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The gut represents a potential entry site for a wide range of pathogens including proto-
zoa, bacteria, viruses, or fungi. Consequently, it is protected by one of the largest and 
most diversified population of immune cells of the body. Its surveillance requires the 
constant sampling of its encounters by dedicated sentinels composed of follicles and 
their associated epithelium located in specialized area. In the small intestine, Peyer’s 
patches (PPs) are the most important of these mucosal immune response inductive 
sites. Through several mechanisms including transcytosis by specialized epithelial 
cells called M-cells, access to the gut lumen is facilitated in PPs. Although antigen 
sampling is critical to the initiation of the mucosal immune response, pathogens have 
evolved strategies to take advantage of this permissive gateway to enter the host and 
disseminate. It is, therefore, critical to decipher the mechanisms that underlie both host 
defense and pathogen subversive strategies in order to develop new mucosal-based 
therapeutic approaches. Whereas penetration of pathogens through M cells has been 
well described, their fate once they have reached the subepithelial dome (SED) remains 
less well understood. Nevertheless, it is clear that the mononuclear phagocyte system 
(MPS) plays a critical role in handling these pathogens. MPS members, including both 
dendritic cells and macrophages, are indeed strongly enriched in the SED, interact 
with M cells, and are necessary for antigen presentation to immune effector cells. This 
review focuses on recent advances, which have allowed distinguishing the different 
PP mononuclear phagocyte subsets. It gives an overview of their diversity, specificity, 
location, and functions. Interaction of PP phagocytes with the microbiota and the fol-
licle-associated epithelium as well as PP infection studies are described in the light of 
these new criteria of PP phagocyte identification. Finally, known alterations affecting the 
different phagocyte subsets during PP stimulation or infection are discussed.

Keywords: mucosal immunity, Peyer’s patch, dendritic cells, macrophages, M cells, microbiota, igA, bacterial and 
viral infections

iNTRODUCTiON

In mammals, the gastrointestinal mucosa is the largest surface of interaction with the external 
environment. This ensures an efficient absorption of nutrients, electrolytes, and water but con-
comitantly it exposes the body to environmental threats through the ingestion of contaminated 
food or drinks. Thus, the gut represents a privileged site of entry for various pathogen agents, 
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such as protozoa, bacteria, viruses, toxins, or prion. Different 
mechanisms of defense exist to protect the body integrity against 
these threats. The efficient and size-selective shield provided by 
the mucus layer and the glycocalyx above the villous epithelium 
favors the uptake of small diffusible molecules while prevent-
ing microorganisms from reaching the epithelium. Protection 
is also ensured through secretion of antimicrobial compounds 
and innate polyreactive and antigen-specific secretory immuno-
globulin A (sIgA) in the intestinal lumen. Finally, the intestinal 
epithelium forms a physical barrier between the lumen and the 
lamina propria. However, pathogens, such as Salmonella and 
Shigella, can survive challenging environmental conditions, 
disrupt the mucus and the continuity of the epithelial barrier, 
and penetrate the epithelium to reach interstitial tissues (1).  
It is, therefore, important for the mucosal immune system to be 
aware of the presence of pathogens as soon as possible. A simple 
way to achieve this objective is to provide a facilitated access to 
the gut luminal content toward the mucosal surface at restricted 
areas distributed regularly along the gastrointestinal tract. The 
mammal small intestine possesses such specific sentinel sites 
marked by the presence of lymphoid follicles. Peyer’s patches 
(PPs) are the most important of these monitoring sites since they 
are constituted of several clustered B-cell follicles forming domes 
interspersed with T-cell zones termed interfollicular regions 
(IFR). While villi are specialized for absorption of nutrients, 
PPs are dedicated to the sampling of foreign material and to the 
induction of mucosal immune responses (2–4). Due to the low 
number of mucus-secreting goblet cells and lack of polymeric 
immunoglobulin receptor expression in the follicle-associated 
epithelium (FAE), PP have a reduced mucus layer and no IgA 
secretion, respectively, which may favor interaction with patho-
gens (5, 6). Moreover, the FAE is characterized by the presence 
of specialized epithelial cells termed M cells, which lack a typical 
brush border and possess a thin glycocalyx that give a better 
accessibility to large particulate antigens (7–12). The underlying 
stromal cell network ensures at least in part this specialization of 
the FAE. Thus, subepithelial stromal cells express high amounts 
of the cytokine RANKL, which is necessary to both the produc-
tion of the chemokine CCL20 by the FAE and the development 
of M cells (13, 14). The latter display specific carbohydrates and 
receptors that are used as binding sites by pathogens (15–22). 
Following their adherence to M cells, particulate antigens are 
rapidly transported from the lumen to the subepithelial dome 
(SED) or to an invagination of the basolateral membrane of M 
cells forming a pocket in which phagocytes, T and B cells reside. 
Importantly, the presence of M cells is critical for the sampling 
of both commensals and pathogens (17, 23–25). Once delivered 
into the basolateral pocket or in the SED, uptake, degradation, 
and presentation of antigens by the mononuclear phagocyte 
system (MPS), i.e., macrophages (MF) and dendritic cells (DCs), 
are key steps to induce a mucosal immune response. During 
infection, subepithelial phagocytes are, therefore, involved 
both in PP innate defense and in the initiation of the mucosal 
immune response (11). However, the role of each phagocyte sub-
population in infection has remained elusive due to an absence 
of consensual phenotype markers for each subset. Studies have 
indeed pointed out the substantial overlap in several key surface 

markers between MF and DC (e.g., CD11c, CD11b, SIRPα, and 
the major histocompatibility complex class II, MHCII) (26). 
Thus, until very recently, the characterization of MF in PP has 
been hampered by the lack of reliable markers. Finally, each 
dome of a given PP is surrounded by villi, thus preventing an easy 
discrimination of phagocytes from dome and dome-associated 
villus (DAV). Although IFRs are located on the sides of each 
dome, we, hereafter, refer FAE, SED, follicle, and IFR-located 
phagocytes jointly as dome phagocytes by opposition with DAV 
phagocytes.

In this review, we focus on recent advances, which have 
allowed distinguishing the different dome mononuclear phago-
cyte subsets. We provide an overview of their phenotype, distri-
bution, ontogeny, lifespan, transcriptional profile, and function. 
We then consider some PP functional studies in the context of 
these new criteria to propose an identification of implicated 
dome phagocytes. Finally, we discuss alterations affecting the 
different phagocyte subsets upon PP stimulation or infection.

DiveRSiTY AND SPeCiFiCiTY  
OF THe PP MPS

Recent progresses in the characterization of PP MPS have  
demonstrated that dome DC and MF display unique characteris-
tics very distinct from their DAV counterparts (Table 1).

