
October 2017 | Volume 8 | Article 12401

Mini Review
published: 05 October 2017

doi: 10.3389/fimmu.2017.01240

Frontiers in Immunology | www.frontiersin.org

Edited by: 
Britta Siegmund,  

Charité Universitätsmedizin  
Berlin, Germany

Reviewed by: 
Oliver Bachmann,  

Hannover Medical School,  
Germany  

Diane Bimczok,  
Montana State University,  

United States

*Correspondence:
Rocío López-Posadas 

rocio.lopez-posadas@uk-erlangen.
de; 

Nathalie Britzen-Laurent 
nathalie.britzen-laurent@uk-erlangen.

de

Specialty section: 
This article was submitted to  

Mucosal Immunity,  
a section of the journal  

Frontiers in Immunology

Received: 21 July 2017
Accepted: 19 September 2017

Published: 05 October 2017

Citation: 
López-Posadas R, Stürzl M, Atreya I, 

Neurath MF and Britzen-Laurent N 
(2017) Interplay of GTPases and 

Cytoskeleton in Cellular Barrier 
Defects during Gut Inflammation. 

Front. Immunol. 8:1240. 
doi: 10.3389/fimmu.2017.01240

interplay of GTPases and 
Cytoskeleton in Cellular Barrier 
Defects during Gut inflammation
Rocío López-Posadas*, Michael Stürzl, Imke Atreya, Markus F. Neurath  
and Nathalie Britzen-Laurent*

Universitätsklinikum Erlangen, Erlangen, Germany

An essential role of the intestine is to build and maintain a barrier preventing the luminal 
gut microbiota from invading the host. This involves two coordinated physical and immu-
nological barriers formed by single layers of intestinal epithelial and endothelial cells, 
which avoid the activation of local immune responses or the systemic dissemination 
of microbial agents, and preserve tissue homeostasis. Accordingly, alterations of epi-
thelial and endothelial barrier functions have been associated with gut inflammation, 
for example during inflammatory bowel disease (IBD). The discriminative control of 
nutriment uptake and sealing toward potentially pathological microorganisms requires 
a profound regulation of para- and transcellular permeability. On the subcellular level, 
the cytoskeleton exerts key regulatory functions in the maintenance of cellular barriers. 
Increased epithelial/endothelial permeability occurs primarily as a result of a reorga-
nization of cytoskeletal–junctional complexes. Pro-inflammatory mediators such as 
cytokines can induce cytoskeletal rearrangements, causing inflammation-dependent 
defects in gut barrier function. In this context, small GTPases of the Rho family and large 
GTPases from the Dynamin superfamily appear as major cellular switches regulating the 
interaction between intercellular junctions and actomyosin complexes, and in turn cyto-
skeleton plasticity. Strikingly, some of these proteins, such as RhoA or guanylate-binding 
protein-1 (GBP-1) have been associated with gut inflammation and IBD. In this review, 
we will summarize the role of small and large GTPases for cytoskeleton plasticity and 
epithelial/endothelial barrier in the context of gut inflammation.

Keywords: epithelium, endothelium, vascular, barriers, gut, junction proteins, inflammation, inflammatory bowel 
disease

