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The intestinal epithelial cells serve essential roles in maintaining intestinal homeostasis, 
which relies on appropriate endoplasmic reticulum (ER) function for proper protein fold-
ing, modification, and secretion. Exogenous or endogenous risk factors with an ability to 
disturb the ER function can impair the intestinal barrier function and activate inflamma-
tory responses in the host. The last decade has witnessed considerable progress in the 
understanding of the functional role of ER stress and unfolded protein response (UPR) 
in the gut homeostasis and its significant contribution to the pathogenesis of inflamma-
tory bowel disease (IBD). Herein, we review recent evidence supporting the viewpoint 
that deregulation of ER stress and UPR signaling in the intestinal epithelium, including 
the absorptive cells, Paneth cells, goblet cells, and enteroendocrine cells, mediates the 
action of genetic or environmental factors driving colitis in experimental animals and IBD 
patients. In addition, we highlight pharmacologic application of chaperones or small mol-
ecules that enhance protein folding and modification capacity or improve the function of  
the ER. These molecules represent potential therapeutic strategies in the prevention or 
treatment of IBD through restoring ER homeostasis in intestinal epithelial cells.

Keywords: intestinal epithelial cells, unfolded protein response, endoplasmic reticulum stress, immune response, 
intestinal bowel disease, colitis

iNTRODUCTiON

As the largest barrier that separates the mammalian host from the external environment, gas-
trointestinal epithelia, including Paneth cells, goblet cells, enteroendocrine cells, and absorptive 
enterocytes, are critical factors that influence the intestinal homeostasis (1). Specifically, Paneth 
cells produce and secrete various antimicrobial peptides, which in turn regulate the composition 
of the intestinal microbiota and the ability to withstand intestinal pathogens (2, 3). Goblet cells are 
responsible for production of mucins, the predominant component of the intestinal mucus layer 
that prevents direct contact of luminal contents with epithelial cells (2, 4). The main function of 
enteroendocrine cells is to produce and secrete peptide hormones that modulate the motility of 
the digestive tract and metabolism. The absorptive epithelial cells are mainly associated with the 
secretion of a large number of cytokines and chemokines, which can regulate the composition of 
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the commensal microbiota and the host immune responses (5). 
Intestinal homeostasis is primarily determined by the appropriate 
function of the intestinal epithelial cells. Consistently, dysfunc-
tion of intestinal epithelium is associated with the development 
of various gastrointestinal disorders, such as irritable bower 
syndrome, inflammatory bowel disease (IBD), celiac disease,  
and mucosal disease (1, 5, 6).

Inflammatory bowel disease, a chronic inflammatory dis-
order that is mainly composed of Crohn’s disease (CD) and 
ulcerative colitis (UC), is characterized by abdominal pain, 
diarrhea, and bloody stools (7–9). Despite well-defined clinical 
manifestations, the etiology of IBD remains largely unknown. It 
is generally believed that IBD is a multifactorial gastrointestinal 
disorder in which various factors, such as genetic factors, intes-
tinal microbiota, host immune responses, and environmental 
factors are involved (8, 10). Recent studies have shown that 
endoplasmic reticulum (ER) stress and the unfolded protein 
response (UPR) are critical factors associated with susceptibility 
to IBD and intestinal homeostasis (11, 12). The effect of ER stress 
on the pathogenesis of IBD is majorly mediated by impairing 
the mucosal barrier function, regulating innate or adaptive 
immune response of the host cells, and modulating the intestinal 
microbiota (13, 14). These findings link ER and IBD, therefore 
advancing our understanding of IBD pathogenesis and propos-
ing novel therapeutic strategies by restoring ER function in intes-
tinal epithelial cells. Herein, we will review the functional roles 
of ER in the intestinal homeostasis, and how this homeostasis is 
impaired by genetic or environmental factors and contributes to 
susceptibility to IBD. Potential therapeutic interventions target-
ing ER stress signaling are also reviewed.

