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Systemic lupus erythematosus (SLE) is a complex autoimmune disease involving injuries 
in multiple organs and systems. Exaggerated inflammatory responses are characterized 
as end-organ damage in patients with SLE. Although the explicit pathogenesis of SLE 
remains unclear, increasing evidence suggests that dysregulation of cytokine signals 
contributes to the progression of SLE through the Janus kinase/signal transducer and 
activator of transcription (STAT) signaling pathway. Activated STAT proteins translocate 
to the cell nucleus and induce transcription of target genes, which regulate downstream 
cytokine production and inflammatory cell infiltration. The suppressor of cytokine signal-
ing 1 (SOCS1) is considered as a classical inhibitor of cytokine signaling. Recent studies 
have demonstrated that SOCS1 expression is decreased in patients with SLE and in 
murine lupus models, and this negatively correlates with the magnitude of inflammation. 
Dysregulation of SOCS1 signals participates in various pathological processes of SLE 
such as hematologic abnormalities and autoantibody generation. Lupus nephritis is one 
of the most serious complications of SLE, and it correlates with suppressed SOCS1 
signals in renal tissues. Moreover, SOCS1 insufficiency affects the function of several 
other organs, including skin, central nervous system, liver, and lungs. Therefore, SOCS1 
aberrancy contributes to the development of both systemic and local inflammation in 
SLE patients. In this review, we discuss recent studies regarding the roles of SOCS1 in 
the pathogenesis of SLE and its therapeutic implications.

Keywords: suppressor of cytokine signaling 1, systemic lupus erythematosus, Janus kinase/signal transducer 
and activator of transcription pathway, cytokine, inflammation, lupus nephritis

iNTRODUCTiON

As a complex autoimmune disease, systemic lupus erythematosus (SLE) is characterized by the 
presence of autoantibodies against self-antigens, including double-stranded (ds) DNA, as well as 
the risk of autoantibody-induced end-organ damage (1). Hematopoietic abnormalities, such as 
hyperactivation of T and B cells and overproduction of autoantibodies, exist in patients with SLE 
(2). Pathogenic autoantibodies may form immune complexes or directly deposit in the glomerular 
capillary, thus inciting irreversible glomerulonephritis, which is one of the most common complica-
tions in patients with SLE (3). In reality, numerous factors are implicated in the onset or progression 
of SLE. It is generally accepted that the deficiency in the clearance of apoptotic cells significantly 
contributes to the exposure of self-antigens, as well as subsequent autoimmune processes, such as 
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autoantibody production and inflammatory responses (4). Albeit 
the precise mechanisms underlying SLE are yet to be elucidated, 
emerging evidences indicate that the abnormal expression of 
proinflammatory cytokines plays an important role in local 
inflammation and in the development of end-organ injuries in 
SLE (5).

Cytokines are central in both innate and adaptive immu-
nity. They are mostly synthesized by immune cells and in turn 
participate in the differentiation, maturation, and activation of 
diverse immune and hematopoietic cells. Abnormalities of vari-
ous cytokines have been identified in patients with SLE and in 
murine lupus models (5). Moreover, it was found that in sera of 
SLE patients, the level of transforming growth factor (TGF)-β 
is decreased; whereas certain proinflammatory cytokines, such 
as interferon (IFN)-α, IFN-γ, interleukin (IL)-6, IL-12, IL-17, 
IL-23, and B-cell activating factor (BAFF), are all upregulated 
accordingly (6). The dysregulation of these cytokines mirrors the 
imbalance in diverse immune cell subsets, such as T helper (Th) 
1, Th2, Th17, and T regulatory (Treg) cells. Many cytokines can 
activate the Janus kinase 2 (JAK2)/signal transducer and activator 
of transcription 1 (STAT1) signaling pathway. Upon ligand bind-
ing, the activated JAK2 phosphorylates the cytoplasmic domains 
of cognate receptors, thus providing docking sites for STAT1 (7). 
Furthermore, STAT1 can also phosphorylate at the tyrosine site 
and form dimers before translocating into the nucleus, where the 
dimers activate target genes that are related to the development, 
differentiation, and survival of hematopoietic cells (8). The sup-
pressor of cytokine signaling 1 (SOCS1) is an inhibitive factor 
induced by relevant cytokines, and it negatively regulates immune 
responses by suppressing the activity of JAK2 (8). Under normal 
conditions, the expression level of SOCS1 is minimal, but it can 
be rapidly upregulated in a feedback manner through the activa-
tion of JAK2/STAT1 signals (9, 10). As cytokine signaling ceases, 
SOCS1 is rapidly degraded (9). Therefore, SOCS1 is essential for 
maintaining immune homeostasis in local tissues.