inTRODUCTiOn

Epithelia at mucosal surfaces represent the first barrier preventing potentially harmful environ-
mental factors to invade the host. In the intestine, the epithelium does not only represent a simple 
physical obstacle against pathogen invasion but it also regulates nutrient uptake and innate immune 
function by avoiding the activation of mucosal immune responses (1). Thereby, maintenance of 
epithelial integrity is a key aspect in order to preserve homeostasis and to impair the development 
of inflammation in mucosal tissues (2). In addition to the epithelium, the gut–vascular barrier 
(GVB) has been recently described as a new anatomical structure which builds a second protec-
tive barrier preventing the microbiota to enter the bloodstream while allowing the translocation of 
immune cells and antigens (3). Barrier function of the epithelium as well as of the endothelium is 
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dependent on a complex cytoskeletal organization and, in par-
ticular, on the formation of stable cell–cell junctions (4–6). These 
structures undergo profound changes during inflammation (7). 
Accordingly, increased paracellular permeability and epithelial/
endothelial barrier dysfunction have been linked to the patho-
genesis of chronic inflammatory disorders, such as inflammatory 
bowel diseases (IBDs) (2, 8, 9). IBD is defined as an idiopathic, 
chronic, and relapsing inflammation of the gastrointestinal tract. 
Two main clinical manifestations, Crohn’s disease (CD) and 
ulcerative colitis (UC), affect a rather young population whose 
quality of life is significantly reduced. Despite intensive research, 
the pathogenesis of IBD is not completely understood. Here, we 
discuss the role of small and large GTPases in the cytoskeletal 
rearrangements induced in intestinal epithelial and endothelial 
barriers during inflammation (Figure 1).

inTeRCeLLULAR JUnCTiOnS in 
ePiTHeLiUM AnD enDOTHeLiUM

Apical junction complexes (AJC) built by tight junctions (TJs) 
and adherens junctions (AJs) enable the connection between 
adjacent cells, both in intestinal epithelium and endothelium. 
The AJC contribute to barrier function by controlling selective 
diffusion of molecules or cells, maintaining cell polarity and 
allowing intercellular communication (10). TJs consist of occlu-
dins, claudins, and junctional adhesion molecules (JAMs) (6, 
11). AJs are composed of cadherins and nectins (12, 13). Both 
represent specialized zipper-like structures which enable the seal-
ing of the paracellular space within the epithelial or endothelial 
layer (14). These intercellular junctions are connected to the 
actomyosin cytoskeleton via cytoplasmatic adaptors, such as 
zonula occludens (ZO) proteins, and catenins (6, 15, 16), which 

supports the mechanical strength of the junctions. For instance, 
in the resting endothelium, the cortical actin network ensures 
the necessary tension for the formation of stable interactions at 
AJs (17). AJs and TJs have been shown to influence each other’s 
assembly and maintenance in a reciprocal manner (18, 19). In the 
presence of permeability-inducing molecules, actin reorganizes 
into stress fibers, which increases traction forces and leads to the 
uncoupling of AJC from the actin cytoskeleton resulting in the 
formation of gaps between adjacent cells (20, 21). Contraction 
of a perijunctional actomyosin ring further regulates perme-
ability in a myosin light-chain kinase- dependent manner (22). 
In addition, TJ and AJ molecules can be removed from the cell 
surface by internalization and/or by proteolytic cleavage result-
ing in extracellular domain shedding (18). Thus, the interaction 
between cytoskeleton and intercellular junctions is crucial for 
maintenance of epithelial/endothelial barrier function (23).

Intercellular junction composition and abundancy are tissue-
dependent. Within the intestinal epithelium, TJs proteins can be 
categorized in three families: claudins (claudin-1, 2, 3, 4, 5, 7, and 
15) (24), tight junction-associated Marvel proteins (Occludin, 
Marvel D3, and tricellulin) (25), and cortical thymocyte marker 
of the Xenopus (CTX) (JAM-A, CAR, and CLMP) (26). The 
composition and structure of endothelial TJs can vary according 
to the type of vessel or organ (27). In intestinal endothelial cells 
(EndoCs), TJs are composed of occludin, JAM-A, ZO-1, and cin-
gulin, while claudin-5 was mostly associated with gut lymphatic 
EndoCs (3). Epithelial AJs are composed of α- and β-catenin and 
E-cadherin, while AJs within EndoCs are formed by VE-cadherin 
and β-catenin (3). The formation of VE-cadherin adhesions at AJs 
is the primary event regulating EndoC-cell interactions during 
vasculogenesis, and this depends on intracellular tension gener-
ated by the actin cytoskeleton (18).