Dome Conventional DC
Mouse common DC precursor (CDP)-derived DC, also called 
conventional DC (cDC), comprise two major subsets, which 
have been first identified through the expression of either CD8α 
(cDC1) or CD11b (cDC2) in addition to CD11c and MHCII 
(27, 28). Recently, more reliable, specific, and cross-species con-
served markers for cDC1, such as XCR1 and Clec9a, have been 
identified (29–34). Similarly, SIRPα is a more widely distributed 
marker of cDC2 than CD11b, although shared with MF (35). 
Both cDC1 and cDC2 are present in domes (Figure 1) (36, 37). 
In addition, a third cDC subset, termed double negative cDC 
(DN cDC), which neither expresses CD11b nor CD8α, has been 
described in PP (37, 38). However, DN cDC have been recently 
identified as belonging to the cDC2 subset (Figure  1). They 
indeed share key surface markers with cDC2, such as SIRPα and 
Clec4a4, and, unlike cDC1, do not depend on Batf3 for their dif-
ferentiation (39, 40). In addition, the transcriptional programs 
of CD11b+ and DN cDC are very close from each other. Notably, 
CD11b+ cDC express more MHCII at their surface and higher 
levels of key maturation marker genes such as Stat4, Ccr7, Ccl22, 
Socs2, and Il6 than DN cDC (40). Moreover, the latter are able 
to express CD11b upon in vitro culture and are recruited in PP 
before CD11b+ cDC (40). Therefore, it is assumed that DN and 
CD11b+ dome cDC represent immature and mature homeo-
static differentiation stages of cDC2, respectively. Dome cDC2 
encompass actually a developmental continuum of cells with 
gradual surface acquisition of CCR7, CD11b, EpCAM, JAM-A, 
and MHCII and decrease of CD24 expression (40). Importantly, 
dome cDC2 are distinct from DAV cDC2 (Table 1). Thus, the 
latter display more CD11b and less SIRPα at their surface than 
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dome cDC2. Moreover, most of them express CD101 whereas 
dome cDC2 do not (40).

Dome MF
Unlike villous MF, identification of dome MF has remained 
unsolved for decades due to the lack of expression of classic mac-
rophage markers such as F4/80 (EMR1), sialoadhesin (Siglec1/
CD169), Mannose Macrophage Receptor (MMR/CD206), or Fc 
Gamma Receptor I (FcGRI/CD64) (39). Moreover, a substantial 
overlap of key surface markers, such as CD11c, CD11b, MHCII, 
and SIRPα, exists between MF and cDC (26). By the past, this 
has led to a great confusion concerning location and functions 
of both dome phagocyte populations. However, recent works 
managed distinguishing dome cDC from monocyte-derived 
cells (Table 1) (39–41). The latter encompass dome MF and the 
monocyte-derived DC termed LysoDC (Figure 1). Most dome 
monocyte-derived cells express CD11c, CD11b, SIRPα, BST2, 
CX3CR1, MerTK, and lysozyme (Table 1). BST2 and lysozyme 
expression are hallmarks of dome monocyte-derived cells since 
DAV MF express little or none of these molecules (39, 42). Thus, 
CD11c+ dome MF have been termed LysoMac by analogy with 
LysoDC and by opposition to villous MF, which do not express 
lysozyme. LysoMac are strongly autofluorescent large long-lived 
cells, which depend on the growth factor M-CSF to develop (39). 
They express CD4 but only low levels of MHCII. They encompass 
two main subsets based on the expression of the phosphatidylser-
ine receptor TIM-4 (Figure 1) (39).

Tingible-body macrophages (TBM), which also display TIM-4 
at their surface, form a third dome macrophage subset (39). Like 
LysoMac, TBM express MerTK, CX3CR1, SIRPα, lysozyme, 
and CD4 but typically lack CD11c, CD11b, and MHCII expres-
sion (Table 1) (39, 42). BST2 expression in TBM has not been 
investigated so far. Although easily detectable in situ through the 
presence of many internalized apoptotic bodies, they have been 
poorly characterized and their origin, either circulating mono-
cytes, embryonic precursors or both, is unknown. In addition 
to these subsets, PP contain a layer of poorly described serosal/
muscularis MF, which, depending on their location, express or 
not CD169 (see below) (39).

lysoDC
LysoDC are short-lived monocyte-derived DC (Figure  1; 
Table 1) (39). Unlike LysoMac, they are weakly autofluorescent, 
express very high levels of MHCII, but no CD4, and are strongly 
dependent on CCR2, the chemokine receptor that allows mono-
cyte egress from the bone marrow (39). Morphologically, they 
are large stellate motile cells (42, 43). Upon stimulation with 
the TLR7 agonist R848, they secrete IL-6 and TNF but no IL-10 
(Table 2) (39). So far, no equivalent of LysoDC has been described 
in villous lamina propria. LysoDC are present in mouse, rat, and 
human PP (42). Thus, these phagocytes seem to be specific of 
PP and maybe of isolated lymphoid follicles in several species 
including humans.

Plasmacytoid DC
Although PP plasmacytoid DCs (pDCs) share BST2 expression 
with monocyte-derived cells, they constantly express higher levels 
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TAble 2 | Functions of dome phagocyte subsets.

Peyer’s patch subset Antigen sampling  
activity

Apoptotic cell  
removal

Cytokine 
production

T cell priming 
and polarization

igA production 
induction

Reference

Double-negative cDC2 
(DN cDC2)

Unknown Unknown (*) (*) In vivo candidate (38, 39, 89, 90)

CD11b+ cDC2 Unknown Unknown IL-6 IL-6 In vivo candidate (38, 39, 89, 90)
CD8α+ cDC1 Unknown Unknown IL-12 p70 IFNγ No (38, 39, 89, 90)
Plasmacytoid DC Unknown Unknown IL-12 p70, No 

type I IFN
IL-17 In vitro, not in vivo (44, 45, 87, 88)

LysoDC Microspheres, Salmonella, 
sIgA-IC

Follicle-associated 
epithelium (FAE) cells

IL-6, TNF IFNγ, IL-6, TNF In vivo candidate (39, 42, 43, 101)

TIM4− LysoMac Microspheres, Salmonella, 
prion, sIgA-IC

FAE cells ND No priming In vivo candidate (39, 42, 90,  
101, 131)

TIM-4+ LysoMac Unknown T cells ND No priming No (39)
Tingible-body 
macrophages

Unknown Germinal center B cells ND ND No (39, 42)

(*)Upon maturation, DN cDC2 may give rise to CD11b+ cDC2 and acquire their functional attributes, i.e., IL-6 production and T cell polarization for IL-6 production.
Grey background, common dendritic cell precursor-derived cells; white background, monocyte-derived cells.
sIgA-IC, secretory immunoglobulin A immune complex; ND, not determined.

