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Systemic sclerosis (SSc) is a rare multi-organ autoimmune disease characterized by 
progressive skin fibrosis. Inflammation, type 2 immunity, and fibrogenic processes are 
involved in disease development and may be affected by sphingolipids. However, details 
about early-stage pathophysiological mechanisms and implicated mediators remain 
elusive. The sphingolipid sphingosine-1-phosphate (S1P) is elevated in the sera of SSc 
patients, and its receptor S1P5 is expressed in skin tissue. Nevertheless, almost nothing 
is known about the dermatological contribution of S1P5 to inflammatory and pro-fibrotic 
processes leading to the pathological changes seen in SSc. In this study, we observed a 
novel effect of S1P5 on the inflammatory processes during low-dose bleomycin (BLM)-
induced fibrogenesis in murine skin. By comparing 2-week-treated skin areas of wild-type 
(WT) and S1P5-deficient mice, we found that S1P5 is important for the transcriptional 
upregulation of the Th2 characteristic transcription factor GATA-3 under treatment-in-
duced inflammatory conditions, while T-bet (Th1) and FoxP3 (Treg) mRNA expression 
was regulated independently of S1P5. Additionally, treatment caused a regulation of S1P 
receptor 1 and S1P receptor 3 mRNA as well as a regulation of long-chain ceramide 
profiles, which both differ significantly between the genotypes. Despite S1P5-dependent 
differences regarding inflammatory processes, similar macroscopic evidence of fibrosis 
was detected in the skin histology of WT and S1P5-deficient mice after 4  weeks of 
subcutaneous BLM treatment. However, at the earlier 2-week point in time, the mRNA 
data of pro-collagen type 1 and SMAD7 indicate a pro-fibrotic S1P5 contribution in 
the applied SSc mouse model. In conclusion, we propose that S1P5 plays a role as a 
novel modulator during the early phase of BLM-caused fibrogenesis in murine skin. An 
immediate relationship between dermal S1P5 expression and fibrotic processes leading 

Abbreviations: dhS1P, dihydrosphingosine-1-phosphate; FoxP3, forkhead box P3; GATA-3, GATA binding protein 3; Tbet, 
Tbx21; Th, T helper cell.
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to skin alterations, such as formative for SSc pathogenesis, is indicated but should be 
studied more profound in further investigations. Therefore, this study is an initial step in 
understanding the role of S1P5-mediated effects during early stages of fibrogenesis, 
which may encourage the ongoing search for new therapeutic options for SSc patients.

Keywords: systemic sclerosis, sphingosine-1-phosphate receptor 5, sphingolipid sphingosine-1-phosphate, 
sphingolipids, inflammation, bleomycin, fibrogenesis, mouse model

inTrODUcTiOn

Systemic sclerosis (SSc, also known as scleroderma) is a rare 
multi-organ autoimmune disease with a complex pathophysiol-
ogy, characterized by microvascular damage, deregulated immu-
nity, and fibrosis. However, etiology and pathogenesis of SSc are 
still elusive (1, 2).

Skin fibrosis is one important hallmark of SSc and especially 
the extent of skin involvement and its rate of progression 
reveal the severity of internal organ complications (3, 4). Once 
established, an irreversible and progressive fibrotic organ failure 
is responsible for a high mortality. Fibrotic skin thickening, 
expansion of connective tissue, and resulting tissue dysfunctions 
are the consequence of remodeling processes with an excessive 
deposition of extracellular matrix components such as type I 
collagen (2, 5).

In recent years, several factors have been proposed as 
markers indicating pathophysiological events in SSc patients. 
For instance, CXCL4, CD146, dickkopf-related protein 1, lysyl 
oxidase, and cartilage oligomeric matrix protein (COMP) are 
discussed (6–10). Overexpressed COMP assists skin-fibrotic 
SSc features in two ways: intracellular COMP auxiliary collagen 
secretion, while extracellular COMP acts as crosslinker between 
collagen I and collagen XII and therefore its presence results in  
a more compact extracellular matrix network (10–13).

Moreover, the bioactive sphingolipid sphingosine-1- 
phosphate (S1P) may be causatively related to abnormalities 
described in vasculature, immune system, and connective tissues 
of SSc patients (14). In support, variations of circulating S1P 
levels have been detected in various fibrotic diseases including 
SSc (15–17). S1P may modulate several processes contributing 
to fibrosis such as angiogenesis, alternation of lymphocyte traf-
ficking, and trans-activation of the transforming growth factor 
beta (TGF-β)/SMAD pathway (18–21). With respect to processes 
induced by extracellular S1P, the type of targeted S1P receptor is 
decisive. One particularly interesting receptor of the five existing 
S1P receptors, named as S1P1 to S1P5, is S1P receptor 5 (S1P5). 
S1P5 affects proliferation, migration, has recently shown to be 
involved during early TGF-β-induced processes, and is expressed 
in the skin (22–25). However, current knowledge regarding 
S1P5 function is limited and almost nothing is known about its 
involvement during fibrogenesis.