FiGURe 1 | Interplay of GTPases and the cytoskeleton in cellular barrier defects during gut inflammation. The intestinal epithelium and the endothelium establish two 
coordinated physical and immunological barriers. Increased barrier permeability is pathogenetically associated with inflammatory bowel diseases (IBDs). Different 
members of the families of small (lower brown) and large (upper blue) GTPases have recently been shown to regulate junctional and cytoskeletal dysfunctions both 
in epithelial and endothelial cells and, accordingly, may play an important role in IBD. It warrants further studies to determine whether cooperative, antagonistic, or 
redundant functions are exerted by the different GTPases.
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ePiTHeLiAL BARRieR ReGULATiOn 
DURinG inTeSTinAL inFLAMMATiOn

Epithelial integrity in the gut has to be tightly regulated. In 
order to build up a protective barrier against luminal content, 
a precise and complex cell turnover warranties the renewal of 
the epithelium without compromising its tightness. Stem cells 
at the crypt bottom proliferate and differentiate into several 
IECs subtypes with specialized biological functions (28). Then, 
most of the differentiated IECs migrate upwards to the villus tip, 
where aged cells die and are shed into the lumen (29, 30). During 
this sophisticated process, the tightness of the epithelial layer 
is achieved by the intimate connection between epithelial cells, 
which is primarily mediated by intercellular junctions connected 
to the actin cytoskeleton (6). Focusing on cell shedding, the main-
tenance of epithelial integrity is warranted by the redistribution of 
junctional proteins along lateral membranes in a cytoskeleton and 
membrane trafficking-dependent molecular mechanism (31, 32).

The complex cytoskeleton network in IECs (4, 23, 31) 
orchestrates key cellular and molecular events during epithelial 
morphogenesis and renewal (12, 33). On a cellular level, the 
cytoskeleton defines cell shape and polarity which are important 
for nutrient uptake, anchoring of IECs to the basal membrane and 
communication with the sub-epithelial compartment (34, 35). 
Cytoskeletal plasticity within IECs is relevant to maintain barrier 
integrity and tissue homeostasis. Accordingly, breakdown of epi-
thelial integrity has been observed after disruption of intercellular 
junctions and cytoskeleton rearrangement, e.g., in the context of 
infection or inflammation (36–38).

Increased epithelial TJ permeability is a hallmark of tissue 
alterations observed in the gut of IBD patients (39–43). Although 
a correlation between permeability and disease activity could be 
shown in CD patients, for instance (44, 45), the triggering event 
involved in the breakdown of gut homeostasis is still a matter 
of controversy. Mouse studies demonstrated that deficiency of 
single TJ proteins is not associated with pathology due to com-
pensatory mechanisms (46, 47), except for claudin-15 (48). By 
contrast, it is well accepted that inflammation-derived mediators 
mediate TJ dysfunction and thereby contribute to the breakdown 
of epithelial integrity in experimental colitis and IBD. These 
mediators include cytokines, such as IL-6 (49), IL-13 (50, 51), 
TNF (52), and type II Interferon (IFN-γ) (53–55). Then, increased 
intestinal permeability in IBD patients might be secondary to 
the release of cytokines within the gut mucosa (56, 57). These 
cytokines then affect paracellular permeability via myosin light-
chain II-mediated contraction of the prejunctional actin ring, as 
shown for TNF in IBD patients (23). These observations support 
the assumption that epithelial integrity breakdown is indeed a 
consequence of inflammation.

