suppressed IFN-γ production, but unrestrainedly 
produced Th2 and Th17 cell cytokines (56, 58). Of note, in certain 
condition, T-bet-deficient Tregs are equally suppressive as wide-
type Tregs (59, 60), even have greater suppressive capacities (61). 
That is because T-bet+ Tregs were described to only specifically 
inhibit T-bet+ Teffs (58).

These characteristics of T-bet in Tregs are partly consistent with 
findings in the context of T1D. For example, the polymorphism of 
T-bet has been implicated as a risk gene in human T1D (62); in 
animals, T-bet was contributed to the control of diabetes in NOD 
mice; when lacking endogenous Tregs, those T-bet deficiency 
mice showed rapid progression of diabetes at early ages (63). 
These results suggested T-bet, combined with Tregs, was crucial 
for disease development in the context of T1D. Furthermore, 
T-bet-deficient Tregs displayed instability in the islet, failing to 
suppress CD4+ T cell and their infiltration in islet and PLNs (64).

However, T-bet failed to induce IFN-γ production in pan-
creatic CXCR3+ Tregs (21), which was coincident with T-bet 
function in other diseases (36). In addition, loss of T-bet by 
Tregs did not seem to affect Treg proliferation and survival in 
terms of overall numbers in pancreas, which considered to be 
compensating for impaired CXCR3-mediated migration into the 
islets (21). These results were consistent with the fact that T-bet+ 
Tregs differentiated from T-bet− precursors rather than arising 
from an expansion of the steady-state T-bet+ Treg population 
(58). Thus, T-bet regulated CXCR3 expression in pancreatic-
Tregs, which potentially contributed to disease progression in 
the context of T1D.

Other Signal Pathways Mediated Tregs 
expression and Function in Pancreatic 
Tissues and PLNs
Other signal pathways, such as IFN-γ/IFN-γR, TLR4/MD2, and 
IL-35, can also influence the expression and function of Tregs 
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residing in pancreas or PLNs. Pancreatic-resident ICOS+ Tregs 
produced higher levels of IFN-γR and exhibited STAT1 phos-
phorylation upon stimulation, which suggested that ICOS+ Tregs 
were sensitive to IFN-γR signaling pathway (35). Consequently, 
IFN-γ selectively upregulated CXCR3 in ICOS+ Tregs in vitro and 
in vivo (35). It is speculated that IFN-γ produced by intra-islet 
Teffs might significantly upregulate CXCR3 in ICOS+ Tregs.

Another positive regulator of Tregs is IL-35, which is 
thought to maintain the phenotype of PLN Tregs (65), and 
ectopic expression of which reduced islet Foxp3+ Treg numbers 
and proliferation (66). In addition, pancreatic-Tregs could be 
induced using agonistic TLR4/MD-2 monoclonal antibody (Ab) 
(67). TLR4 signals have shown inconsistent effect (increased, 
decreased, and no effects) on T1D incidence (68–70), but one 
study has reported that agonistic TLR4/MD-2 Ab could substan-
tially increase the number of Foxp3+Helios+Nrp-1+ Treg subset 
in pancreatic islet (67). Expansion of intra-islet Tregs, however, 
was not mediated by a direct effect of TLR-Ab on Tregs but was 
accompanied with resultant induction of tolerance of antigen-
presenting cells (67), which supported the viewpoint of how TLR 
signals increased Tregs numbers (71). It should be noted that it 
is still unknown whether these above described signals have an 
exclusive capacity to modulate pancreatic-resident Tregs in the 
context of T1D.

Finally, pancreatic Tregs depend on TCR signals. TCR bound 
to peptide–MHC complexes, initiating signaling cascades that 
determined the stability and function of Tregs (72, 73), the 
process of which was also partly dependent on T  cell-derived 
TGF-β and IL-2 (74). Indeed, lentivirus-mediated TCR gene 
transfer into polyclonal Treg could produce islet antigen-specific 
Treg populations, in which activation marker (CD69, CD137, 
and GARP) were upregulated (75). However, much effort is still 
needed to identify TCR diversity that contributes to the specific 
function of pancreatic Tregs in T1D.