Fibrotic extracellular matrix alterations originate from earli-
est events of inflammation and vascular injury, which includes 
a reduction of capillaries (26, 27). In early-stage inflamma-
tory processes, damage-induced upregulation of intercellular 
adhesion molecule 1 (ICAM-1) on activated endothelial cells 
mediates tissue infiltration of different immune cells (28). These 

together create a fibrogenic inflammatory signature. Among 
others, T  cells and macrophages represent a main part of the 
cellular infiltrate. Especially an exaggerated Th2 response as 
well as the presence of alternatively activated M2 macrophages 
and mast cells trigger the production of fibrogenic cytokines 
such as TGF-β. TGF-β is known as a key pro-fibrotic cytokine 
mediating the production of collagens, COMP, and the dif-
ferentiation of alpha-smooth muscle actin (α-SMA) expressing 
myofibroblasts via SMAD or non-canonical signaling cascades 
(29–31). Subsequently, TGF-β signaling provokes typical pro-
fibrotic modifications in SSc (13). Detection of autoantibodies 
directed against endothelial antigens and others, as well as T cell 
alterations in sera of SSc patients, supports the assumption 
that an impaired regulation of the immune system drives SSc 
pathogenesis (32–34).

A possible trigger for disease onset is a primary tissue injury 
caused, for example, by autoimmunity or extrinsic agents, 
which activate the immune system and initiate an inflammatory 
response. For the protection of the skin against penetrating 
extrinsic agents, the epidermal permeability barrier is of great 
importance. Accordingly, a functional disturbance obtained 
through variations in the extracellular lipid composition of the 
outer epidermal cell layer may result in disease. In this context, 
primarily the sphingolipid-species ceramide (Cer) and glucosyl-
ceramide (GluCer) play an important role in barrier function 
(35–38). Furthermore, accumulation of GluCer in macrophages 
is associated with inflammatory diseases (39).

However, data concerning fibrotic S1P5 involvement are rare 
and ambiguous. In this pilot study, we investigated the contribu-
tion of S1P5-mediated effects to early-stage processes driving 
cutaneous fibrosis, in a modified mouse model of scleroderma. 
Our results clearly demonstrate that low-dose bleomycin 
(BLM) induces S1P5-dependent variations in cutaneous Cer 
and GluCer profiles, as well as a transcriptional upregulation 
of inflammation-associated factors like Th2 transcription fac-
tor GATA-3 and S1P3, as well as pro-fibrotic collagen type I 
alpha 1 (COL1A1) specifically in the early sclerotic phase. Thus, 
our data point to a modulating involvement of S1P5 during 
early-stage cutaneous processes, potentially promoting the 
pathogenesis of SSc.

MaTerials anD MeThODs

Mice and reagents
Bleomycin sulfate was purchased from Medac (Wedel, Germany) 
and dissolved in phosphate-buffered saline (PBS) to a final con-
centration of 250 µg/ml. After sterile filtration, aliquots in daily 
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TaBle 1 | Scoring system to evaluate the expansion of collagenous connective 
tissue in the skin.

score ratio of dermis  
to subcutis

extent of connective  
tissue in the subcutis

1 1:2< Non-existent
2 1:2 Little
3 1:1 Moderate
4 2:1 Intense
5 >2:1 –

The ratio of dermis to subcutis as well as the extent of blue-stained collagenous 
connective tissue in the subcutis were numerically scored by three independent 
persons according to the above-mentioned and previously described scoring 
system. The total of both parameters was named as expansion of connective tissue, 
numerically expressed in a scoring range between 2 and 9 (Figure 2C).
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needed quantities were stored at −20°C until further application. 
Safe handling and disposal of hazardous BLM were performed 
according to the Safety Data Sheet.

C57BL/6J mice were obtained from Janvier (Le Genest-Saint-
Isle, France). The S1P5-deficient mouse strain was generated  
(40) and kindly provided by The Scripps Research Institute  
(La Jolla, CA, USA).

The animals were bred and fed under pathogen-free condi-
tions in secluded scantainers. All animal experiments were 
performed in accordance with the German animal welfare law 
and had been declared to the Animal Welfare Officer as the 
chairperson of the ethical oversight committee of the Goethe 
University Frankfurt/Main. The animal housing facility was 
licensed by the local authorities of the Regierungspraesidium 
Darmstadt (Az: 32.62.1). The methods used to euthanize the 
animals humanely were consistent with the recommendations of 
the AVMA Guidelines for the Euthanasia of Animals.

experimental animal Model  
of BlM-induced scleroderma
In the experiment, 100  µl of BLM (250  µg/ml) or PBS were 
injected subcutaneously into the shaved upper back areas  
of 10- to 14-week-old female wild-type (WT) C57BL/6J and 
S1P5-deficient (S1P5−/−) mice once daily for 2 or 4 weeks (5 days/
week). The injection area was freshly shaved weekly.

sample collection
Mice were anesthetized, sacrificed, and the remaining fur was 
carefully shaved off at the site of injection. These skin areas 
were removed, cut into pieces, and stored under the conditions 
necessary for the respective following methods of analysis. For 
histology, skin tissues were fixed with 4% (v/v) formaldehyde 
solution (Roti®-Histofix, Carl Roth, Karlsruhe) overnight and 
were subsequently transferred into 1% formaldehyde solution 
diluted in PBS for 6 h. Tissue pieces for RNA were secured in 
RNA later (Qiagen, Hilden), incubated overnight at 4°C and 
stored at −80°C. Samples for lipid analysis were immediately 
frozen in liquid nitrogen and stored at −80°C.

histopathology
Formaldehyde-fixed skin tissues were dehydrated by rising 
concentrations of ethanol and xylol (automatic tissue processor, 
Leica, Wetzlar). After embedding in paraffin wax, skin tissues 
were cut into 4-µm sections (embedding station EG 1150, RM 
2235 microtome, Leica, Wetzlar), placed onto microscope 
slides (Menzel, Braunschweig), and dried at room temperature 
overnight.