However, recent studies in IBD patients demonstrated that 
flares of the disease are preceded by increased permeability, which 
argues for a causative role of the epithelium in the development 
of intestinal inflammation (41, 58–60). Interestingly, even healthy 
relatives (61–63) and non-inflamed gut areas in CD patients 
(64) showed an elevated intestinal permeability. Accordingly, 
new therapy strategies based on epithelial restoration led to 
promising results in IBD patients. For instance, therapeutically 

induced decrease of epithelial permeability by vitamin D (65, 66) 
or probiotics (67–69), IL-22-triggered mucus production (70) or  
maintenance of epithelial cell integrity by butyrate (71, 72), or 
anti-TNF antibody treatment resulted in a clinical amelioration 
of chronic colitis (73, 74). The remaining open question is which 
mechanism might regulate cytoskeleton remodeling and epithe-
lial permeability.

vASCULAR BARRieR ReGULATiOn 
DURinG inTeSTinAL inFLAMMATiOn

The endothelium consists of a continuous monolayer of EndoCs 
lining the wall of blood and lymphatic vessels (75). It represents 
a semipermeable barrier between the bloodstream and the 
interstitium which regulates nutrient transport, tissue fluid 
homeostasis, immune cell transmigration (75), and restricts the 
transport of proteins in an organ-dependent manner (18). Similar 
to the epithelium, cell–cell junctions are crucial for the barrier 
role of the endothelium. The loss of EndoC-cell junctions causes 
a flux of proteinaceous fluid from the bloodstream into tissues, 
resulting in the development of edema. In addition to cell–cell 
junctions, coverage of the EndoC layer by pericytes is involved 
in the endothelial barrier function and was found to regulate 
permeability of the blood–brain barrier (76, 77).

The intestinal vascular endothelium represents a specialized 
vascular bed (3, 78). In the intestine, the capillaries are located 
directly underneath the epithelial layer and organized in gut–
vascular units composed of EndoCs, pericytes, and enteric glial 
cells (3). Interestingly, the resting gut blood endothelium displays 
different levels of permeability depending on its localization. In 
the lamina propria, the endothelial permeability is increased 
compared to the submucosa, allowing the translocation of nutri-
ents and antigens into the bloodstream while limiting enteric 
bacteria penetration (3).

During IBD, the intestine undergoes profound histological 
changes, including massive leukocyte infiltration, increased blood 
vessel density, and edema, which are all linked to vascular func-
tion (79–81). During inflammation, the vasculature is activated 
by inflammatory cytokines (ICs), such as TNF, interleukin-1 β 
(IL-1β), or IFN-γ, which leads to the expression of leukocytes 
adhesion molecules and fosters immune cell transmigration. In 
addition, neo-angiogenesis is induced and correlates with disease 
severity. More precisely, elevated levels of vascular endothelial 
growth factor (VEGF) can be found in the inflamed mucosa and 
in the blood during active IBD (80, 82–84) and vessel density 
is increased in the intestinal mucosa during IBD and in mouse 
model of colitis (9). However, inflammatory mediators such as 
ICs exhibit antiangiogenic activity and the concomitant presence 
of angiogenic and angiostatic molecules may disturb the physi-
ologic regulation of angiogenesis (85–87). This might explain 
the disorganized intestinal vasculature observed in IBD, which is 
characterized by reduced vessel coverage, increased vessel leaki-
ness, edema, and stenosis (81). Furthermore, vessel permeability 
strongly increases in both acute and chronic DSS-colitis mouse 
models compared to healthy animals (9). Interestingly, both ICs 
and VEGF have been shown to increase paracellular permeability 
of EndoC monolayers in culture (53, 88–90). In particular, high 
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levels of IFN-γ and markers of IFN-γ-activated endothelium, such 
as ICAM1, VCAM1, MAdCAM, CXCL10, or guanylate-binding 
protein-1 (GBP-1), can be detected in the gut mucosa of mice dur-
ing DSS-induced intestinal inflammation (9). In this model, neu-
tralization of IFN-γ resulted in an increased vessel density while 
vessel permeability decreased (9). Hence, the vascular effects of 
IFN-γ during IBD might contribute to disease severity by limiting 
angiogenesis and increasing vessel permeability, ultimately lead-
ing to the loss of GVB function. At the molecular level, endothelial 
(and epithelial) cells treated with IFN-γ undergo remodeling of 
the actin cytoskeleton and cell–cell junctions, the latter associated 
with a decrease of ZO-1 expression and internalization of TJ and 
AJ proteins (55). Further studies are necessary to understand the 
exact mechanisms of barrier function regulation by IFN-γ.