FigURe 1 | The Peyer’s patch (PP) mononuclear phagocyte system (MPS). The PP MPS encompasses two large families of cells based on their origin, the common 
DC precursor (CDP)-derived and the monocyte-derived phagocytes. The CDP-derived cells comprise CD11chi conventional DC (cDC) and CD11cint plasmacytoid 
DC. Among cDC, cDC1 are CD8α+ but SIRPα− whereas cDC2 are SIRPα+ but CD8α−. cDC2 exist in several stages of differentiation among which the two extremes 
are the so-called double negative (DN) cDC2, which do not express CD11b, and the CD11b+ cDC2. CD11b+ cDC2 derive from DN cDC2 through the upregulation 
of CCR7, CD11b, EpCAM, JAM-A, and MHCII. CDP-derived cells are mainly located in the T cell zones, i.e., interfollicular regions (IFR), at the exception of DN 
cDC2, which transit through the subepithelial dome (SED). cDC excel in helper T cell priming but are poorly phagocytic. On the contrary, CD11chi monocyte-derived 
cells are strongly phagocytic. They also display a broad range of antimicrobial defense mechanisms. CD11chi monocyte-derived cells encompass two main subsets 
based on their phenotype, lifespan, and ability to prime T cells: macrophages (MF) and the monocyte-derived dendritic cell (DC) termed LysoDC. LysoDC are 
CD4−MHCIIhi short-lived SED-located DC with helper T cell priming ability. CD11chi MF, also called LysoMac, are CD4+MHCIIlo long-lived cells without any helper 
T cell priming ability. TIM-4− LysoMac are mainly located in the SED whereas TIM-4+ LysoMac are mainly located in the IFR. A third type of MF, termed tingible-body 
macrophages, reside in the germinal center (GC) of the follicle (F) where they are involved in apoptotic B cell removal. Unlike other PP MF, they do not express 
CD11c. Although shown on the monocyte-derived cell part of the diagram, it is currently unknown whether they truly derive from monocytes or whether they 
self-renew from embryonic precursors. Adapted from Ref. (39).
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of BST2 and lower levels of CD11c and SIRPα than LysoDC and 
LysoMac (Table 1) (39, 40). One can also distinguish PP pDC 
from monocyte-derived cells, thanks to their B220 expression. 
PP pDCs are distinct from pDCs isolated from other tissues by 

their inability to secrete abundant type I IFN in response to the 
TLR9 agonist CpG (Table  2) (44). Expression of the mucosal 
migratory receptor CCR9 and of the specific transcriptional 
regulator of the pDC lineage E2-2 is also reduced in PP pDCs 
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FigURe 2 | Anatomic localization of Peyer’s patch (PP) phagocyte subpopulations. Origin and shape of each PP phagocyte subset is displayed on the right. Color 
codes correspond to colors displayed in pie charts. The latter show in each region of the dome the distribution of PP phagocyte subsets at the exception of 
plasmacytoid DC (pDC). FAE, follicle-associated epithelium; SED, subepithelial dome; F, follicle; IFR, interfollicular region; DAV, dome-associated villus; MF, 
macrophages. Adapted from Ref. (40).
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as compared to other pDCs (45). Like other pDCs, PP pDCs 
are derived from the CDP and are induced by Flt3L, but their 
recruitment also requires type I IFN/STAT1 signaling (45). This 
type I IFN conditioning of PP pDC could favor the production 
of the inflammatory cytokines IL-6, IL-23, and TNF instead of 
type I IFNs (45).

ANATOMiC lOCAliZATiON OF PP 
PHAgOCYTe SUbSeTS AT STeADY  
STATe

Each region of the dome, i.e., FAE, SED, follicle, germinal center 
(GC), and IFR, is populated with specific subsets of phagocytes 
(Figure 2).

FAe and SeD
Subepithelial phagocytes are mainly composed of CD11c+ 
CD11b+ cells (37, 40, 42). Due to the expression of both 
surface markers, these cells were initially thought to be cDC2. 
However, these subepithelial CD11c+CD11b+ cells also express 
CX3CR1 and lysozyme and belong to the monocyte-derived 
family of phagocytes, i.e., LysoDC and LysoMac (40). Both 
represent actually two-third of subepithelial phagocytes with 
increasing ratio while reaching the upper part of the dome 
(Figure  2). By contrast, the SED contains few cDC, mainly 
DN cDC2 (JAM-A−CCR7−CD11b−SIRPα+ cDC), which are 
rather located in the lower part of the dome (Figure 3) (40). 
Both subepithelial LysoDC and DN cDC2 can penetrate the 
FAE and strongly interact with M cells, whereas LysoMac 
remain mainly located in the SED (40). Heterogeneity in dome 
macrophage-associated phenotype is tightly linked to their dif-
ferent anatomic localization within PP (Figure 2). This suggests 

that these phenotype differences reflect an important regional 
specialization of macrophage functions. Thus, subepithelial 
LysoMac do not express TIM-4 (39).

Follicle and gC
Conventional DCs are generally absent from the follicle and from 
the GC. The upper part of the follicle comprises exclusively scat-
tered LysoDC and TIM-4− LysoMac, whereas in its lower part, 
TIM-4+ LysoMac replace TIM-4− LysoMac (39). Finally, TBM are 
the only phagocytes of the GC.

interfollicular Regions
Interfollicular regions contain mainly cDC1 (SIRPα− cDC), 
CD11b+ cDC2 (JAM-A+CCR7+CD11b+SIRPα+ cDC), and scat-
tered TIM-4+ LysoMac (Figures 2 and 3) (39, 40). Of note, by 
microscopy, CD11b staining is not detectable in interfollicular 
CD11b+ cDC2 and TIM-4+ LysoMac due to its low levels of 
expression in these cells (40). Only LysoDC and subepithelial 
TIM-4− LysoMac actually stain for CD11b in the dome. Since 
interfollicular cDC (cDC1 and CD11b+ cDC2) express CCR7 
whereas subepithelial cDC (DN cDC2) do not (Figure  3B), 
the former are likely recruited through the specific expression 
of CCL19 and CCL21 in the IFR whereas the latter are likely 
recruited in the SED through their expression of CCR6 and 
secretion of CCL20 by the FAE (37, 40, 46–49). Surprisingly, 
interfollicular TIM-4+ LysoMac do not express CCR7, indicating 
that another factor may be involved in their addressing to the IFR 
(40). Interestingly, a layer of these MF surrounds the IFR, thus 
forming border guards of the T cell zone. Finally, CD169 is only 
expressed by MF located at the base of the IFR toward the serosa, 
including serosal/muscularis MF (39).