Hematoxylin and eosin (H&E) staining. Deparaffinized sections 
were stained with Mayer’s hematoxylin solution (Applichem, 
Darmstadt), counterstained with 0.5% Eosin G solution (Carl 
Roth, Karlsruhe) and covered with Aquatex (Merck, Darmstadt).

Masson’s trichrome staining. Deparaffinized sections were 
stained with acetic 0.1% Azocarmine G solution (Fluka, Seelze) 
and differentiated in 0.1% acetic acid. Following incubation in 
5% phosphowolframic acid (Fluka, Seelze) and counterstain-
ing with an acid dye (1:1) mixture consisting of aniline blue 

(Sigma-Aldrich, Darmstadt) and Orange G (Sigma-Aldrich, 
Darmstadt), the sections were differentiated in 96% ethanol, 
dehydrated by ethanol and xylol, and finally covered with 
Entellan (Merck, Darmstadt).

Immunohistochemical staining for CD31 and α-SMA. After 
deparaffinization, antigen retrieval (Dako, Jena) and block-
ing (protein block, Dako, Jena), skin sections were incubated 
overnight at 4°C with the primary antibody (rabbit anti-CD31, 
ab28364, abcam, Cambridge; α-smooth muscle – alkaline phos-
phatase antibody; A5691, Sigma, St. Louis, CA, USA). Detection 
of CD31 was performed with a specific anti-rabbit secondary 
antibody (N-Histofine, Nichirei Bioscience, Tokyo) and peroxi-
dase conjugate (Vector DAB, Vector Laboratories, Burlingame, 
CA, USA). α-SMA detection was conducted by Permanent Red 
(Permanent AP Red Kit, Zytomed Systems, Berlin). Following 
counterstaining with Mayer’s hematoxylin solution, skin sections 
were covered with Aquatex.

Immunohistochemical staining for COMP. Deparaffinized and 
hyaluronidase-treated (Sigma-Aldrich, Steinheim) sections were 
blocked with 1% BSA/goat serum and subsequently incubated 
overnight at 4°C with a primary antibody rabbit anti-COMP 
(Immundiagnostik, Bensheim). A biotinylated anti-rabbit sec-
ondary antibody and red alkaline phosphatase conjugate were 
used (Vectastain ABC Kit, Vector Laboratories, Burlingame, CA, 
USA) for detection. Skin sections were subsequently counter-
stained with Mayer’s hematoxylin solution.

histopathological evaluation
Dermal thickness was determined microscopically by evaluation 
of the skin sections stained beforehand with H&E and Masson’s 
trichome (BZanalyser software, Keyence, Osaka, Japan). The 
distance between epidermis–dermis and dermis–subcutis bor-
ders was determined by measurement at 15 points per/staining/
and mouse using ImageJ software (open source) (Figure 2B).

Sample quality and the proportion of connective tissue in 
the skin were evaluated in a blinded fashion by three research-
ers based on overall images of Masson’s trichrome-stained skin 
sections. The dermis-to-subcutis ratios, as well as the extent of 
blue-stained collagenous connective tissue in the subcutis, were 
numerically scored with a previously described scoring system 
(Table  1). The total of these two scored parameters was used 
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FigUre 1 | Markers of skin inflammation increased after 2 weeks of low-dose BLM treatment. Relative mRNA expression of (a) ICAM-1, (B) CCR2,  
(c) M2-makrophage marker CD206, and (D) TGF-β1 in skin tissue of BLM-treated WT (black bars) and S1P5−/− (gray bars) mice. The number of tissue-infiltrating 
cells detected in H&E-stained skin sections is shown in part (e). mRNA expression levels were determined by qRT-PCR analysis and mRNA data are presented as 
fold change compared with the mean of the respective PBS controls. All data are shown as mean ± SD of n = 3–5 mice/group with # indicating p ≤ 0.05, ## for 
p ≤ 0.01 and ### for p ≤ 0.001, compared with the respective PBS controls (adjacent white bars). Statistical analysis was performed using a one-sample t-test 
(a–D) or a one-way ANOVA with Bonferroni’s multiple comparison test (e). (rel. = relative). ANOVA, analysis of variance; BLM, bleomycin; H&E, hematoxylin and 
eosin; ICAM-1, intercellular adhesion molecule 1; PBS, phosphate-buffered saline; qRT-PCR, quantitative real-time polymerase chain reaction; WT, wild type.
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for evaluation of the expansion of connective tissue in the skin 
(Figure 2C).

Tissue-infiltrating cells, CD31-positive blood vessels, and 
α-SMA-positive myofibroblasts were counted in several areas 
similar in size per H&E-stained/CD31-marked/or α-SMA-
marked skin sections by microscopical observations (Figures 1E 
and 4B; Figure S1 in Supplementary Material).

Cartilage oligomeric matrix protein expression within the 
dermis has been analyzed excluding regions of hair follicles (41) 
(ImageJ software, open source) (Figure 8A). The proportion of 
COMP was quantified as percentage of COMP-stained areas in 
relation to the total field of analysis. For consistency, all images 
were acquired (Axioscope2 Microscope, Zeiss, Jena) and analyzed 
on 1 day in each case.

isolation and analysis of rna by real-
time Polymerase chain reaction (rT-Pcr)
Frozen skin biopsies were transferred to 1  ml TRIzol reagent 
(Invitrogen, CA, USA) and fully disrupted using a Tissue Ruptor 
(Qiagen, Hilden). Isolation of RNA was performed according 

to the manufacturer’s recommendations and RNA concentra-
tion was measured in duplicates using the Nano-Drop (Thermo 
Scientific, Dreieich). Equal RNA amounts were transcribed 
into cDNA by reverse transcriptase with a high-capacity 
cDNA reverse transcription kit including an RNase inhibitor 
(Life Technologies, CA, USA). The reverse transcription was 
executed with a RT-PCR program (25°C, 10 min, 37°C, 120 min,  
85°C, 5 min).