THe eR AND UPR SiGNALiNG

The ER is the major site for the synthesis and folding of membrane 
and secretory proteins (13, 15). In addition, the ER is associated 
with lipid biosynthesis, energy metabolism, and homeostasis of 
intracellular Ca2+ (12). Impairment of the ER function causes 
a cellular condition known as ER stress (16). Mammalian 
cells have evolved a series of signal transduction pathways to 
eliminate the deleterious effects, which are collectively termed 
as the UPR. Activation of UPR is an adaptive response for 
mammalian animals to restore ER homeostasis and survive 
the stressful conditions by blocking global mRNA translation, 
eliminating misfolded proteins by ER-associated protein degra-
dation (ERAD) signaling pathway, and enhancing the capacity 
for protein folding and modification (16, 17). However, severe or 
prolonged ER stress can activate cell death signaling to remove 
damaged cells (12, 18, 19).

In eukaryotic cells, UPR signaling pathways are mainly 
mediated by three protein sensors on the ER membrane: 
inositol-requiring transmembrane kinase/endonuclease 1 (IRE1), 
pancreatic ER eIF2α kinase (PERK), and activating transcrip-
tion factor 6 (ATF6) (20–22) (Figure  1). Under non-stressed 
conditions, all three transmembrane sensors are bound to the ER 
chaperone binding immunoglobulin protein (Bip, also known 
as glucose-regulated protein 78) in their intraluminal domains 
and are maintained in an inactive state (23–25). Upon ER stress, 

Bip dissociates from the luminal domains of the three protein 
sensors, therefore activating IRE1, PERK, or ATF6, and initiating 
UPR and downstream cascade signaling (26, 27).

iRe1 Signaling
Among the three protein sensors, IRE1 is the most evolutionar-
ily conserved ER stress transducer protein (20, 28). IRE1 exists 
in two structurally related isoforms, IRE1α, the ubiquitously 
expressed isoform, and IRE1β, which has been primarily identi-
fied in the intestinal epithelium of the gut and respiratory tract 
(29, 30). Upon sensing the misfolded or unfolded proteins, Bip 
protein dissociates from IRE1α and facilitates the activation of 
IRE1α through homodimerization and trans-autophosphoryl-
ation or other mechanisms (31, 32). Activated IRE1α uses its 
endoribonuclease activity to remove a 26-bp pair segment from 
an unspliced mRNA encoding the transcription factor X-box 
binding protein 1 (XBP1u), which in turn causes a shift in the 
reading frame and generates a spliced and functionally active 
isoform of XBP1 (XBP1s) (33, 34). XBP1s is a potent CREB/
ATF basic leucine zipper (bZIP) transcription factor that can 
induce the expression of genes involved in protein folding, 
secretion, maturation, the ERAD signaling and the synthesis 
of phospholipids (26, 35). Several lines of studies have shown 
that XBP1s is also implicated in various biological processes,  
such as lipid metabolism (36), pro-inflammatory cytokines 
synthesis (37), the hypoxia response signaling pathway (38), 
cellular differentiation (39), and the hexosamine biosynthetic 
pathway (40), indicating a critical role for IRE1-XBP1 UPR 
signaling and cellular response. Unlike XBP1s, XBP1u is a short- 
lived protein that lacks the transactivation domain. XBP1u 
inhibits the translocation of XBP1s from cytoplasm into the 
nucleus, therefore serving as a dominant-negative regulator to 
block the transactivation of XBP1 downstream targets under  
certain conditions (41–43). Recent studies have shown that 
IRE1α can target other mRNAs for degradation, therefore inhib-
iting the synthesis of nascent proteins through the regulated 
IRE1-dependent decay (19, 44, 45), indicating an additional 
level of regulation to cope with ER stress.