BST2 has been extensively used to identify pDC in differ-
ent mouse organs including PP (44, 50). Based on this marker, 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FigURe 3 | Continued

6

Da Silva et al. PP Phagocytes and Infection

Frontiers in Immunology | www.frontiersin.org October 2017 | Volume 8 | Article 1254

pDCs were first supposed to be located in the SED and in the 
IFR (44, 50). However, PP monocyte-derived cells express BST2 
at steady state (Figure 4A) (39). Moreover, stimuli that trigger 
interferon responses induce BST2 expression in several cell types 

(51). We, therefore, decided to re-investigate pDC location.  
We found that pDCs are mainly located in the IFR but not in 
the SED where BST2 is weakly displayed by monocyte-derived 
cells (Figure 4B).
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FigURe 4 | Location of plasmacytoid DC (pDC) in Peyer’s patch (PP). (A) Left panel: normalized mean relative expression ± SD of Bst2 in intestinal phagocytes  
based on Immgen database (139) and on the PP phagocyte microarray data deposited to NCBI GEO under accession numbers GSE94380 and GSE65514 (39, 40). 
Expression of Bst2 by LysoDC and LysoMac is shown. Right panel: in PP, monocyte-derived cells (CD11chiB220−lysozyme+ in blue), i.e., LysoDC and LysoMac, 
express lower levels of BST2 than pDC (CD11cintB220+lysozyme− in red). (b) Confocal microscopy projection of CX3CR1-EGFP−/+ mouse PP sections stained for 
EGFP (green), CD11c (red), lysozyme (yellow), CD4 (blue), and BST2 (magenta). Upper panel: BST2 is strongly expressed by cells of the dome-associated villus  
(DAV) but only weakly by LysoDC and LysoMac (CX3CR1+CD11c+lysozyme+ cells) in the subepithelial dome (SED). A single putative pDC (arrow) strongly stained  
for BST2 is located in the SED. Lower panel: unlike the SED, the IFR is enriched in pDC. (A) is adapted from Ref. (39).

FigURe 3 | Continued  
Location of dome double negative (DN) and CD11b+ cDC2 based on JAM-A and CCR7 expression. (A) Left panel: normalized mean relative expression ± SD of 
F11r (JAM-A) in dome conventional DC (cDC) subsets. Mid-panel: identification of four developmental stages of dome cDC2 based on CD11b and MHCII surface 
expression. Stage I, CD11b−MHCIIlo; Stage II, CD11b−MHCIIint; Stage III, CD11bloMHCIIhi; Stage IV, CD11bintMHCIIhi. Right panel: mean fluorescence intensity of 
JAM-A in the four developmental stages of dome cDC2. JAM-A expression increases from stage I (DN cDC2) to stage IV (CD11b+ cDC2). Lower panel: confocal 
microscopy projection of a Zbtb46-GFP−/+ mouse Peyer’s patch (PP) section stained for EGFP (green), CD11c (red), JAM-A (orange), and collagen IV (magenta). 
Higher magnifications of the numbered boxed area are shown on the right. cDC (CD11c+GFP+ cells) are mainly located in the IFR. However, some of them are 
located in the SED with a progressive decrease in numbers while reaching the upper part of the dome. Like LysoDC, they can penetrate into the follicle-associated 
epithelium (FAE). Subepithelial cDC2 (boxed area 1–4) express no or faint levels of JAM-A (stage I or II of dome cDC2; DN cDC2) whereas interfollicular cDC2 (boxed 
area 5 and 6) express it (stage III or IV of dome cDC2; CD11b+ cDC2). (b) Left panel: normalized mean relative expression ± SD of Ccr7 in dome cDC subsets. 
Right panel: confocal microscopy projection of a Zbtb46-GFP−/+ mouse PP section stained for EGFP (green), CD11c (red), and CCR7 (orange). Higher 
magnifications of the numbered boxed area are shown on the right. Subepithelial cDC2 (boxed area 1) do not express CCR7 (DN cDC2) whereas interfollicular cDC2 
(boxed area 2 and 3) do (CD11b+ cDC2). Parts of (A,b) are adapted from Ref. (40).
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FUNCTiONS OF PP PHAgOCYTe 
SUbSeTS

interaction with the FAe and Antigen 
Sampling Activity
The preferential uptake of luminal particulate antigens in PP as 
compared to villi first relies on the specific characteristics of the 

FAE (5–10, 52). Some of these properties, such as low levels of 
mucin expression, altered surface glycosylation, and lack of secre-
tion of antimicrobial proteins, depend on IL-22 signaling inhibi-
tion through the production of IL-22 binding protein (IL-22BP) 
by CD11c+CD11b+MHCII+ cells of the SED (53). Thereby, 
IL-22BP promotes microbial uptake into PP by influencing the 
FAE transcriptional program. Unfortunately, the markers used to 
identify IL-22BP-secreting cells do not allow distinguishing cDC 
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FigURe 5 | Expression of defined markers by Peyer’s patch (PP) phagocyte subpopulations. (A–D) Normalized mean relative expression ± SD of Il22ra2, Ltbr, 
Naip1, Naip2, Naip5, Il1b, Il18, Ftl1, and Lamp1 in intestinal phagocytes based on Immgen database (139) and on the PP phagocyte microarray data deposited  
to NCBI GEO under accession numbers GSE94380 and GSE65514 (39, 40). (A) In the gut, Il22ra2 [IL-22 binding protein (IL-22BP)] is mainly expressed by  
LysoDC and TIM-4− LysoMac. (b) In PP, Ltbr (lymphotoxin β receptor) is mainly expressed by LysoDC, LysoMac and, to a lesser extent, conventional DC (cDC). 
 (C) Enrichment of some members of the NAIP/NLRC4 inflammasome pathway (Naip1, Naip2, Naip5, Il1b, and Il18) in LysoDC and LysoMac. Note that Naip1 is 
only expressed by dome monocyte-derived cells. (D) Left panel: in the gut, LysoDC and LysoMac express higher levels of Ftl1 (ferritin light chain) and Lamp1 than 
other phagocytes. Right panel: labeling of a PP section shows enrichment of ferritin and LAMP1 expression in LysoDC and LysoMac of the subepithelial dome  
(SED) and of the follicle (F). Inserts: higher magnification of the boxed area showing one LysoDC strongly stained for ferritin and LAMP1.
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from monocyte-derived cells (53). In order to better characterize 
these IL-22BP-secreting phagocytes, we decided to interrogate 
the gene expression database of dome CD11chi phagocytes 
(NCBI GEO accession numbers GSE94380 and GSE65514) for 
IL-22BP transcripts (Il22ra2). Il22ra2 was enriched in LysoDC 
and TIM-4− LysoMac as compared to cDC (Figure 5A). These 
results, together with the preferential location of LysoDC and 
TIM-4− LysoMac in the SED, support their role in the secretion 
of IL-22BP, which in turn inhibits IL-22 signaling, alters the FAE 
transcriptional program, and favors the internalization of both 
commensal and pathogenic bacteria (53).