ROLe OF LARGe AnD SMALL GTPases  
in THe ReGULATiOn OF CYTOSKeLeTOn 
ReMODeLinG DURinG inTeSTinAL 
inFLAMMATiOn

Large and small GTPases are molecular switches transducing 
signals from the extracellular compartment to the intracellular 
machinery. By means of a GTP–GDP-mediated activation cycle 
(91), these proteins are involved in numerous biological pro-
cesses, with dramatic impact on cell biology. Most functions of 
GTPases depend on their association with cellular membranes. 
The localization of the protein in close proximity to cellular 
membranes requires a specific posttranslational modification 
named prenylation. Prenylation consists of the binding of an iso-
prenoid at the C-terminal end of the target protein and impacts 
on protein physicochemical properties, subcellular localization, 
and function (92, 93). New findings demonstrated the important 
role of large and small GTPases as major cytoskeleton interact-
ing partners and in the regulation of actomyosin dynamics and 
intercellular junctions (94). Changes in the GTPase activity 
promote actomyosin dysregulation associated with pathological 
conditions in several organs (95–97).

Proteins belonging to the Ras superfamily are defined as small 
GTPases because of their low molecular weight. The Ras super-
family of proteins consists of five families (Ras, Rho, Ran, Rab, and 
Arf) and more than 160 different members (98). They participate 
in the regulation of cell proliferation, cytoskeletal dynamics/mor-
phology, membrane trafficking, cellular adhesion, vesicular, and 
nuclear transport (99–101). Besides the well-described superfam-
ily of small GTPases, the dynamin superfamily of large GTPases 
represents a group of enzymes involved in pathogen resistance, 
budding of transport vesicles, division of organelles, cytokinesis, 
and cytoskeletal rearrangements (102). It comprises dynamins, 
Mx proteins, OPA, mitofusins, atlastins, and guanylate-binding 
proteins (GBPs). Large GTPases are characterized by the ability to 
oligomerize and harbor an oligomerization-dependent GTPase 
activity (102).

In the following, we will summarize the role of small and large 
GTPases in cytoskeleton remodeling, epithelial and endothelial 
integrity, and their relevance in maintenance of barrier functions 
in the gut.

Small GTPases
Impaired small GTPase function in the intestinal epithelium is 
associated with junctional and cytoskeletal dysfunctions (103–
105). Numerous in  vitro studies demonstrated Rho-mediated 
regulation of the cytoskeleton within epithelial cells (106–111); 
both up- and downregulation of Rho protein function can alter 
actomyosin contractility and in turn impair barrier function 
(112, 113). Actomyosin contraction due to phosphorylation of 
MLC2 by ROCK is involved in epithelial RhoA signaling, which 
is required for pathological as well as physiological epithelial 
cell extrusion (32, 114). The link between RhoA and intestinal 
inflammation was first shown in 2003, when increased RhoA 
activation in experimental colitis and patients suffering from IBD 
was identified (115). In a subsequent study, it was found that Rho-
GDP dissociation inhibitor alpha expression was upregulated in 
CD and UC patients (116). We recently showed that IBD seems 
to be associated with impaired RhoA function (117). Inflamed 
areas in the gut of IBD patients depicted an accumulation of 
RhoA in the cytosol of IECs. This altered subcellular localiza-
tion could presumably be a sign of RhoA dysfunction, since 
association to the plasma membrane is required for GTPase 
activation (118, 119). Furthermore, IEC-restricted lack of RhoA 
in mice resulted in the development of spontaneous inflam-
mation (117). Interestingly, another recent study demonstrates 
that lack of Arhgap17, a RhoGTPase activating protein, causes 
increased epithelial permeability, not leading to spontaneous 
colitis but increasing the severity of DSS-induced colitis in mice 
(120). Taking together, RhoA can be considered as an important 
regulator of epithelial cytoskeleton and homeostasis in the gut. 
However, the mechanism and regulation of this process is still 
controversial. Actomyosin contraction due to phosphorylation 
of MLC2 by ROCK is involved in epithelial RhoA function, 
but whether RhoA inhibition, activation or both would modify 
epithelial integrity and permeability is still unclear.