To summarize, these factors might be used to target 
pancreatic-resident Tregs to expand Treg numbers or enhance 
their function or promote their migration into pancreas and 
PLN, thereby suppressing immune responses to prevent β cell 
destruction. It should be noted that whether there are distinct 
signal pathways that affect different Tregs subsets in pancreatic 
local settings is currently unknown, although recent studies 
indicate specific requirements do exist. Furthermore, identifying 
new specialized regulators might be particularly instructive for 
manipulating pancreatic-resident Tregs. Future studies to define 
how pancreatic Treg differentiation, homeostasis and function in 
the local settings will pave the way to manipulate tissue-resident 
Tregs for the treatment of T1D.

ACCUMULATiON OF Tregs iN  
PANCReATiC TiSSUeS AND PLNs

Regulatory T cells can generate in the thymus (termed thymic 
Treg, tTreg) and induce in the periphery by conversion of CD4+ 
Foxp3− T cells into CD4+Foxp3+ Tregs (termed peripheral Treg, 
pTreg). Where and how T cells are developed into pancreatic-
resident Tregs is currently unknown, although recent studies 
indicate some specific factors exist for their maintenance in 

pancreas. For example, CXCR3+ Tregs in pancreas are crucially 
dependent on transcription factor T-bet (21), possible positive 
feedback loop of IL-2–ICOS is important for pancreatic ICOS+ 
Treg homeostasis (36). Furthermore, the possibility remains that 
tTregs constitute a substantial proportion of pancreatic-resident 
Tregs. This hypothesis is supported by the fact that pancreatic 
CXCR3+ Tregs were regulated by T-bet (21), but this regulation 
was only observed in pancreatic natural Tregs (64). However, 
further investigation is required to comprehensively define the 
origin of pancreatic-resident Tregs that coordinate protective 
effects in T1D.

The pattern of Treg accumulation in pancreas is governed 
by adhesion molecules, chemotactic molecules and chemoat-
tractant receptors that expressed or produced by Tregs and 
pancreatic environmental cues (Figure  1). In the context of 
T1D, CXCR3− Tregs show impaired accumulation in pancreatic 
islets. This effect has functional consequences, as mice defective 
in CXCR3 could not effectively suppress Th1 activity and developed 
earlier onset of diabetes (76). Besides CXCR3, pancreatic Tregs 
express several other chemokine receptors such as CCR2, CCR8, 
and CXCR6, which were thought to compensate for the absence 
of CXCR3 in promoting Tregs localization to the islets. For 
example, early studies described the migration pattern of Tregs 
in transplanted pancreatic islets and showed that Tregs needed to 
be educated first in the inflamed islets before entering the drain-
ing lymph node (77). Tregs migrated from blood to the inflamed 
islets depending on CCR2, CCR4, CCR5, and P- and E-selectin 
ligands, whereas Tregs migrated to draining lymph nodes in a 
CCR2, CCR5, and CCR7 fashion (77). Other molecules such as 
CCL12 and MAdCAM-1 expressed by islet, SDF and Integrin 
α4β7 expressed by Tregs were required for Treg localization in 
the pancreas (16, 78–80). Furthermore, pancreatic-resident 
antigen-presenting cells, specifically F4/80+ macrophages and 
CD11c+ DCs, were commonly expressed CXCL9, CXCL10, and 
CXCL11, which specifically induced CXCR3+ Tregs migration 
in islets (35). These data suggest that substantial migration is 
required for Treg suppressive function in local setting, this 
process involves in an array of molecules that act in a redundant 
fashion. No detailed insights exist as to which of these molecules 
are more important for Treg migration between pancreas and 
PLNs. It is also not clear whether these migration patterns per-
formed by pancreatic Tregs are primarily in the context of T1D 
or any other inflammatory responses.