It should be noted that the functional role of IRE1α on 
various biological processes, such as proliferation, metabolism, 
inflammation, autophagy, and apoptosis, can be mediated in an 
XBP1-independent manner (46). First, IRE1α can bind to and 
activate TNFα receptor associated factor 2 in the cytoplasm, 
which in turn activates c-Jun N-terminal kinase or nuclear 
factor-κB (NF-κB), thus participating in inflammatory response 
or proapoptotic signaling in response to ER stress (12, 17, 
18). Second, IRE1α can directly modulate p38 MAPK and 
ERK1/2, two critical protein kinases related to stress response, 
indicating a link between UPR signaling and cellular response 
(47). Third, IRE1α has been reported to interact with the 
proapoptotic BCL-2 (B-cell lymphoma 2) family proteins, BAX  
(BCL-2-associated X protein), or BAK (BCL-2 antagonist/killer), 
therefore contributing to apoptotic cell death (48). In addition 
to transcription regulation and protein interactions, IRE1α can 
cause degradation of selective microRNA that normally represses 
translation of caspase-2, therefore leading to activation of the 
mitochondrial apoptosis pathway (49–51). More studies are 
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FiGURe 1 | Three signaling pathways of unfolded protein response (UPR). Under homeostatic conditions, immunoglobulin heavy chain-binding protein (Bip) binds 
and inhibits the three transmembrane proteins of UPR: the inositol-requiring transmembrane kinase/endonuclease 1 (IRE1), the pancreatic endoplasmic reticulum 
(ER) kinase-like ER kinase (PERK), and activating transcription factor 6 (ATF6). Under ER stress conditions, Bip dissociates from the three transmembrane proteins 
and binds to the misfolded or unfolded proteins in the ER, which activates IRE1, PERK, and ATF6 downstream signalings. Once released from Bip, IRE1 is activated 
through homodimerization and trans-autophosphorylation. The activated IRE1 slices the X-box binding protein (XBP1u) and generates a functionally active isoform 
of XBP1 (XBP1s). XBP1s is a transcription factor that modulates the expression of genes encoding ER chaperones, ER-associated protein degradation (ERAD) 
members, ER translocases, glycosylases, disulfide isomerases, and components involved in lipid biosynthesis. IRE1 also binds to and activates TNFα receptor 
associated factor 2 (TRAF2), which results in activations of c-Jun N-terminal kinase (JNK), therefore contributing to inflammatory, proapoptotic signaling in response 
to the ER stress. PERK is also activated by homodimerization and trans-autophosphorylation. Activated PERK phosphorylates the eukaryotic translation initiation 
factor 2 (eIF2α), thereby attenuating global protein synthesis and alleviating the burden on ER. However, the transcription factor ATF4 can bypass the inhibition and 
activate the expression of Chop, which is a master regulator of ER stress-induced apoptosis. After disassociation from ATF6. Bip moves to the Golgi apparatus, 
where it subsequently undergoes intramembrane proteolysis in its luminal domain. The released ATF6 fragment (ATF6f) translocates to the nucleus and regulates the 
expression XBP1, Bip, P58IPK, and Chop.
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required to elucidate how this epigenetic regulation is implicated 
in and contribute to intestinal homeostasis. In contrast to IRE1α, 
IRE1β has a broader endoribonuclease activity, which can lead  
to the degradation of a large array of transcripts (52). However, 
the underlying mechanisms are incompletely understood.

PeRK Signaling
PERK has structural similarities with IRE1 transmembrane pro-
tein (21, 53). Disengagement from Bip upon sensing misfolded 
or unfolded protein in the ER activates PERK by homodimeriza-
tion and trans-autophosphorylation (11, 54, 55). Activated PERK 

phosphorylates the α subunit of eukaryotic translation initiation 
factor 2 (eIF2α), a component of the translation initiation com-
plexes, therefore attenuating global protein synthesis and allevi-
ating the overload of misfolded proteins (53, 56). Interestingly, 
the phosphorylated eIF2α selectively enhances translation 
of ATF4, a transcription factor regulating the expression of 
genes implicated in protein folding, oxidative stress response, 
and ER stress-induced apoptosis (57, 58). CHOP (CCAAT/
enhancer-binding protein homologous protein, also known as 
GADD153) has been shown to be a critical mediator responsible 
for ER stress-induced cell death through different mechanisms 
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(19,  59). First, CHOP can suppress the antiapoptotic protein 
BCL-2 or enhance numerous proapoptotic proteins, such as Bim, 
telomere repeat binding factor 3, GADD34 (growth arrest and 
DNA damage 34), or death receptor 5 (60–62). Second, CHOP 
induces the transcriptional expression of ER oxidase 1α, which 
in turn resulted in generation of reactive oxygen species (ROS) 
and release of Ca2+ from the ER, thereby conferring to apoptosis 
(12, 18, 19). Third, CHOP can interact with ATF4 and activate 
genes involved in protein synthesis machinery, thus causing 
energy depletion and apoptosis in ER-stressed cells (63). In 
addition to inducing cell death, activation of the PERK pathway 
can activate antioxidant reactions to avoid accumulation of ROS 
in response to ER stress (64). This effect of PERK is mediated 
by ATF4-induced phosphorylation of nuclear factor-erythroid-
derived 2-related factor 2, which can activate enzymes with an 
ability to remove oxidants. These enzymes include NAD(P)
H-quinone oxidoreductase, heme oxygenase 1, and glutathione 
S-transferase (65, 66).