Rac1 and Cdc42 also appear as attractive targets for the 
regulation of epithelial barrier function. In vivo genetic dele-
tions of Cdc42 or Rac1 within IECs are associated with defects 
on epithelial cell proliferation and/or differentiation (121–124). 
Interestingly, genetic deletion of Cdc42 in mice resulted in an 
intestinal phenotype which resembled human microvillus inclu-
sion disease. In the latter, cytoskeleton remodeling appears as a 
complementary mechanism to Paneth cell differentiation defects, 
leading to apical junction disorientation and increased intestinal 
paracellular permeability (123, 124).

Considering the relevance of regulated small GTPase func-
tion for cytoskeleton remodeling within IECs, prenylation has 
emerged as an attractive candidate target in epithelial restoration. 
Interestingly, IECs from IBD patients show decreased expression 
of the prenylation-catalyzing enzyme GGTase-Iβ (117). The link 
between GGTase-I-mediated prenylation and inflammation 
was confirmed by the dramatic intestinal distortion observed in 
mice with GGTase-Iβ-deficient IECs, which was ameliorated 
upon local induction of Rho activation (117). The destruction of 
intestinal architecture upon epithelial Pggt1b, the gene encoding 
for GGTase-Iβ (geranylgeranyltransferase1 beta subunit) deletion 
goes along with cytoskeleton remodeling, cell shedding alterations, 
and increased intestinal permeability. In conclusion, prenylation 
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may represent a novel relevant pathway for maintenance of gut 
homeostasis and epithelial integrity. Future studies are needed in 
order to further elucidate the molecular mechanisms related to 
Rho GTPases and other targets of prenylation within the intestinal 
epithelium. In this context, a recent study showed that the com-
mensal microbiota can increase intestinal epithelial permeability 
through the small GTPase ARF4 (125). The expression of ARF4 led 
to a decrease in the expression of TJ proteins by a mechanism which 
still has to be determined (125). These results open new perspec-
tives for the understanding of the role of the microbiome in the 
regulation of intestinal barrier function and in the onset of colitis.

Similar to their function in the epithelium, small GTPases 
play an essential role in the regulation of the endothelial barrier 
function through their impact on actin dynamics (126). RhoA 
activation and subsequent Rock-mediated actomyosin contrac-
tility decreases endothelial barrier function upon permeability-
inducing compounds, such as thrombin (127). On the other hand, 
Rac1 and Cdc42 signals are able to counterbalance an increase 
of endothelial permeability by stabilizing intercellular junctions, 
decreasing actin contractility, and in turn facilitating the contact 
between adjacent EndoCs (128, 129). A complex interplay between 
opposite effects from RhoA and Cdc42/Rac1 and their functional 
cooperation defines Rho-mediated regulation of endothelial 
integrity. This crosstalk between RhoA and Rac1 is of particular 
importance in the context of chronic inflammation. TNF is well 
known to induce endothelial actin cytoskeleton reorganization 
and intercellular gaps through a sequential activation of Cdc42, 
Rac and RhoA (130). In addition, novel findings demonstrated 
that endosomoal RhoB also controls Rac1-mediated stabilization 
of the endothelial barrier (131). Despite these observations, so far, 
little is known about the role of Rho GTPases and prenylation in 
EndoCs during intestinal inflammation.