TaqMan® gene expression assays were performed in duplicates 
for every sample with Precision FAST 2× qPCR Master Mix 
(BioRad, Hercules, CA, USA). The quantitative RT-PCR was 
run at 95°C for 2 min and 50 times at 95°C for 5 s, 60°C for 20 s 
with the 7500 Fast Real-Time PCR System (Applied Biosystems, 
CA, USA). Similarly, 5′- FAM-tagged, exon expanding probes 
were purchased from Life Technologies (CA, USA), if not stated 
otherwise (Fbxo38 probe, Primerdesign Ltd, UK). The mean of 
threshold cycles (CT) of non-regulated mRNA expression of the 
housekeeping genes gapdh and fbxo38 was used for normaliza-
tion. The normalized mRNA expression of BLM-treated mice was 
standardized to the mean of the respective PBS-treated control 
group using the ΔΔCT method.
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lipid extraction and sphingolipid  
analysis by lc-Ms/Ms
For the quantification of sphingolipids, skin tissue samples 
(approximately 5 mg each) were spiked with 150 µl water, 150 µl 
extraction buffer (citric acid 30 mM, disodium hydrogen phos-
phate 40  mM), 1,000  µl methanol/chloroform/hydrochloric 
acid (15:83:2, v/v/v), and 20 µl of the internal standard solution 
containing sphingosine-1-phosphate-d7 and C18:0-GluCer-d5 
(both Avanti Polar Lipids, Alabaster, USA) and C24:0 Cer-d4 
(Chiroblock GmbH, Bitterfeld-Wolfen, Germany) (400  ng/ml 
each). The mixture was homogenized using a swing mill (Mixer 
Mill MM 400, Retsch, Haan, Germany) and four zirconium 
oxide grinding balls per sample.

The lower organic phase was evaporated at 45°C under a gentle 
stream of nitrogen and reconstituted in 100 µl of tetrahydrofuran/
water (9:1, v/v) with 0.2% formic acid and 10 mM ammonium for-
mate. Afterward, amounts of sphingolipids were analyzed by liquid 
chromatography coupled to tandem mass spectrometry (LC-MS/
MS). An Agilent 1100 series binary pump (Agilent technologies, 
Waldbronn, Germany) equipped with a Luna C8 column (150 mm 
× 2  mm ID, 3-µm particle size, 100  Å pore size; Phenomenex, 
Aschaffenburg, Germany) was used for chromatographic separa-
tion. The column temperature was 35°C. The high-performance 
liquid chromatography mobile phases consisted of water with 
0.2% formic acid and 2 mM ammonium formate (mobile phase A) 
and acetonitrile/isopropanol/acetone (50:30:20, v/v/v) with 0.2% 
formic acid (mobile phase B). For separation, a gradient program 
was used at a flow rate of 0.3 ml/min. The initial buffer composition 
55% (A)/45% (B) was held for 0.7 min and then within 4.0 min 
linearly changed to 0% (A)/100% (B) and held for 13.3  min. 
Subsequently, the composition was linearly changed within 
1.0 min to 75% (A)/25% (B) and then held for another 2.0 min. 
The total running time was 21 min and the injection volume was 
10 µl. To improve ionization, acetonitrile with 0.1% formic acid 
was infused post-column using an isocratic pump at a flow rate 
of 0.15 ml/min. After every sample, sample solvent was injected 
for washing the column with a 12-min run. At the end of the 
wash run, the initial chromatographic conditions of the analytical 
run were recovered. The MS/MS analysis was performed using a 
triple-quadrupole mass spectrometer API4000 (Sciex, Darmstadt, 
Germany) equipped with a Turbo V Ion Source operating in 
positive electrospray ionization mode. The MS parameters were 
set as follows: Ionspray voltage 5,500 V, ion source temperature 
500°C, curtain gas 30 psi, collision gas 12 psi, nebulizer gas 40 psi, 
and heating gas 60 psi. The analysis was done in multiple reaction 
monitoring (MRM) mode.

Data acquisition was done using Analyst Software V 1.6 and 
quantification was performed with MultiQuant Software V 3.0 
(both Sciex, Darmstadt, Germany), employing the internal stand-
ard method (isotope dilution mass spectrometry). Variations in 
accuracy of the calibration standards were less than 15% over the 
whole range of calibration, except for the lower limit of quantifi-
cation, where a variation in accuracy of 20% was accepted.

statistical analysis
Statistical analysis was carried out using SPSS 24 (Chicago, IL, 
USA). Depending on the number of comparative groups, data 

were analyzed with the unpaired t-test or one-way ANOVAs 
with Bonferroni’s post hoc multi-comparison. To assess changes 
toward the PBS control group used for normalization, we per-
formed a one sample t-test. Results are presented as means ± SD 
using the software Graph Pad Prism 5 (La Jolla, CA, USA). 
Significant values are marked by hashtags (#/##/###) for 
comparisons to the respective controls or asterisks (*/**/***). 
Symbols represent P-values of p ≤ 0.05/p ≤ 0.01/p ≤ 0.001.