Besides PERK, eIF2α can be phosphorylated by other protein 
kinases, including PKR (double-stranded RNA activated protein 
kinase) (67), general control non-depressive kinase 2 (68), and 
heme-regulated inhibitor kinase (69). All the protein kinases 
have similar kinase catalytic domains, and therefore possess 
a capability to phosphorylate eIF2α at its Ser 51 residue to 
regulate protein synthesis (70). Because of the presence of dif-
ferent regulatory domains in the kinases, they can be activated 
by different stress stimuli (70). Despite the diversity of stress 
stimuli and activated protein kinases, these signaling cascades 
converge on the phosphorylation of eIF2α, indicating a criti-
cal functional role of eIF2α in determining cell fate decision.  
These biochemical roles of eIF2α have been highlighted in 
several review papers (70, 71). Additional studies are needed 
to elucidate how the kinases-activate eIF2α interacts with ER 
stress signaling and contribute to cell survival and apoptosis 
under specific conditions.

Importantly, eIF2α can be dephosphorylated by protein 
phosphatase, such as protein phosphatase 1 regulatory subunit 
15A (growth-arrest DNA damage-inducible protein 34, also 
known as GADD34) and subunit 15B (known as CReP) (72–74), 
thus forming a negative feedback regulation on PERK–eIF2α 
signaling. All these data indicate that activation of eIF2α acts as 
a molecular switch either to induce cell death or to promote cell 
survival by attenuating protein synthesis in a context-dependent 
manner (63).

ATF6 Signaling
Activating transcription factor 6 is a key transcription factor 
that helps intestinal epithelial cells cope with ER stress (22). 
Two homologous ATF6 proteins, such as ATF6α and ATF6β, 
have been identified in mammalian cells (75). Upon sensing the 
misfolded or unfolded proteins in the ER, ATF6 that is released 
from Bip migrates from the ER to the Golgi apparatus, where 
it subsequently undergoes cleavage by site-1 protease (S1P) and 
site-2 protease (S2P) in its luminal domain and transmembrane 
region, respectively, leading to the release of the cytosolic 
domain of ATF6, ATF6 fragment (ATF6f) (22, 24). ATF6f then 
translocates to the nucleus to bind DNA and transcriptionally 

upregulates target genes involved in protein folding, or ERAD to 
restore ER homeostasis or induce cell death in response to severe 
or prolonged ER stress (76–79).

In addition to the canonical ER membrane-bound proteins, 
IRE1, PERK, and ATF6 as abovementioned, novel types of ER 
stress transducers sharing a region of high sequence similarity 
with ATF6 have been identified (80, 81). These proteins possess a 
transmembrane domain, which allows them to associate with the 
ER, and have a transactivation domain and a basic leucine zip-
per (bZIP) domain. They are collectively known as old astrocyte 
specifically induced substance (OASIS) family members, which 
consist of CREB3L1/OASIS (82), CREB3L4/CREBH (RE-Bip 
H) (83), CREB3L2/BBF2H7 (box B-binding factor 2 human 
homolog on chromosome 7) (84), AIbZIP/Tisp40/CREB3L4/
CREB4 (cyclic AMP responsive element Bip 4) (85), and Luman/
LZIP/CREB3 (86, 87). Most of these ATF6-related bZip factors 
are processed at the Golgi as described for ATF6, but their func-
tions are tissue specific due to the unique cell or tissue specific 
expression patterns of these transducers (88, 89).