Transcriptional factors were also observed to affect Treg 
migration in T1D. T-bet−/− natural Treg expressed more CCR4 
and migrated better to CCL22, which contributed to T-bet−/− 
Treg in the islet (64, 77). Also, T-bet affected expression of 
sphingosine-1-phosphate (S1P) receptor 1 (81), which bonded to 
S1P and promoted migration of Tregs from tissues into the blood 
(82). Thereby, T-bet deficiency resulted in a defective migration 
of Tregs across lymphatic endothelial cells and was accompanied 
by retaining T-bet−/− Treg in pancreatic tissues (81). Similarly, 
CD103 (also known as αE integrin) expression can be influenced 
by T-bet (36, 64). CD103 formed a heterodimer with β7 integrin 
and contributed to specific retention of lymphocytes in tissues 
by binding to E-cadherin on epithelial cells (83, 84). CD103 has 
been used to identify tissue-resident lymphocytes (85); hence, 
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CD103 upregulated by T-bet deficiency was functionally involved 
in retaining T-bet−/− Tregs in islets (64). In addition, as described 
above, T-bet induced CXCR3 expression on Tregs, which was 
prone to residing in pancreas (76). Altogether, chemokine and 
chemokine receptors are regulated by T-bet in Tregs, and their 
function in terms of ligand interactions indicate that T-bet is 
involved in the retention of Tregs in pancreatic tissues.

It should be noted that mechanisms underlying Treg migration 
are shared with those of pathogenic effector cells. For example, 
α4β7 was highly expressed on islet-infiltrating lymphocytes in 
NOD mice, suggesting that the MAdCAM-1 in inflamed islets 
also drove the migration of pathogenic Teffs into islets (78, 86). 
It has been described that immunocytes moved into the pancreas 
in a dynamic manner during disease progression. Insulitic lesion 
was continuously infiltrated by a mixed influx of immunocytes: 
both naïve- and memory-phenotype lymphocytes could traffic to 

the insulitis, but Tregs had less active migration than their con-
ventional CD4+ counterparts (87). Thus, there is a lot of interest 
to know when and how preferential recruitment of Tregs was hap-
pened in pancreas in the context of T1D. A more complete under-
standing of the detailed migration mechanism that is necessary 
for Treg accumulation in pancreas remains to be elucidated and 
will be important for expansion and development of therapeutic 
Tregs in response to the tissue-specific environment.

NON-iMMUNOLOGiCAL FUNCTiONS  
OF Tregs iN PANCReATiC TiSSUeS  
AND PLNs

Regulatory T cells potently suppress the activation and function 
of other immune cells through directly cell-to-cell contact or 
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indirectly secreted factors. In addition to regulate immunological 
process, growing evidence showed that Tregs, particularly tissue-
resident Tregs, also regulated non-immunological functions, 
which has been well studied in muscle and visceral adipose 
tissue. Thus, in the context of T1D, non-traditional roles should 
be considered and evaluated as an important facet of pancreatic-
resident Tregs.

Although there are no data so far to directly show non-
immunological role of pancreatic-resident Tregs, there is evi-
dence suggesting a role for Treg-derived mediators in regulating 
β cells. First, ICOS+ Tregs expressed IFN-γR at higher levels and 
prevented IFN-γ production. Insulin+ β cells expressing IFN-γR 
could respond to IFN-γ, thereby, promoting apoptosis of islet 
cells. Thus, Tregs may have an indirect role to prevent the destruc-
tion of the islets (35, 88). Second, in PLNs CXCR4/SDF-1 axis was 
involved in retaining Tregs, these molecules also contributed to 
the regeneration of autologous β cells in the antea-diabetic model 
(16). Third, TGF-β has been viewed as a protective cytokine in β 
cell mass, and consequently, TGF-β signaling has an important 
role in pancreatic development and islet homeostasis (89–91). 
However, a recent study described that inhibition of TGF-β 
pathway promoted β cell replication, which suggests that Tregs-
secreted TGF-β might have a detriment effect on maintenance 
and expansion of β cell mass (91). This study found that TGF-β 
signaling induced age-related accumulation of p16INK4a that led 
to pancreatic β-cell proliferation decline; by contrast, treatment 
with TGF-β inhibitor exhibited a significant replication of β cells 
in both mouse and human (91). Although less well characterized, 
based on our current understanding, it is plausible that Tregs that 
are enriched in the pancreas may contribute to protecting β cells 
at least in part by non-immune-mediated ways.

However, these studies raise the question whether pancreatic-
resident Tregs could secrete some factors that specifically 
target to β cell and promote their repair and regeneration. These 
tissue-specific factors will allow Tregs to reside in pancreatic tis-
sues and act appropriate effector function in response to β cell 
destruction. However, given the distinct pancreatic-resident Treg 
subsets already found in T1D, it seems that their primary role is 
to prevent β cell destruction by locally restraining inflammatory 
responses of both innate and adaptive immune cells (49, 92–94).