In addition to this strong influence on FAE global character-
istics, monocyte-derived cells and especially LysoDC maintain 
privileged interaction with M cells. Thus, LysoDC are able to 
extend dendrites through M cell specific transcellular pores 

to gain access to the lumen (Figure 6) (43). The cell adhesion 
molecules EpCAM and JAM-A are recruited at the M cell pore-
forming membrane but neither the tight junction proteins ZO-1 
and occludin nor the adherens junction proteins E-cadherin and 
β-catenin. Therefore, the formation of these M cell transcellular 
pores does not alter the integrity of the epithelial barrier. JAM-A 
is also enriched at the trans-M cell dendrite (TMD) membrane, 
which may favor homotypic interaction. In addition, there is a 
strong recruitment of filamentous actin in TMD in agreement 
with their high level of motility. These TMD scan indeed rap-
idly the surface of M cells and attract particulate antigens and 
bacteria from the lumen to capture them (43). Since blockade 
of the M cell-specific chemokine CCL9 drastically reduces the 
number of CD11c+CD11b+ cells in the SED and since LysoDC 
strongly express its receptor CCR1, it is tempting to speculate 
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FigURe 6 | Involvement of LysoDC trans-M cell dendrites in the sampling of Salmonella typhimurium. (A) A CX3CR1-deficient LysoDC (GFP in place of CX3CR1 in 
green; CD11c in red; lysozyme in yellow) extends a dendrite through the follicle-associated epithelium (FAE) to reach the lumen. In addition to CX3CR1, CD11c, and 
lysozyme, LysoMac (*) stain for CD4 (blue). (b) 2 h postoral infection, a Salmonella (red) is taken up by a LysoDC (green) extending a dendrite into an uninfected 
FAE. (C) M cell transcellular pores (arrowheads), through which trans-M cell dendrites (CD11c in blue) cross the FAE, are highlighted by circular holes in the UEA-I 
cell surface staining. (D) By correlative scanning electron microscopy (SEM), Salmonella (second and last panels in red, large arrows) are located at the periphery of 
a protrusion (pseudocolored in blue) arising from an M cell. Circular holes (thin arrowheads) in the UEA-I cell surface staining indicate the presence of M cell 
transcellular pores. (b,C) are adapted from Ref. (43), (D) is adapted from Ref. (110).
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that the degree of interaction between M cell and LysoDC is 
regulated through the release control of this chemokine by M 
cells (39, 49).

Although LysoDC are the main TMD-forming phagocytes, 
subepithelial LysoDC and TIM-4− LysoMac equally internalize 
particulate antigens (Table 2) (39). This suggests that, at least at 
steady state, the main route of particulate antigen sampling across 
the FAE is mediated through M cell transcytosis rather than by 
TMD. The lack of particulate antigen uptake by subepithelial 
cDC (DN cDC2) in  vivo is in agreement first with their low 
number in this region and second with in  vitro microparticle 
uptake assays showing a much more efficient phagocytic activity 
of LysoDC and LysoMac as compared to dome cDC (40, 42).  
Interestingly, in addition to transporting luminal antigens in 
their basolateral pocket or in the SED, M cells constitutively 
release on their basal side microvesicles, which are taken up by 
subepithelial CD11c+CD11b+CX3CR1+ cells, i.e., LysoDC and 

TIM-4− LysoMac (54). Finally, monocyte-derived cells and M 
cell cooperation extend beyond cell death since the former engulf  
dying M cells (Table  2) (42). In summary, particulate anti-
gen uptake in the SED is mainly performed by subepithelial 
monocyte-derived cells and occurs through at least four distinct 
mechanisms, which all involve M cells: (i) M cell-mediated trans-
cytosis; (ii) M cell microvesicle shedding; (iii) formation of TMD; 
(iv) dying M cell phagocytosis.

innate Defense Functions
LysoDC and LysoMac have been first identified through their 
strong expression of the antibacterial compound lysozyme (42). 
Then, they have been distinguished from dome cDC by their sur-
face expression of the host antiviral restriction factor BST2 (39). 
This suggests that, in addition to playing a primary role in antigen 
sampling, this family of dome phagocytes are strongly involved in 
the innate defense of PP. Analysis of their transcriptional profile 
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confirmed this assumption (39). Dome monocyte-derived cells 
display indeed a strong antibacterial and antiviral gene signature 
as compared to cDC. This includes genes encoding for viral and 
bacterial-associated molecular pattern recognition molecules 
such as toll-like receptors (TLRs), NAIPs, STING, DAI, and 
RIG-I. Several pathways of antiviral and antibacterial defense 
such as replication inhibition, metal sequestration, NLRC4 
inflammasome formation, and detoxification mechanisms are 
also upregulated in monocyte-derived cells as compared to cDC. 
Therefore, LysoDC and LysoMac, but not cDCs, display strong 
innate defense mechanisms against both viral and bacterial infec-
tions (Figure 1).

Priming of T Cells
Conventional DC have been long recognized as the most 
efficient professional antigen-presenting cells to initiate an 
antigen-specific immune response through the priming of both 
naïve CD4+ and CD8+ T cells (55). Upon activation, cDC initi-
ate a process of differentiation, also termed maturation, which 
involves an important genetic reprogramming (56, 57). This 
induces profound phenotypic, morphological, and functional 
changes, which allow their migration to lymph node T  cell 
zones and their antigen presentation and naïve T cell priming 
ability. Depletion of CD11c+ phagocytes showed that in PP they 
are involved both in the retention of interfollicular naive helper 
T cells and in their priming following antigen feeding (58, 59). 
Most dome cDC reside in the IFR and, therefore, do not require 
to migrate to encounter naïve T cells (40). Although it may be 
convenient and secure to rapidly prime naïve T cells, it raises 
indubitably the question of antigen acquisition. It could be, 
however, hypothesized that, after acquisition of soluble antigens 
or transfer of particulate antigens from monocyte-derived cells, 
DN cDC2 upregulate CCR7 and downregulate CCR6 to rapidly 
shuttle from the SED to the IFR. Their constant migratory activ-
ity would thus lead to the apparent underrepresentation of cDC 
in the SED where most of the luminal antigen sampling activity 
is performed (39, 40). By contrast, LysoDC, which are highly 
efficient in particulate antigen sampling, are mainly located in 
the SED and, to some extent, in the follicle but their migration 
to the T cell zone or their ability to prime T cells in vivo in the 
SED remain pending issues (39, 42, 43).