iNTeSTiNAL ePiTHeLiAL CeLL  
AND eR STReSS iN iBD

The gut epithelial cells are constantly exposed to a complex micro-
environment involving intestinal microbiota, antigens, dietary 
metabolites, and bacterial toxins (90). Among the epithelial cells, 
enterocytes are the major cell types that are replaced in a short 
period, which require a high metabolic rate and biosynthesis of 
large amounts of proteins, cytokines, and small peptides. As the 
major secretory cells, goblet cells and Paneth cells can produce 
and secret mucin glycoproteins which are the major compo-
nents of mucus that separate the luminal microbial flora from 
the intestinal epithelium and lubricates the epithelium (4, 91).  
They can also secrete defensins, lysozymes, antimicrobial lectins, 
collectins, and smaller amounts of MUC2 (2, 92). Under physi-
ological conditions, the secretion of antimicrobial peptides and 
mucins with large numbers of disulfide bonds and/or homo-
oligomerization can be maintained in homeostasis due to appro-
priate ER function in intestinal epithelium (90, 92). In response 
to environmental factors, such as pathogenic bacteria infection, 
the production of MUC2 or defensins can be stimulated in the 
secretory cells (93, 94), thus exerting a significant protein folding 
and modification burden on ER in IECs. This burden and the 
complexity of the intestinal environment may pose particular 
challenges to the capacity of proteins for folding in intestinal epi-
thelial cells and results in ER stress and activation of UPR survival 
signaling or induction of cell death if the ER homeostasis could 
not restored (95). In addition, ER stress in intestinal epithelial cells 
is associated with activation of host immune response and intes-
tinal dysbiosis, which are critical factors implicated in the patho-
genesis of intestinal diseases including IBD and mucosal disease 
(14, 90, 96). Importantly, a genetic deficiency of genes involved 
in UPR results in higher susceptibility to IBD due to decreased 
capacity to reduce the concentrations of unfolded proteins in the 
ER, as well as overactivated immune response in epithelial cells  
(55, 97–99) (Table 1).
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TABLe 1 | Role of endoplasmic reticulum stress and secretion-related genes  
in inflammatory bowel disease.

Gene Disease Possible mechanism Reference

IRE1α Spontaneous colitis Increased CHOP-related 
apoptosis

(103)

Xbp1 Spontaneous enteritis Increased CHOP-related 
apoptosis

(99)

P58IPK Dextran sodium sulfate 
(DSS)-induced colitis

Increased CHOP-related 
apoptosis

(11)

Atf6α DSS-induced colitis Decreased binding  
protein (Bip) expression

(11)

Mbtps1 DSS-induced colitis Decreased Bip and  
Grp94 expression

(123)

Muc2 Spontaneous colitis Nuclear factor-κB and  
apoptosis activation

(127)

Agr2 Severe ileitis and colitis Increased CHOP-related 
apoptosis

(55)
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UPR Regulators and iBD Pathogenesis
IRE1/XBP1 Signaling in IBD
Initial evidence linking IRE1/XBP1 signaling to intestinal 
inflam mation came from a study showing that genetic deletion 
of IRE1β increased the protein level of Bip in the colonic mucosa 
and susceptibility to dextran sodium sulfate (DSS), a well-known 
inducer of experimental colitis in mice (30). Further study has 
shown that IRE1β knockout mice exhibit impaired intestinal 
barrier function and aberrant accumulation of mucin due to the 
deficiency of the negative feedback control on mucin by IRE1β 
in goblet cells (100). Similarly, genetic deletion of IRE1α in IECs 
leads to spontaneous colitis, which is accompanied by loss of 
goblet cells and dysregulated epithelial barrier function (101). 
Moreover, IRE1α−/− mice are more susceptible to DSS-induced 
colitis and ER stress-related apoptosis (101). XBP1 is a critical 
effector transcription factor of IRE1 signaling in response to ER 
stress and unfolded protein accumulation. It is not a surprise that 
the XBP1 gene on chromosome 22q12 has been linked to IBD for 
more than two decades (102, 103). The deep sequencing of Xbp1 
and its promoter revealed more single nucleotide polymorphisms 
(SNPs) in both UC and CD patients than in healthy controls (97). 
These SNPs in Xbp1 were found to be associated with decreased 
transactivation of XBP1-regulated UPR target genes and increased 
inflammatory response. The functional role for XBP1 in IBD was 
further validated in Xbp1−/−(IEC) (genetic depletion of Xbp1 in the 
epithelium of the small and large intestines) mice, as evidenced 
by spontaneous development of intestinal inflammation and 
increased sensitivity to DSS (97). Moreover, Xbp1−/−(IEC) mice 
have leaky intestinal barrier, increased translocation of invading 
pathogens to the liver and other tissues, indicating an essential 
role of Xbp1 in the intestinal homeostasis and host immune 
response, which might act in concert and contribute to IBD (97).