Large GTPases
Among large GTPases, two molecules (dynamin-2 and GBP-1) 
are of particular importance in the regulation of barrier function. 
Dynamins are involved in transcellular and paracellular perme-
ability (132). Both, paracellular and transcellular permeabilities 
are increased in the intestinal epithelium during IBD (133) and  
are co-regulated in the microvascular endothelium through 
a compensatory mechanism, involving Rac, Dynamin-2 and 
actin (132). In general, transcellular permeability is regulated 
by vesicular transcytosis, which allows the transfer through a 
cell of macromolecules, such as albumin, by vesicle-mediated 
endocytosis and exocytosis (134). During transcytosis, invagina-
tions of the plasma membrane (caveolae) are formed and coated 
by clathrin and actin. Dynamin finally achieves the scission of 
the nascent vesicle under GTP hydrolysis (134). In addition, 
Dynamin-2 regulates paracellular permeability through modula-
tion of TJs and AJs. Dynamin-2 is able to bind several AJ and TJ 
proteins, to link them with the actin cytoskeleton and to ensure 
the stability of TJs and AJs in the epithelium and the endothelium 
(135). Furthermore, Dynamins directly interact with actin, foster 
actin polymerization, and induce actin bundles formation (136). 
Dynamin-2 is also involved in the maintenance of the apical con-
striction and the recycling of E-cadherin (137, 138). Dynamin-2 
plays a role in barrier maintenance during TNF-induced 

epithelial shedding (32) and is also involved in the maintenance 
of the vascular barrier function under hypoxia, by inducing the 
activity of eNOS (139). Hence Dynamin-2 represents an impor-
tant regulator of epithelial and endothelial permeability as well as 
vascular homeostasis.

Members of the human GBP family are involved in immune 
response against intracellular pathogens and inflammation (140). 
GBP-1 is the best characterized protein of the seven-member 
family (140–143). GBP-1 expression is strongly induced by ICs, 
notably by IFN-γ and has been detected in the inflamed mucosa 
during IBD (9, 143, 144). GBP-1 has been found to mediate the 
inhibitory effects of IFN-γ on cell proliferation, migration, and 
invasion and to inhibit tumor growth and angiogenesis in  vivo  
(85, 86, 145–148). More precisely, GBP-1 can reorganize intracellular 
actin cytoskeleton in epithelial, endothelial, and T-cells (149, 150).  
GBP-1 directly interacts with β-actin and inhibits actin stress fiber 
formation, while co-localizing with cortical actin (149, 151). Actin 
depolymerization, for instance by latrunculin, has been shown to 
induce Occludin internalization (152). In addition, GBP-1 was 
found to localize at TJs both in intestinal crypts of patients with 
CD and UC and in human IEC lines treated with IFN-γ (144). 
In this model, the silencing of GBP-1 expression led to increased 
apoptosis, indicating that it exerts a protective role in epithelium 
homeostasis (144). However, the role of GBP-1 on cell–cell per-
meability and junction regulation is still not well understood.

Taken together, large and small GTPases, as well as pre-
nylation, represent novel key players for maintenance of gut 
homeostasis, regulating epithelial and endothelial integrity 
under physiological and inflammatory conditions (Figure  1). 
Despite the here described current knowledge in the field, some 
still open questions encourage the scientific community in this 
field to fulfill the description of the molecular mechanism behind 
these observations. It still remains to be determined to which 
extend the endothelial barrier participate to IBD pathogenesis 
and whether angiogenesis or endothelial activation contributes 
the most to the disease. On the other hand, the description of the 
role of other Rho GTPases, such as Rac1 or Cdcd42, for epithelial 
integrity; as well as molecular mechanisms regulating prenylation 
within IECs, should be further investigated. More detailed stud-
ies on inflammation-associated cytoskeleton remodeling within 
IECs and EndoCs might help in the identification of new target 
structures for an optimized treatment or early diagnosis of IBD.
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