In vitro, unlike LysoMac, both dome cDC and LysoDC are 
able to induce naïve antigen-specific T helper cell proliferation 
(Table  2) (39). This is in line with the fact that, upon TLR7 
stimulation, LysoDC upregulate MHCII and the co-stimulatory 
molecules CD40 and CD86 whereas LysoMac do not. Both cDC1 
and LysoDC prime naïve antigen-specific T helper cells for IFNγ 
production. LysoDC also induce the production of IL-6, a prop-
erty shared with cDC2 (Table 2).

interaction with the Microbiota and 
induction of the Mucosal Humoral  
immune Response
Peyer’s patches are the primary site of antigen-specific sIgA-
secreting cell induction (3, 4, 60–64). Production of sIgA is 
rapidly induced upon microbial colonization and strongly 

reduced in germ-free animals (65). Moreover, sIgA coating of 
the microbiota plays a critical role in its diversification (66–68). 
Interestingly, sIgA predominantly target specific members of the 
microbiota, especially those residing in the small intestine and 
those considered as pathobionts (69–71). Therefore, microbiota 
influences the mucosal immune system, which in turn regulates 
symbiont diversity and stability (72, 73). Among commensal 
bacteria that profoundly influence the mucosal immune system 
in mouse, segmented filamentous bacteria (SFB) play a privi-
leged role, through induction of Th17  cells and IgA-secreting 
cells (74–76). This SFB-induced immune response largely 
depends on the stimulation of PPs and isolated lymphoid fol-
licles (77). Interestingly, specific members of the microbiota, 
including SFB, colonize PPs (77–80). Moreover, M cells are able 
to transport different defined commensal bacteria, which induce 
distinct M cell trans criptional programs (81). This sampling of 
gut microbiota through M cell-mediated pathways is crucial to 
initiate mucosal sIgA production (25). Thus, it is tempting to 
speculate that microbiota members capable of inducing strong 
humoral immune responses are those that strongly interact with 
the FAE. Once translocated in the SED, SFBs are internalized by 
CD11cintCD11b+ and CD11chiCD11b+ phagocytes (82). Other 
IgA-inducer commensals, especially Alcaligenes species, reside 
inside CD11c+ cells within isolated lymphoid follicles, PP, and 
mesenteric lymph nodes (MLN) of mice and humans (79, 80, 83).  
PP CD11c+ phagocytes are known to carry commensal bacteria 
through a CCR7-dependent mechanism to the MLN, which are 
required to restrict commensal-loaded CD11c+ phagocytes to 
the mucosal compartment but are dispensable for IgA induc-
tion (84). However, the accurate identification of the CD11c+ 
phagocyte subset(s), which sample(s) and carry(ies) commensal 
bacteria, remains currently unknown.

In vitro, the role of PP phagocytes in IgA class switching has 
long been recognized (85, 86). More recently, it has been shown 
that PP and MLN pDC efficiently promote IgA class switch 
recombination through their expression of membrane-bound 
BAFF (B-cell activating factor) and APRIL (a proliferation-
inducing ligand) independently of any T-cell or microbial 
stimulus (Table 2) (87). However, a recent pDC depletion study 
showed that pDCs are dispensable for intestinal IgA production 
in vivo (88). CD11chiCD11b+B220− phagocytes have also been 
implicated in the differentiation of naïve B  cells into sIgA- 
secreting cells in  vitro (89). It remains, however, to establish 
whether these CD11chiCD11b+B220− phagocytes are LysoDC, 
LysoMac, or dome CD11b+ cDC2 and to confirm their func-
tion in vivo. The role of each dome phagocyte subset in sIgA-
secreting cell commitment in vivo is indeed not well-established 
(Table  2). However, efficient IgA class switching requires 
interaction of CCR6+ B  cells with lymphotoxin-dependent 
CD11chiMHCII+CD11b+ phagocytes in the SED (90). Since lym-
photoxin β receptor transcripts (Ltbr) are expressed by mono-
cyte-derived cells and, to a lesser extent, by cDC (Figure 5B), 
it remains to establish whether these CD11chiMHCII+CD11b+ 
phagocytes correspond to CD11b+ cDC2, LysoDC, or LysoMac. 
Nevertheless, the sampling activity and the anatomic localization 
of the different phagocyte subsets as described above would argue 
for LysoDC/LysoMac rather than for CD11b+ cDC2 involvement. 
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The lymphotoxin required to maintain these phagocytes in the 
SED could be mainly provided by subepithelial innate lymphoid 
cells type 3 (ILC3) (90). However, a recent report indicates 
that microbiota-derived butyrate suppresses ILC3 in terminal  
ileal PP, rendering their role in subepithelial phagocyte main-
tenance unlikely at least in this part of the gut (91). Lack of 
CCR6 expression by B cells or RANKL expression deficiency in 
subepithelial stromal cells, which results in inhibition of CCL20 
production by the FAE, prevents B  cells migration into the 
SED, precludes their interaction with CD11chiMHCII+CD11b+ 
phagocytes and finally inhibits IgA class switching and 
bacteria-specific sIgA production (14, 90). The integrin complex  
αvβ8 expressed by CD11chiMHCII+CD11b+ phagocytes could 
directly activate TGFβ during the interaction of these phagocytes  
with CCR6+ B  cells and promote IgA class switching (90).  
In summary, induction of commensal bacteria-specific sIgA-
secreting cells is a complex process involving many different 
cell types: (i) subepithelial stromal cells producing RANKL 
for the formation of M cells and for the production of CCL20, 
which recruits CCR6+ B  cell and DN cDC2 into the SED;  
(ii) M cells for antigen sampling; (iii) lymphotoxin-producing 
cells for the maintenance of CD11chiMHCII+CD11b+ phago-
cytes; (iv) CD11chiMHCII+CD11b+ phagocytes for activation of 
CCR6+ B cells.

Regulation of the Adaptive immune 
Response
Tingible-body macrophages are critical in the removal of 
apoptotic B  cells during the selection process that occurs in 
the GC (Table 2) (92). Defect in this scavenging function leads 
to secondary necrosis, release of noxious molecules and pro-
inflammatory signals, and is linked to autoantibody production 
and autoimmune disease development. This scavenging function 
requires the expression of the apoptotic receptor MerTK by 
TBM and of the soluble bridging molecule MFG-E8 by follicular 
DC, the GC stromal cells involved in the shaping of the B cell 
response (93–96). A number of other factors and receptors, such 
as TIM-4, have also been implicated in this process and their 
deficiency leads to autoimmunity, too (92). Therefore, although 
some of these molecules may have redundant roles, they may also 
function together to be more efficient in apoptotic cell removal 
through several mechanisms, thus preventing the arising of 
autoimmunity (97).