PERK/CHOP Signaling in IBD
CHOP is a transcription factor implicated in both apoptosis and 
inflammatory responses (104). Elevated expression of CHOP 
has been observed in the intestinal epithelium of IBD patients 
and mice with deficiency in Xbp1, Atf6α, or P58IPK (11, 97). 
Park et al. reported that ER stress-activated CHOP can suppress 

peroxisome proliferator-activated receptor γ, a negative regula-
tor of NF-κB, therefore resulting in NF-κB activation (105). 
Activated NF-κB translocates into the nucleus and enhanced 
the production of interleukin-8, a pro-inflammatory cytokine 
in intestinal epithelium, which in turn contributes to intestinal 
dysfunction and IBD (105). In addition to a regulatory effect on 
cytokines, CHOP can promote the infiltration of macrophages, 
induce ROS and IL-1β production, or enhance apoptosis of 
epithelial cells, thus leading to the development of colitis (106).

In addition to IL-8 and IL-1β, interleukin 23 (IL-23) has been 
identified as a critical cytokine in the pathogenesis of IBD (107). 
Polymorphisms in IL-23 receptor (IL-23R) have been reported in 
both CD and UC patients (108). Further study shows that IBD-
affected individuals have an increased concentration of IL-23 in 
the inflamed epithelium, indicating a potential role for IL-23 in 
intestinal immune response (109). The pro-inflammatory activ-
ity of IL-23 has mostly been linked to its effect on Th17  cells, 
a population of T  cells characterized by the production of the 
inflammatory cytokine interleukin 17 (IL-17) (110). The func-
tional role for the IL-23/IL-17 axis in intestinal inflammation has 
been validated in various animal models (110, 111). In addition, 
IL-23 can also regulate the activity of regulatory T cells, therefore 
modulating the host immune system (112–116). In a recent 
study, the CHOP protein has been reported to enhance TLR-
induced IL-23 production by enhancing the binding to the IL-23 
p19 (Il23A) promoter in ER-stressed myeloid cells (117). Further 
study is needed to explore whether this transcriptional regula-
tion is implicated in and contributes to intestinal inflammation.

ATF6 Signaling in IBD
An appropriate function of ATF6α is required to survive chemical-
induced ER stress in mice (118). This effect of ATF6α is mediated 
by transcriptional activation of ER chaperone genes, including 
Bip, Grp94, and P58IPK (64, 119, 120). ATF6α knockout (Atf6α−/−) 
mice display reduced expression of ER chaperone genes, and 
increased expression of a proapoptotic protein CHOP in colonic 
epithelium (11). P58IPK knockout mice have a decreased number 
of goblet cells, increased inflammatory cell infiltration, and 
more severe mucosal damage upon DSS challenge (11). These 
data highlight the requirement of ATF6 signaling for intestinal 
barrier function and inflammatory response.

The functional role of ATF6 signaling pathway in the patho-
genesis of IBD has been revealed by the using of mice with 
mutations in Mbtps1, a gene encoding ATF6 activator S1P (121). 
These mice exhibited decreased protein levels of Bip, Grp94, 
and impaired ATF6-driven UPR to DSS administration (121). It 
should be noted that S1P can also activate OASIS, a bZIP tran-
scription factor implicated in colitis by interfering with ER stress 
signaling (122). Moreover, Oasis−/− mice have been reported to 
have similar phenotypes to those observed in ATF6 knockout 
mice, including impaired goblet cell function (123), and elevated 
apoptotic proteins in IECs (124). It is currently unknown which 
signaling pathway is a major contributor to the development of 
chemical-induced colitis in Mbtps1 deficiency mice. Additional 
studies with genetically engineered mice are needed to answer 
this question and a potential functional overlap between ATF6 
and OASIS signaling.
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Protein Secretion-Related Factors in iBD
Paneth cells and goblet cells in the gastrointestinal tract can pro-
duce large amounts of proteins, which undergo protein folding 
and posttranslational modifications before being secreted from 
the cells (90, 92). This feature of secretory cells requires a fine 
monitoring and management of the ER to avoid the accumulation 
of unfolded or misfolded proteins. Both clinical and experimental 
animal studies show that impaired UPR is associated with devel-
opment of colitis in humans and animals as abovementioned (11, 
100, 123). Several lines of studies show that dysfunction of genes 
involved in protein secretion, such as Anterior gradient 2 (Agr2) 
and MUC2, is associated with IBD through various mechanisms 
(98, 125).