resUlTs

low-Dose BlM-induced skin 
inflammation results in Fibrotic 
Manifestations in WT and s1P5−/− Mice
To generate an inflammatory milieu in the skin contributing 
to fibrosis, repetitive subcutaneous injections of low-dose BLM 
(25 μg/day; 5 days/week) either for a period of 2 or 4 weeks were 
applied in a mouse model of scleroderma. In both mouse groups, 
WT and S1P5−/−, the analysis of skin areas revealed a transcrip-
tional upregulation of ICAM-1, CCR2, CD206, and TGF-β1 in 
mice treated 2  weeks with BLM related to the respective PBS-
injected control groups (Figures  1A–D). Simultaneously, a 
higher number of tissue-infiltrating cells was detected in 2-week 
BLM- versus PBS-treated skin areas (Figure  1E) whereby the 
quantity of α-SMA positive myofibroblasts within the dermis was 
not significantly altered (Figure S1 in Supplementary Material). 
Four weeks of BLM application caused a significant increase of 
dermal thickness, accompanied by an increased expansion of 
collagenous connective tissue in both genotypes (Figures 2A–C). 
Moreover, an augmented proportion of COMP within the dermis 
was found to be significant in the S1P5-deficient mice and in 
tendency in the WT mice following 4 weeks of BLM treatment 
(Figure 3). These data suggest a treatment-induced inflammatory 
and fibrogenic milieu in the skin of WT and S1P5−/− mice, leading 
to comparable fibrotic alterations after 4 weeks.

low-Dose BlM Treatment not  
affecting the Quantity of cD31-Marked 
Blood Vessels in the skin of WT and 
s1P5−/− Mice
Vasculopathy, especially the loss of small capillaries, is a char-
acteristic of SSc. Therefore, we immunohistochemically assessed 
the effect of low-dose BLM application on the number of differ-
entially sized blood vessels in the skin of WT- and S1P5-deficient 
mice. As a result, blood vessels stained by the endothelial marker 
CD31 did not differ significantly neither between the genotypes, 
nor between PBS and BLM treatment or between the points in 
time (Figure 4).

s1P5 Deficiency augmenting a Different 
long-chain ceramide Profile in the  
skin after BlM Treatment
Effects of low-dose BLM-induced alterations on S1P and dhS1P 
concentrations, as well as on other lipids relevant for skin bar-
rier function, were determined by mass-spectrometric lipid 
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FigUre 3 | COMP expression increasing in the skin of S1P5−/− mice after 4 weeks of low-dose BLM treatment. (a) Proportion of COMP within the dermis of WT 
and S1P5−/− mice treated for 2 and 4 weeks with PBS or BLM was determined in microscopic images of COMP-stained skin sections (see Materials and Methods). 
BLM-treated WT mice are represented as black bars, and S1P5−/− mice are treated as gray bars. (B) Representative microscopic pictures of skin sections from 
S1P5−/− mice treated for 4 weeks with PBS or BLM. Immunohistochemically stained for COMP (scale bar = 20 µm, red = COMP). Results in (a) are shown as 
mean ± SD of n = 3–4 mice/group with #/* indicating p ≤ 0.05. Hashtags (#) characterize significance in comparison with the respective PBS controls (adjacent 
white bars). Statistical analysis was performed using a one-way ANOVA with Bonferroni’s multiple comparison test. ANOVA, analysis of variance; BLM, bleomycin; 
COMP, cartilage oligomeric matrix protein; PBS, phosphate-buffered saline; WT, wild type.

FigUre 2 | Low-dose BLM induces fibrotic alterations in the skin of WT and S1P5−/− mice. (a) Representative skin sections of mice treated 4 weeks with BLM or 
PBS stained histochemically with Masson’s trichrome to indicate fibrotic alterations (scale bar = 100 µm, blue = connective tissue). (B) Dermal thickness and  
(c) expansion of connective tissue of WT and S1P5−/− mice treated 2 and 4 weeks with BLM were determined in microscopic images of stained skin sections (see 
Materials and Methods). BLM-treated WT mice are represented as black bars, and S1P5−/− mice are represented as gray bars. All results are shown as mean ± SD 
of n = 4–5 mice/group with # indicating p ≤ 0.05, ## for p ≤ 0.01 and ### for p ≤ 0.001, compared with the respective PBS controls (adjacent white bars). 
Statistical analysis was performed using a one-way ANOVA with Bonferroni’s multiple comparison test. ANOVA, analysis of variance; BLM, bleomycin; PBS, 
phosphate-buffered saline; WT, wild type.
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analysis of skin tissue samples. Dermal S1P and dhS1P levels 
were detectable albeit below the lower limit of reliable quantifica-
tion. Corresponding analysis of the mRNA expression of S1P 
metabolizing enzymes, including S1P lyase, S1P phosphatase 
isoforms, as well as sphingosine kinase isoforms, in skin tissues 
revealed no significant differences between the genotypes (Figure 