Recent studies have demonstrated that SOCS1 participates in 
the pathogenesis of SLE (11, 12). The mRNA expression level of 
SOCS1 is significantly decreased in peripheral blood mononu-
clear cells of patients with SLE (11). Patients with active SLE have 
lower expression of SOCS1 mRNA as compared to patients with 
inactive SLE, hence indicating that mRNA expression of SOCS1 
is negatively correlated with lupus disease activity (11). SOCS1 
is also involved in other pathological processes of SLE includ-
ing activation of immune cells, production of proinflammatory 
factors, initiation of renal fibrosis, etc. (12). The upregulation of 
SOCS1 through alternative methods is beneficial to improve the 
conditions of SLE patients (12, 13). In this review, we summarized 
recent studies on the function of SOCS1 in the pathogenesis of 
SLE and elaborated its clinical significance and therapeutic 
implications.

THe STRUCTURAL BASiS OF SOCS1/
JAK2 iNTeRACTiON

The regulation of downstream signals by SOCS1 is triggered 
by the interaction between SOCS1-kinase inhibitory region 

(KIR) and JAK2 activation loop. Structurally, SOCS1 has an 
Src-homology-region 2 (SH2) with a central SH2 domain, 
an extended SH2 subdomain (ESS), and a KIR domain of 12 
amino acids (Figure  1A) (10). The central SH2 domain has 
the most conserved sequence of SOCS1 protein. Mutations in 
the phosphotyrosine-binding residue Arg105 to Lys (R105K) 
or Glu (R105E) and deletion of the central SH2 domain can 
induce loss of function of SOCS1 (14). The ESS, comprising 12 
residues, is essential for the interaction of SOCS1 with JAK2 (14). 
Substitution of conserved Ile68 with Glu (I68E) or Leu75 with 
Glu (L75E) in the ESS completely abolishes the binding of SOCS1 
to JAK2 (14). KIR is responsible for the high-affinity binding of 
SOCS1 to the tyrosine kinase domain of JAK2, which further 
activates the kinase and transduces signals (10).

Janus kinase 2 is constitutively associated with the proline-rich, 
membrane proximal regions of cognate cytokine receptors, which 
are ubiquitously expressed in mammalian cells (15). Structurally, 
JAK2 can be roughly divided into an amino-terminal region  
(N region), followed by a catalytically inactive kinase-like domain 
and a tyrosine kinase domain (15). The N region participates only 
in cytokine receptor recognition and association; and the kinase-
like domain of JAK2 is actually a pseudokinase domain that 
regulates only the catalytic activity of the tyrosine kinase domain, 
which is critical for the interaction of JAK2 with SOCS1 and for 
the catalytic activity of JAK2 as well (Figure 1B) (15). In humans, 
the amino acid sequence of autophosphorylation or activation 
loop in tyrosine kinase domain is 1001LPQDKEYYKVKEP, which 
is so called as pJAK2 (1001–1013) (16). pJAK2 has phosphoryl-
ated tyrosine 1007, which reflects the activation status of JAK2; 
and phosphorylation of this tyrosine leads to conformational 
changes that facilitate substrate binding (16). Moreover,  
structure–function studies have demonstrated that SOCS1 solely 
binds to phosphopeptides with phosphorylated tyrosine 1007 (14).

Kinase inhibitory region sequence is somehow similar to JAK2 
activation loop (8). Thus, KIR may act as a pseudosubstrate and 
mimic the activation region of JAK2 to prevent substrate bind-
ing at the catalytic cleft of JAK2 (14). Substitution mutations in 
KIR, such as phenylalanine at positions 56 or 59, aspartic acid 
at 64, or tyrosine at 65, can reduce the ability of SOCS1 to bind 
with JAK2 activation loop (16). Hence, KIR combines with the 
JAK2 activation loop and induces conformational changes of 
the JAK2 activation site, thus abrogating the phosphorylation of 
substrates (17). After binding to phosphorylated JAK2, SOCS1 
dephosphorylates and forms a complex, with JAK2, which then 
leads to irreversible JAK2 degradation (Figure 1C) (18). Under 
these interactions, the phosphorylation of STAT1 is hindered and 
immune responses, such as IFN-γ signaling, inflammatory factor 
production, T  cell development and activation, etc., are then, 
therefore, suppressed (19, 20).

THe PRiNCiPLeS OF SOCS1 
ReGULATiON OF DOwNSTReAM 
SiGNALS IN VIVO

Insufficiency of SOCS1 expression and abnormalities in cytokine 
production are prominent in patients with SLE and in murine 
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FiGURe 1 | The structural basis of SOCS1/JAK2 interaction. (A) The SOCS1 protein contains a C-terminal SOCS box motif, SH2 domain, KIR region, and 
N-terminal region of varied length and amino acid composition. (B) Model of tyrosine kinase domain activation and inhibition by SOCS1. Binding of SOCS1-KIR to 
the activation loop prevents the access of substrates to the catalytic pocket. (C) Mechanism of negative cytokine signaling regulation by SOCS1 protein. Cytokine 
binding with specific cytokine receptors leads to receptor dimerization and subsequent recruitment of JAK2. Activated JAK2 phosphorylate the cognate cytokine-
receptor cytoplasmic domain, providing docking binding sites for STAT1 proteins. After phosphorylation by JAK2, STAT1 proteins form dimers and translocate to the 
nucleus. STAT1 signaling induces SOCS1 protein transcription. Following their translation, SOCS1 proteins suppress cytokine signaling by binding to 
phosphorylated JAK2. ESS, extended SH2 subdomain; JAK2, Janus kinase 2; KIR, kinase inhibitory region; PY, phosphorylated tyrosine; SH2, Src-homology-region 
2; SOCS1, suppressor of cytokine signaling 1; STAT1, signal transducer and activator of transcription 1.
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lupus models (6). A few in vivo studies have been carried out to 
reveal the effect of SOCS1 on downstream signals. IFN-γ plays an 
important role in patients with SLE, as it enhances the production 