Agr2 is an ER-resident protein expressed in secretory IECs 
such as goblet, Paneth, and enteroendocrine cells in the small 
intestine (126). This protein responsible for the formation of 
correctly arranged disulfide bonds in mature proteins (127, 
128). By using inducible Agr2−/− mice, Fang et  al. showed that 
deletion of Agr2 is associated with decreased goblet cells and 
MUC2, dramatic expansion of the Paneth cell compartment, 
abnormal Paneth cell localization, elevated ER stress, and severe 
colitis (125). This finding, along with previous observation that 
both CD and UC patients have decreased AGR2 (129), indicates 
that AGR2 is essential for intestinal homeostasis. Deficiency of 
this gene impairs the secretion of proteins in intestinal epithelial 
cells and activates uncontrolled immune response, ultimately 
contributing to IBD.

MUC2 is the major component of mucin that goblet cells 
secrete into the intestinal lumen (130, 131). An appropriate secre-
tion of MUC2 requires extensive O-glycosylation of central mucin 
repeats and intra- and inter-chain disulfide bond formation in 
the cysteine-rich N and C-terminal domains within the ER (132). 
Mutations in the Muc2 gene lead to ER stress, inflammation, and 
spontaneously colitis due to accumulation of MUC2 precursor in 
the ER and reduction in mucin secretion (98). Similar observa-
tions have been described in UC patients (131, 133). Interestingly, 
administration of interleukin-10 (IL-10), an anti-inflammatory 
cytokine, has been reported to attenuate intestinal inflammation 
and enhance mucin production in ER-stressed epithelial cells 
through currently unknown mechanisms (99).

environmental Factors and eR  
Stress Signaling in iBD
Besides the genetic factors and secretion-related proteins, 
various environmental factors have been implicated in ER 
stress signaling and contribute to intestinal inflammation in 
IBD (99, 134–136). Several inflammatory mediators have been 
shown to be able to influence ER stress response. For example, 
anti-inflammatory cytokine IL-10 can modulate ATF6 nuclear 
recruitment to the Bip promoter, therefore blocking ER stress 
(99). This finding provides a plausible explanation for the devel-
opment of colitis in IL-10 knockout mice (137). By contrast, 
pro-inflammatory cytokine tumor necrosis factor α (TNF-α)  
can enhance ER stress and UPR signaling by inducing ROS 
production and its accumulation in the ER (134). Moreover, 
increased expression of inflammatory cytokines, such as IL-1β, 

TNF-α, and IFN-γ, has been observed in aberrant mucin assem-
bly induced colitis mice (98). These findings highlight a role of 
immune response in the development of experimental colitis or 
IBD. More studies are required to uncover how the antagonistic 
cytokines are finely coordinated under physiological conditions 
and ER-stressed conditions.

Intestinal microbiota is considered to be another environ-
mental factor highly correlated with IBD (138, 139). Intestinal 
microbiota is well known to produce inflammatory molecules 
by regulating expression of genes involved in immune response, 
which in turn triggers ER stress (55). In addition, the effect of 
microbiota on ER stress can also be mediated by various microbial 
metabolites. For example, trierixin, a macrocyclic lactam derived 
from Streptomyces sp., has been identified as an inhibitor of XBP1 
splicing (135). Interestingly, two structurally related compounds, 
such as mycotrienin II and trienomycin A, were isolated from 
the culture broth of a trierixin-producing strain and reported to 
inhibit the induction of XBP1 (135). These compounds might 
be potential pharmacological tools for the functional analysis of 
XBP1 signaling in response to ER stress. However, key enzymes 
involved in the production of these metabolites with an abil-
ity to suppress XBP1, as well as their effects on the intestinal 
homeostasis, are still largely unknown. Paton et al. reported that 
oral infection with AB5 a cytotoxin-producing Escherichia coli 
resulted in pathologic UPR in mice (136). Further studies showed 
that the A subunit of AB5 cytotoxin specifically cleaved Bip by the 
serine protease activity and activated it in eukaryotic cells (140). 
Notably, proteins with significant sequence homology to the A 
and B subunits of this cytotoxin have been reported in a wide 
variety of microorganisms (136), which can interfere with the ER 
stress-related signaling cascade and inflammatory responses in 
the IECs.