S2 in Supplementary Material). Interestingly, determination of 
the local levels of characteristic ceramide species of the skin in 
BLM- versus PBS-treated mice demonstrated elevated concentra-
tions of GluCer C18:0 and C24:1 in the WT mice. In contrast, 
significantly lower levels were measured in S1P5-deficient mice 
(Figures 5A,B). The significant reduction of ceramide compounds 
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FigUre 4 | Quantity of CD31-positive blood vessels in the skin of WT and S1P5−/− mice, which is not altered after low-dose BLM treatment. (a) Representative  
skin sections of mice stained for CD31 to mark blood vessels of different sizes, indicated by specifically colored arrows (gray arrow = small vessel; orange 
arrow = medium-sized vessel; black arrow = large vessel; scale bar = 50 µm). (B) Small, medium-sized, and large CD31-positive blood vessels in comparable skin 
areas of 2- and 4-week-treated WT and S1P5−/− mice were counted manually on a microscope [visual definition of blood vessel sizes: see (a); representation of an 
area: see left]. Small vessels are represented as gray parts, medium-sized vessels as orange parts, and large vessels as black parts of the stacked bars. Result is 
shown as mean of 3–6 areas/mice of n = 4–5 mice/group. Statistical analysis was performed using a one-way ANOVA with Bonferroni’s multiple comparison test. 
ANOVA, analysis of variance; BLM, bleomycin; WT, wild type.
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in S1P5-deficient mice compared with WT mice, together with 
the rise of ceramide C24:0 in knockout mice (Figure 5C), implies 
the involvement of S1P5 on local lipid composition in early  
BLM-induced skin inflammation.

s1P5 Deficiency affecting the Type of 
BlM-induced skin inflammation by 
Preventing an increase of gaTa-3 and 
s1P3 mrna expression
Migration of immune cells and T  cell polarization play an 
important role for immune dysfunction observed in SSc. 
Therefore, S1P5-dependent, BLM-induced variations in the 
mRNA induction of relevant factors, which are expressed by 
immune cells and might be important for the pathogenesis of 
scleroderma, were examined. As a result, we found that the 
transcriptional expression of T-bet and FoxP3 was equally 
induced in both genotypes (Figures  6A,C). Conversely, the 
BLM-induced regulation of Th2 characteristic transcription 
factor GATA-3 mRNA differed significantly and was enhanced 
in the WT versus S1P5−/− mice (WT: 2.0  ±  0.5-fold; S1P5−/−: 
0.9 ± 0.3-fold) (Figure 6B). In parallel to the upregulation of 
GATA-3 in treated WT mice, S1P3 mRNA expression was sig-
nificantly increased in WT compared with S1P5-deficient mice 
(Figure 7B). Different from S1P3, upregulated S1P1 mRNA was 

detected in the skin of BLM-treated S1P5−/− mice, however not 
in the WT mice (Figure 7A).

s1P5 Deficiency affecting Parameters  
of skin-Fibrotic Processes
In order to elucidate whether S1P5 plays a role for TGF-β1 
signaling, we determined mRNA expression of the pro-fibrotic 
TGF-β responsive gene COL1A1 (42) as well as transcription 
of the inhibitory subunit in the TGF-β signaling pathway, 
SMAD7. After 2 weeks of subcutaneous BLM application,  
a trend to higher TGF-β1 mRNA expression was measured in 
both genotypes (WT: 1.7  ±  0.2-fold; S1P5−/−: 1.9  ±  0.4-fold; 
Figure  1D). Differently, the TGF-β downstream COL1A1 
mRNA was exclusively upregulated in WT following 2  weeks 
of BLM treatment (WT: 2.5 ± 0.7-fold; S1P5−/−: 1.1 ± 0.3-fold; 
Figure  8B). Interestingly, SMAD7 mRNA increased in WT, 
but was slightly diminished in S1P5-deficient mice after BLM 
application (Figure 8A).

DiscUssiOn

To date, S1P5 function in general is still poorly characterized. 
It is well known that S1P5 affects the immune quiescence of the 
brain endothelial barrier, as well as the trafficking of natural 
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FigUre 6 | S1P5-dependent increase in GATA-3 transcripts after a 2-week low-dose BLM treatment. Relative mRNA expression of (a) T-bet, (B) GATA-3,  
and (c) FOXP3 in skin tissue of BLM-treated WT (black bars) and S1P5−/− (gray bars) mice. mRNA expression levels were determined by qRT-PCR analysis.  
All data are presented as fold change to the mean of the respective PBS controls and shown as mean ± SD of n = 3–5 mice/group with # indicating p ≤ 0.05  
and ** for p ≤ 0.01. Hashtags (#) characterize significance in comparison to the respective PBS controls (adjacent white bars). Statistical analysis was  
performed using a one sample t-test for # or an unpaired t-test for *. (rel. = relative). BLM, bleomycin; PBS, phosphate-buffered saline; WT, wild type.

FigUre 5 | Long-chain ceramides, showing a decrease in S1P5−/− following 
BLM treatment. BLM-induced regulation of GluCer C18:0 (a), GluCer C24:1 
(B), and ceramide C24:0 (c) in the skin of WT (black bars) and S1P5−/− mice 
(gray bars). Lipid measurements were performed after extraction by LC-MS/
MS analysis (ng/mg) and presented here for BLM-treated mouse groups as 
difference to the mean of respective PBS controls. Data are shown as 
mean ± SD of n = 4–5 mice/group with # indicating p ≤ 0.05, ** for p ≤ 0.01. 
Hashtags (#) characterize significance in comparison to the respective PBS 
controls. Statistical analysis was performed using a one-way ANOVA with 
Bonferroni’s multiple comparison test. (Δ = difference). ANOVA, analysis of 
variance; BLM, bleomycin; GluCer, glucosylceramide; LC-MS/MS, liquid 
chromatography coupled to tandem mass spectrometry; PBS, phosphate-
buffered saline; WT, wild type.
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killer cells (23, 40, 43). Furthermore, enhanced S1P5 activity 
was shown to influence proliferation, migration, and autophagy 
in human cancer cells (22, 44). Nevertheless, data concerning 

fibrotic S1P5 involvement are rare and ambiguous. Wünsche 
et al. imply a pro-fibrotic function of S1P5 in human mesangial 
cells (25), whereas others found that S1P5 mediates anti-fibrotic 
activities of the structural S1P-analogon FTY720 under skin-
fibrotic conditions (45). Although the receptor S1P5 is expressed 
in the skin (24, 45), its dermatological function during inflam-
mation and fibrogenesis has not been elucidated so far.