PeRSPeCTive AND CONCLUSiON

The identification of pancreatic-resident Tregs and recognition 
of their diverse phenotype and potent immunosuppressive 
activity have provided new insights into how Tregs function in 
tissue-specific environment and why the results of manipulating 
Tregs for the treatment of T1D have been disappointing in some 
cases. Although present in pancreas in relatively low numbers, 
the selectively higher proportion of some unique subsets in pan-
creatic infiltration and PLNs seems to confer a remarkable ability 
to regulate physiological process during T1D. Thus, the ability 
of pancreatic-resident Tregs to hamper β cell destruction clearly 
emphasizes its use as an immunotherapeutic strategy in T1D. 
Tailoring proliferation and apoptosis of these Tregs in response 
to pancreatic-specific inflammatory milieu would promote 
immune balance, allowing for preservation of remaining β cells 

in T1D. Indeed, islet-specific IL-2 has proved beneficial in the 
treatment of NOD mice, and increased pancreatic-resident Treg 
numbers (55). However, as the study of pancreatic-resident Tregs 
is a new field, many questions regarding their properties remain 
unaddressed.

Given the diversity of tissue-resident Tregs already found, 
transcriptional factors that are specific to corresponding tissues 
are contributed to their non-immunological activity, for example 
amphiregulin in the muscle, PPAR-γ in the VAT. The importance 
of this property failed to describe in the pancreatic-resident 
Tregs. In contrast to pancreatic tissues, tissues that already found 
specific-Tregs are under constant threat of invasion and prone 
to damage. It might be that islet surrounding microenvironment 
did not support the specific functions of Tregs, as individual 
tissues have unique challenges and immune response. It is also 
difficult to rule out the possibility that such novel Tregs residing 
in pancreas are unrecognized. It is reminiscent of the finding that 
BLIMP-1- and IRF4-dependent Treg signatures were biased in 
pancreatic Tregs compared with spleen Tregs, but their func-
tion has not been assessed (21). These two transcription factors 
BLIMP-1 and IRF4 have been reported for differentiation and 
function of effector Tregs in tissue homeostasis (95). Thus, future 
studies must identify the precise regulators of Tregs that mediates 
functional difference in the pancreatic microenvironment, know-
ing this will probably reflect pathophysiological complexity and 
therapeutic targets of T1D.

Despite evidence has revealed an important role of pancreatic-
resident Tregs in T1D mice, very few current studies have per-
formed detailed investigations of these cells in patients with T1D. 
Human CD4+ and CD8+ T cells in islets lack expression of CD25 
in their healthy state (96), and only ~5% Tregs can be found in 
PLNs of T1D (24). In addition, limited knowledge is available 
with respect to immunosuppressive effector of pancreatic-Tregs, 
although functional defects in Tregs have been partly character-
ized by analysis of the Treg-specific demethylated region within 
the Foxp3 locus in PLN of T1D patients (9). These data raise 
the question whether Tregs recruit in pancreatic tissues only 
in physiological state in human. And the hypotheses that have 
aimed to ascribe human T1D pathophysiology to the defect of 
pancreatic-Tregs are confounded by our limited understand-
ing of Treg population within the islet. Thus, a more complete 
understanding of features of human pancreatic-Tregs would be 
important for evaluating current efforts to target human Tregs 
with intra-islet in the context of T1D.

Finally, the question remains how important of pancreatic 
Tregs is for T1D development. The immune systems have evolved 
so that different cell subsets with specialized function collaborate 
to influence diabetes progression; therefore, it is important to 
consider dominant populations in this process. So far, the ability 
of pancreatic-Tregs to delay the onset of diabetes has been seen 
as a sign of superior function, but this phenotype could also rep-
resent systematic Tregs. In addition, it remains unclear how the 
pancreatic-Tregs modify immune responses by cooperating with 
immune cells of both the innate and adaptive immune systems. 
Increased in-depth understanding of these issues discussed above 
is need for the better development of therapeutic interventions 
in T1D.
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