eR STReSS AND UPR iN iBD 
THeRAPeUTiCS

Therapies for IBD are faced with extraordinary challenges due 
to limited understanding of its etiology and pathogenesis (141). 
Experimental and clinical data have shown that deregulated ER 
stress signaling in intestinal epithelial cells is associated with 
development of UC or CD. In this scenario, chemical drugs or 
small molecules with the ability to reduce unfolded proteins or 
enhance the capacity of ER for protein folding and modification 
might be potential therapeutic strategies to prevent or treat IBD. 
Tauroursodeoxycholic acid (TUDCA), a bile acid derivative, 
and 4-phenylburyrate have been reported to enhance protein 
folding, ameliorate ER stress, and enhance insulin sensitivity in 
liver and muscle of obese patients (142–145). In a recent study, 
Cao et  al. showed that oral administration of these two com-
pounds dramatically alleviated DSS-induced inflammation and 
colitis via abolishing ER stress signaling in colonic IECs (11). A 
structure–function analysis revealed that ursodeoxycholic acid, 
the unconjugated form of TUDCA, is 10 times more effective in 
alleviating ER stress than TUDCA in IECs (146), and might be 
a potential drug to alleviate ER stress related colitis. It should 
be noted that this result is based on cell free assay; in  vivo 
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studies involving animals and clinical patients are required to 
validate this preliminary result. In another study, vaticanol B, a 
resveratrol tetramer, has been shown to suppress the induction 
of Bip, CHOP, and the secretion of TNF-α, indicating a ben-
eficial effect by improving the ER function and maintaining the 
membrane integrity of the ER (147). In addition, fexofenadine, 
an antihistamine agent for allergic rhinitis and urticaria (148), 
has been found to prevent DSS-induced colitis by blocking 
ER stress-induced eIF2α and inhibiting NF-κB signaling in 
IECs through a histone receptor-independent signaling (149). 
Salubrinal, a specific inhibitor of eIF2α dephosphorylation, was 
found to ameliorate experimental colitis by boosting adaptive 
UPR signaling Bip, ATF4, and heat-shock protein 70 (150, 151). 
In addition to the chemical chaperones, nutritional interventions 
have gained increasing attention due to their regulatory effects 
on expression of genes implicated in ER stress. Glutamine, an 
abundant amino acid in tissues, has been reported to ameliorate 
2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis by 
abrogating ER stress, reducing oxidative injury, attenuating 
apoptosis and the inflammatory response in colonic epithelial 
cell, and highlighting a potential nutritional strategy to restore 
ER function and improve intestinal homeostasis (152). In our 
recent study, we found that glutamine can regulate tight junction 
protein permeability through calcium/calmodulin-dependent 
kinase kinase 2 signaling in intestinal porcine epithelial cells 
(153). These findings suggest that supplementation with glu-
tamine might be a promising adjuvant in IBD therapeutics. 
Considering that most of these data are results from in vitro or 
animal models. Further studies for the underlying mechanisms 
and clinical efficacy are warranted before these molecules can be 
used as a novel therapeutic option in IBD patients.

CONCLUSiON

Endoplasmic reticulum stress and related UPR signaling are 
implicated in and contribute to the initiation or progression 

of IBD. The last decade has witnessed considerable progress in 
the understanding of ER stress and UPR signaling in maintain-
ing intestinal homeostasis. Dysfunction of the ER triggered by 
various factors is associated with susceptibility to of CD and UC 
and impairment in intestinal barrier. Reestablishing intestinal 
homeostasis by correcting ER stress-related signaling network is 
emerging as a potential therapeutic target for IBD. Considering 
that protein folding, posttranslational modification and traffick-
ing are fundamental biological processes implicated in various 
physiological and pathological processes, manipulation of ER 
stress signaling without causing severe side effects is a challenge 
that must be carefully considered before its recommendation for 
the treatment of IBD patients. IBD is a chronic and relapsing 
inflammatory condition of the gastrointestinal tract, in which 
genetic factors, environmental factors, as well as an interplay 
between intestinal microbiota and the host immune response, 
contribute to the pathogenesis of the disease. An ideal therapy 
for IBD that is tailored to an individual’s specific condition highly 
depends on a deep understanding of phenotype, natural history, 
and the pathogenesis of this disease.
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