Like TBM, interfollicular MF express the apoptotic cell recep-
tor TIM-4 and are located in a region of effector cell priming 
(39). Although the function of these TIM-4+ LysoMac remains 
elusive, they are thus likely to participate to the clearance of 
dying T cells like TBM contribute to the removal of dying B cells. 
Interestingly, TIM-4 deficiency leads to not only B cell but also 
T cells hyperactivity (98). Moreover, TIM-4 functions have been 
linked to the control of the adaptive immune response and toler-
ance through the removal of antigen-specific T cells (99, 100). 
Concerning PP phagocytes, while LysoDC interact with and 
prime naïve helper T cells in vitro, in the same conditions LysoMac 
phagocytize them, supporting their role in the removal of T cells 
(Table  2) (39). Thus, the location of TIM-4+ LysoMac in the 

T cell zone correlates well with a possible function in the removal 
of some naïve T cells during their priming process. Therefore, 
TBM and TIM-4+ LysoMac could perform a crucial role in PP 
adaptive immune response regulation at the level of GC and  
IFR, respectively.

PP PHAgOCYTeS iN iNFeCTiON

Sensing and Uptake of immune 
Complexes
Innate polyreactive and antigen-specific sIgA are secreted by 
lamina propria plasma cells and transported through the epi-
thelium by the polymeric immunoglobulin receptor to be finally 
released in the lumen. During infection, sIgA recognize and 
bind pathogens, thus participating to their clearance through a 
process called immune exclusion. Interestingly, M cells express 
on their surface dectin-1 and Siglec-F, which can serve as sIgA 
receptors allowing the uptake of luminal sIgA immune complexes 
(101). Since uptake of sIgA-coated bacteria persists in PP of 
dectin-1-deficient mice, Siglec-F expression may be sufficient to 
mediate sIgA binding to M cells (102). In the SED, sIgA immune 
complexes are associated with CD11c+CD11b+CX3CR1+MHCII+ 
cells, i.e., LysoDC and/or TIM-4− LysoMac (101). Entry of IgA-
coated bacteria into PP does not require CX3CR1 expression 
(102). However, this does not preclude a potential role of TMD 
in sIgA immune complex uptake since CX3CR1 is not involved 
in TMD formation (Figure 6A) (39). Finally, this mechanism of 
immune complex sampling ensures the constant monitoring of 
sIgA-coated antigens present in the gut, including both pathogens 
and symbionts (103, 104). Through this process, new antigen-
specific IgA-secreting cells could be produced to allow a better 
exclusion of pathogens.

bacterial infection: The Case of 
Salmonella
Salmonella enterica is an enteroinvasive bacterium typically 
acquired by ingestion of contaminated water or food. In the 
absence of dysbiosis, the primary invasion sites of Salmonella 
enterica serovar Typhimurium, the murine model of systemic 
salmonellosis, are PP of the distal ileum and cecal patches 
(105, 106). Through their fimbrial FimH adhesin, Salmonella 
Typhimurium are able to bind to the GP2 molecules expressed 
at the surface of M cells (17). Then, they use their Salmonella 
pathogenicity island 1 (SPI-1) type III secretion system to deliver 
effector proteins, which reorganize the cytoskeleton and allow 
the translocation of bacteria through M cells by inducing mem-
brane ruffling (17, 107, 108). However, even SPI-1 and FimH 
Salmonella mutants or GP2-deficient mice show, to some extent, 
bacterial translocation into PP (17, 102, 109–111). One possible 
mechanism for this residual penetration could be transcytosis 
mediated by M cells, as observed with inert particles (13, 112, 113).  
Alternatively, these bacteria could be directly sampled by TMD 
(Figure 6) (43). Salmonella Typhimurium indeed induce TMD 
that rapidly internalize bacteria before retracting back to the 
SED (43). As soon as 2 h after oral infection, bacteria are present 
in LysoDC extending dendrites into the FAE in absence of any 
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bacterial invasion of epithelial cells (Figure 6B). Interestingly, 
similar trans-M cell passages of uncharacterized leukocytes have 
been observed by electron microscopy using rabbit intestinal 
loop models of Streptococcus pneumoniae and Vibrio cholerae 
infection (114, 115). TMD are, therefore, infection-inducible 
and transient processes, which allow a fast M cell-regulated 
uptake of luminal material by immunocompetent cells. Such 
mechanism of sampling may notably avoid risks of massive 
penetration by pathogens. A typical feature of TMD formation 
is the appearance of a circular hole at the M cell apical mem-
brane (Figure 6C). Interestingly, correlative scanning electron 
microscopy studies of PP in mouse intestinal loop infected with 
SPI-1 Salmonella mutants, which are unable to induce epithelial 
cell apical membrane ruffling, have highlighted the formation 
of membrane protrusions above M cell surface circular holes 
(Figure 6D) (109, 110). Therefore, these protrusions, which do 
not express the M cell marker UEA-I but bind bacteria, are likely 
TMD.

Once translocated by M cells or internalized by TMD, 
Salmonella Typhimurium are predominantly found in subepi-
thelial lysozyme-expressing cells, i.e., TIM-4− LysoMac and/or 
LysoDC (Table 2) (42). Importantly, these phagocytes express 
genes involved in innate defense against Salmonella (39). These 
genes notably include Naip1, Naip2, and Naip5, which encode 
cytosolic receptors for the needle and inner rod proteins of 
the type III secretion system and for flagellin, respectively 
(Figure  5C) (116). Upon recognition of their ligands, NAIP 
proteins co-oligomerize with the adaptor NLRC4 to form an 
inflammasome complex and to recruit and activate caspase-1, 
which in turn process IL-1β and IL-18 into their active form. 
Interestingly, monocyte-derived cells express high levels of Il1b 
and Il18, indicating that, upon inflammasome activation, they 
may secrete large amounts of these pro-inflammatory cytokines 
(Figure 5C). Despite the expression of all these defense genes, 
it is currently unknown whether TIM-4− LysoMac and/or 
LysoDC are able to kill internalized Salmonella and die from 
pyroptosis upon inflammasome activation or whether bacteria 
have evolved strategies to survive, replicate inside, and kill these 
phagocytes.