Microangiopathy, cutaneous inflammation, and fibrotic 
processes are important elements triggering the pathogenesis 
of SSc (2). In order to investigate S1P5 function in early-stage 
processes driving fibrogenesis, low-dose BLM injections were 
used in an SSc mouse model to induce fibrotic processes in the 
skin of WT and S1P5−/− mice. By 2 weeks of subcutaneous BLM 
treatment (25  μg/day, 5  days/week), we generated an inflam-
matory and fibrogenic milieu in the skin of both genotypes. 
This became evident by a transcriptional increase of the cor-
responding markers ICAM-1 (46–48), CCR2 (49–52), CD206 as 
marker for M2 macrophages (53, 54), and TGF-β1 (55), along 
with significant fibrotic alterations at 4-week BLM-injected 
mice (Figures  1 and 2). Under our experimental conditions, 
skin thickening was less pronounced than in other SSc studies 
using 100  µg BLM and more in a 4-week treatment protocol 
(56, 57). Furthermore, a BLM-induced accumulation of α-SMA 
expressing myofibroblasts (58, 59) was not detectable upon our 
low-dose BLM treatment (Figure S1 in Supplementary Material). 
Nevertheless, the above-mentioned key factors for the initiation 
of fibrogenesis that are associated with the BLM model and/or 
the disease were transcriptionally induced after 2 weeks of low-
dose BLM treatment. Enhanced ICAM-1 mediates leukocyte 
migration into inflamed areas (60–62) and has even shown to be 
upregulated in response to higher dose BLM injections (63, 64). 
Effects of 2-week low-dose BLM-induced mRNA expression of 
inflammatory factors were correlating to an increased number 
of infiltrated cells into BLM-treated tissues compared with the 
PBS controls (Figure 1E). Therefore, we have succeeded in our 
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FigUre 7 | S1P5-dependent regulation of S1P1 and S1P3 mRNA in BLM-treated skin. Relative mRNA expression of (a) S1P1 and (B) S1P3 in skin tissue of 
BLM-treated WT (black bars) and S1P5−/− (gray bars) mice. mRNA expression levels were determined by qRT-PCR analysis. All data are presented as fold change to 
the mean of the respective PBS controls and shown as mean ± SD of n = 3–5 mice/group with #/* indicating p ≤ 0.05, ## for p ≤ 0.01 and *** for p ≤ 0.001. 
Hashtags (#) characterize significance in comparison to the respective PBS controls (adjacent white bars). Statistical analysis was performed using a one sample 
t-test for # or an unpaired t-test for *. (rel. = relative). BLM, bleomycin; PBS, phosphate-buffered saline; qRT-PCR, quantitative real-time polymerase chain reaction; 
WT, wild type.

FigUre 8 | S1P5 impacts on SMAD7 and COL1A1 mRNA expression. Relative mRNA expression of (a) SMAD7 and (B) Col1A1 in skin tissue of BLM-treated WT 
(black bars) and S1P5−/− (gray bars) mice. mRNA expression levels were determined by qRT-PCR analysis. All data are presented as fold change to the mean of the 
respective PBS controls and shown as mean ± SD of n = 3–5 mice/group with # indicating p ≤ 0.05, ##/** for p ≤ 0.01 and *** for p ≤ 0.001. Hashtags (#) 
characterize significance in comparison to the respective PBS controls (adjacent white bars). Statistical analysis was performed using a one sample t-test for # or an 
unpaired t-test for *. (rel. = relative). BLM, bleomycin; PBS, phosphate-buffered saline; qRT-PCR, quantitative real-time polymerase chain reaction; WT, wild type.
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aim to mimic a moderate inflammatory and pro-fibrotic milieu 
of early-stage fibrogenesis within the skin of 2-week BLM-treated 
WT and S1P5-deficient mice.

Sphingolipids and ceramides are fundamental for constitu-
tion of the cell membrane and for epithelial barrier function. 
Even more, some ceramide species are regulators of key 
physiological functions such as migration, proliferation, and 
apoptosis (65, 66), and thus may bias inflammation. In 2-week 
BLM-treated skin areas, S1P5 augmented a different long-
chain ceramide profile with an increase of GluCer C18:0 and 
GluCer C24:1 in the WT, and a decrease in the S1P5-deficient 
mice (Figures 5A,B). Interestingly, already a small accumula-
tion of GluCers has been shown to trigger inflammation in 
glucocerebrosidase-deficient mice (39). In parallel, ceramide 
C24:0 was especially induced in the above-mentioned S1P5−/− 
group (Figure 5C), whereas the shorter chain ceramide C16:0 
was not significantly altered following BLM treatment (data not 
shown). Within the Langmuir model, Pullmanova et al. recently 

demonstrated that the proportion of Cer C24 compared with 
shorter Cer C16 is important to maintain barrier permeability 
in the outmost layer of human epidermis (67). Therefore, the 
BLM-induced increase in Cer C24:0 in S1P5-deficient mice 
might improve barrier function. Whatsoever are the mecha-
nisms underlying the observed effects, these results suggest a 
potentially supportive role of S1P5 for triggering inflammatory 
processes in the applied SSc mouse model.

A Th2-biased immune response induces tissue fibrosis and 
is implicated in SSc pathogenesis (33). According to our results, 
S1P5 participates significantly in the transcriptional induc-
tion of Th2-characteristic transcription factor GATA-3 under 
BLM-induced inflammatory conditions (Figures 1 and 4). The 
pathophysiological relevance of GATA-3 has been proven by 
several studies. Referred to those, the upregulation of GATA-3 in 
T cells increases IL-13 synthesis (68, 69). Especially IL-13, pro-
duced by CD8+CD28− scleroderma T cells, enhances COL1A1 
protein expression in dermal fibroblasts (70). We, respectively, 
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detected an induction of COL1A1 transcripts, which was, similar 
to GATA-3, exclusively found in inflammatory skin tissues of 
S1P5-expressing WT mice (Figure 7). Besides GATA-3, intrigu-
ingly, S1P1 and S1P3 mRNA was differentially upregulated in 
the genotypes after 2 weeks of BLM treatment (Figure  7). We 
hypothesize that transcripts were introduced by infiltrating 
cells into inflamed skin tissues and therefore point to a different 
immunological composition of the inflammatory infiltrates in 
WT and S1P5-deficient mice. This suggests a modulating effect 
of cutaneous S1P5 expression on the quality of inflammation. 
Interestingly, S1P3 was shown to support inflammation as well as 
fibrosis (71). In previous studies, we were able to show that S1P3 
mediates pro-fibrotic differentiation of myofibroblasts through a 
TGF-β/SMAD-dependent pathway (72) and also others stated a 
fibrogenic involvement of S1P3 (73).

To get an impression of S1P5 implications concerning fibrotic 
TGF-β/SMAD signaling in the 2-week-treated skin tissues, we 
analyzed the mRNA expression of selected TGF-β downstream 
targets as well as the regulatory subunit SMAD7 (29, 74, 75). 
Impairment of SMAD7 signaling has been associated with 
scleroderma fibroblasts (76). TGF-β1expression of PBS-treated 
controls does not differ between the genotypes (data not shown) 
and BLM-induced TGF-β1 upregulation was comparable in 
WT and S1P5-deficient mice (Figure  1). Although there were 
no significant differences referring to the myofibroblast marker 
α-SMA among WT and S1P5−/− mice (mRNA data not shown), 
we observed a specific transcriptional increase of COL1A1 
upon BLM treatment. Similar to the fibrogenic upregulation of  
GATA-3 and S1P3 transcripts, this effect was limited to the 2-week 
BLM-treated WT mice. Remarkably, a simultaneous increase of 
regulatory SMAD7 was observed in this experimental group 
(Figure 8). Since SMAD7 protein is known to control intracel-
lular TGFβ-induced SMAD signaling, regulating its activity 
is very important. Therefore, SMAD7 mRNA induction in the 
WT group might be a feedback of low-protein level. In contrast, 
SMAD7 transcription was repressed in the skin of 2-week BLM-
treated S1P5-deficient mice, possibly reflecting high-protein 
level. In summary, our data emphasize a supportive S1P5 effect 
on early-stage fibrotic processes.

Subsequently, fibrotic quality within the dermal extracel-
lular matrix was evaluated with respect to the TGF-β-inducible 
collagen-crosslinking protein COMP (31, 77). COMP served as 
a fibrotic marker (78) and its overexpression has been shown in 
SSc (31, 79). Immunohistological COMP analysis revealed an 
increase in the proportion of COMP within the dermis of 4-week 
BLM-treated skin areas compared with those injected with PBS. 
This effect was detectable as a trend in the WT and significantly in 
the S1P5-deficient mice (Figure 3). Therefore, enhanced COMP 
expression supports the finding of moderate fibrotic skin thicken-
ing at 4-week BLM-treated S1P5−/− mice. The extent in COMP 
induction varies between WT and S1P5-deficient mice. This 
suggests that the experimental groups were in a different stage 
during fibrogenesis. Therefore, S1P5 expression may impact on 
disease progression.

Disturbed angiogenesis and impaired vasculogenesis are 
primary events leading to the microangiopathy seen in SSc 
(80–82). Since it is unclear whether BLM treatment reduces the 

number of capillaries (83), we wanted to get an impression if 
the applied BLM model reflected the loss of small blood vessels 
in the injected skin areas of WT and S1P5-deficient mice. Our 
results reveal no significant differences regarding the number 
of CD31-stained blood vessels (Figure 4). In accordance with 
other publications, repetitive subcutaneous BLM application 
seems not to mimic the complex vascular damage described in 
SSc vasculopathy (84).

In order to identify specific therapeutic options, it is 
important to gain a better understanding of early molecular 
and cellular cutaneous processes and regulators, predicting 
development and progress of SSc pathogenesis. To date nothing 
is known about S1P5 participation concerning this matter. Our 
data, generated in a modified mouse model of the inflammatory 
fibrotic disorder, proposed that S1P5 deficiency impacts on 
early-stage dermal inflammatory responses by affecting long-
chain ceramide profiles in the skin as well as the composition of 
cellular infiltrates. A transient pro-fibrotic S1P5 contribution is 
indicated by our thorough pilot study; however, more extended 
studies have to be considered. In conclusion, for the first time 
the present study linked S1P receptor 5 to early stages within 
the development of inflammatory fibrotic skin alterations that 
may encourage the ongoing search for new therapeutic options 
for SSc patients.
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