Invasion of PP by Salmonella also induces the CCR6-
dependent recruitment of CD11c+ cells in the SED and the 
FAE, probably through the release of CCL20 by the latter (117).  
As men tioned above, CCL20 is indeed specifically expressed by 
the FAE, thanks to its contact with RANKL-producing stromal 
cells (14). Among PP CD11c+ phagocytes, CCR6 expression is 
restricted to cDC2, and more specifically, DN cDC2 (40, 118). 
Thus, Salmonella induce the recruitment of DN cDC2 in the SED 
and the FAE. CCR6 expression also promotes the activation of 
Salmonella-specific T cells upon infection (117). Whether this 
activation relies on the cooperation between monocyte-derived 
cells that internalize bacteria and DN cDC2, which are recruited 
to the SED, remains to establish. Interestingly, upon inflamma-
some activation, pyroptosis of monocyte-derived cells could 
lead to the release of bacterial antigens and presentation of the 
latter to T cells by cDC2 as demonstrated in in vitro models using 
mouse bone marrow-derived DC and MF (119). However, since 
CCR6 is expressed by many other PP immune cell types and 

is involved in many cellular processes such as B cell migration 
in the SED and M cell differentiation, it remains to establish 
whether CCR6+ DN cDC2 are directly involved in activation of 
Salmonella-specific T cells upon infection (90, 118, 120–122).

viral infection: Reovirus and Norovirus
Reovirus enters the host through intestinal M cells and lack of  
M cells prevents from productive infection (18, 23, 123). 
Similarly, norovirus infection is reduced in M cell-deficient 
mice (23). Thus, M cells represent preferential entry sites for 
viruses, in addition to enteropathogenic bacteria. Although 
noroviruses have a tropism for DC and MF, their precise target 
following transport through M cells is currently unknown  
(124, 125). Unlike norovirus, reovirus preferentially replicates 
within the FAE (126). Interestingly, CD11c+ cells of the SED 
internalize reovirus-infected apoptotic FAE cells (127). As men-
tioned above, lysozyme-expressing CD11c+ cells, i.e., LysoDC 
and TIM-4− LysoMac, internalize apoptotic FAE cells (Table 2), 
sug gesting their involvement in apoptotic epithelial cell- 
derived viral antigen handling (42). Importantly, PP CD11c+ 
cells from infected mice are able to process and present viral 
antigens from apoptotic cells to activate reovirus-primed T cells 
(127). Finally, initiation of an anti-reovirus immune response 
characterized by the production of virus-specific sIgA and 
cytotoxic T cells occurs in PP.

Prion infection
Infectious prions are proteins with an abnormal conformation, 
which, upon conversion of the normally folded endogenous 
cellular prion protein and spreading to the central nervous 
system, lead to neurodegenerative diseases. Natural infection 
occurs mainly by oral consumption of prion-contaminated food. 
After oral exposure, uptake of infectious prions by M cells and 
their accumulation and replication upon follicular DCs in small 
intestine PP are essential for the efficient spread of disease to the 
brain (128, 129). CD11c+ cells are also required for the early stage 
of PP infection (130). In the SED, infectious prions are located in 
cells enriched for ferritin and LAMP1 but not MHCII (131). To 
better characterize these subepithelial phagocytes, we examined 
the expression of ferritin and LAMP1 transcripts in the gene 
expression database of dome phagocytes. We found that these 
transcripts are enriched in LysoDC and LysoMac as compared to 
cDC (Figure 5D). We also confirmed by immunostaining of PP 
sections the increased expression of ferritin and LAMP1 inside 
subepithelial LysoDC and LysoMac (CD11c+CX3CR1+ cells) as 
compared to other cells (Figure 5D). Since LysoDC express high 
levels of MHCII, this rather supports a role of TIM-4− LysoMac 
in the transmission of infectious prion (Table  2). Another 
population of infectious prion-loaded CD11b+ phagocytes is 
located in the subfollicular area of PP (132). These subfollicular 
phagocytes are absent from uninfected animals, which suggests 
that TIM-4− LysoMac could migrate from the SED to this sub-
follicular area upon infection. Interestingly, CXCR5 expression 
deletion in CD11c+ cells delays accumulation of infectious prion 
upon follicular DC and impedes oral prion disease pathogen-
esis (133). This suggests that CXCR5 could allow migration of 
CD11c+ phagocytes from the SED to the follicle or subfollicular 
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area, which would promote spreading of infectious prion to fol-
licular DC. However, when we interrogated the gene expression 
database of dome phagocytes, we did not find significant CXCR5 
expression in any CD11c+ phagocytes. Therefore, identity of 
CD11c+CXCR5+ cells in PP as well as the mechanism of transfer 
of infectious prion from TIM-4− LysoMac to follicular DC 
remain pending issues.

behavior of PP Phagocytes upon infection
Our knowledge on the alteration induced by pathogens on PP 
phagocyte populations is scarce. What we know relies mainly 
on stimulation of PP with pathogen-derived compounds or 
mimetics. Thus, the cholera toxin induces the migration of 
CD11c+ cells into the FAE. Several TLR ligands induce similar 
CD11c+ cell relocation (112, 134–136). This is in line with the 
recruitment of DN cDC2 and formation of TMD observed 
shortly after Salmonella infection (43, 117). Thus, the first 
event that occurs upon pathogen detection is an increase of the 
sampling activity by recruitment in the FAE of both DN cDC2 
and LysoDC. Then, SED-located CD11c+ cells are thought to 
migrate from the SED to the IFR in order to prime naïve T cells. 
Microsphere-loaded CD11c+ cells usually located in the SED 
are indeed observed in the IFR after cholera toxin or Salmonella 
Typhimurium-induced stimulation (137). Moreover, systemic 
injection of soluble Toxoplasma gondii tachyzoite antigen leads 
to a loss of CD11c+CD11b+ cells in the SED combined with the 
recruitment of CD11c+CD11b+ cells in the IFR (37). Actually, 
all activated dome cDC are located in the IFR as exemplified by 
their specific expression of CD83, CD86, CD205, CCL22, and 
CCR7 (40). Finally, the number of interfollicular cDC increase 
in the IFR of R848-fed animals (40, 138). However, this is at 
least in part due to interfollicular cDC1 number increase and 
to DAV cDC2 recruitment through a TNF-dependent pathway 
(40). The respective contribution of DAV and SED cDC2 to the 
migratory pool of interfollicular cDC is currently unknown, 
as well as their role in the induction of the mucosal immune 
response. Nevertheless, DAV and SED cDC recruitment in the 
IFR upon stimulation may allow in a single region the pres-
entation of antigens sampled both in DAV and in SED. Since 
uptake of pathogens is facilitated in the FAE as compared to 
villous epithelium (11, 25, 42, 43), such mechanism of antigen 
sorting could help the mucosal immune system to discriminate 

between innocuous and harmful matters. Whether other stimuli 
than R848 induce similar recruitment of DAV cDC in the IFR 
is, however, currently unknown. If so, the current model of PP 
phagocyte activation will have to be modified to include DAV 
cDC as an integral part of the process.

CONClUDiNg ReMARKS

Although PP phagocytes are now well characterized, many 
efforts have to be done in order to understand the role of each 
phagocyte population in the mucosal immune response initiation 
during enteric infection. Importantly, to assess carefully these 
functions, a convenient and well-established panel of markers 
should be used in the different research laboratories in order to 
clearly identify each subset and avoid confusion between them. 
Here, we propose two panels of markers, one for microscopy 
and one for flow cytometry, which allow distinguishing each PP 
subset including DAV cDC and DAV MF (Table 1). These panels 
undoubtedly identify each subset of PP phagocytes and in the 
future should help clarify their functions in the initiation of the 
mucosal immune response.
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