of pathogenic autoantibodies and accelerates the progression of 
glomerulonephritis (21, 22). In fact, SOCS1 can directly bind to 
the IFN-γ receptor (IFNGR) to efficiently ensure the suppressive 
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effect of SOCS1 on IFN-γ signaling, even at low levels of SOCS1 
expression (23). Full inhibition of IFN-γ signaling by SOCS1 
requires the phosphorylation of tyrosine 441 in the IFNGR1 
subunit, thus suggesting that SOCS1 interacts first with the 
IFNGR and then binds to JAK2 to inhibit its kinase activity (24). 
Excessive production of IFN-γ and aberrant control of the IFN-γ 
signaling pathway have been implicated in the pathogenesis of 
SLE in BWF1 mice (25). In lupus-prone (NZB × NZW) F1 mice, 
SOCS1 expression was decreased, whereas pSTAT1 was increased 
in spleen-derived lymphocytes, thus mirroring the results of 
SOCS1 expression in peripheral blood mononuclear cells of 
patients with SLE (12). hCDR1 is a tolerogenic peptide derived 
from the sequence of the first complementarity-determining 
region (CDR1) of anti-DNA immunoglobulin (Ig) G, and it can 
downregulate pathogenic cytokines, such as tumor necrosis factor 
(TNF)-α, IL-1β, and IFN-γ, and upregulate the immunosuppres-
sive cytokine TGF-β in lupus-prone mice (25). In these murine 
models, SOCS1 was upregulated upon subcutaneous administra-
tion of hCDR1, accompanied by pSTAT1 downregulation and 
tempered IFN-γ signaling (25). Moreover, patients undergoing 
prednisone treatment exhibited higher SOCS1 protein levels 
than those not receiving prednisone (12). Therefore, these 
findings suggest that SOCS1 insufficiency results in unbridled 
downstream signaling and contributes to the development and 
progression of SLE, whereas upregulation of SOCS1 definitely 
alleviates the course of SLE.

Extensive studies have revealed the crucial roles of IFN-α 
in the pathogenesis of SLE (26). Exposure to IFN-α in vivo can 
induce lupus disease in lupus-prone NZB/NZW F1 mice but 
not in BALB/c mice (27). Moreover, lupus-prone NZB mice 
lacking type I IFN receptor exhibited significant decrease in 
both autoimmunity and mortality (28). In SLE patients, serum 
IFN-α induce monocytes to differentiate into IFN-dendritic cells 
(DCs), which then capture apoptotic cells or nucleosomes and 
present these autoantigens to CD4+ T  cells, thus initiating the 
proliferation of autoreactive T cells as well as the differentiation 
of autoantibody-producing B cells (29, 30). The dysregulation of 
IFN-α in SLE is also evident in gene expression profiles, includ-
ing IFN-inducible genes, which correlate with the production of 
autoantibodies and the pathophysiology of SLE (31, 32). SOCS1 
is an important inhibitor of IFN-α signaling in  vivo. It associ-
ates with and regulates type I IFN receptor 1-specific signals, 
abrogates tyrosine phosphorylation of STAT1, and reduces the 
duration of antiviral gene expression—thus, SOCS1 balances the 
beneficial antiviral and detrimental proinflammatory effects of 
IFN-α (33). Furthermore, Toll/IL-1R-domain-containing adap-
tor protein inducing IFN-β–IFN-regulatory factor 3 pathway 
can rapidly induce type I IFN, which in turn activates secondary 
JAK/STAT1 pathway after stimulation with lipopolysaccharide 
and contributes, in combination with NF-κB, to the expression 
of IFN-inducible genes (34). Coincidentally, SOCS1 can effec-
tively inhibit such process (35). Hence, SOCS1 deficiency in SLE 
patients might explain the excessive IFN-α signaling and high 
level of IFN-inducible genes, which subsequently contributes to 
the development of SLE.

Suppressor of cytokine signaling 1 deficiency is associated 
with the early death of mice, which were found to have severe 

lymphopenia, hyperactivation of peripheral T cells, fatty degen-
eration and necrosis of the liver, and inflammatory infiltration of 
liver and lungs (10). Partial restoration of SOCS1 can rescue Eμ-
SOCS1–/– mice from early onset of fatal diseases (36). However, 
these Eμ-SOCS1–/– mice expressing insufficient SOCS1 spon-
taneously exhibited hyperactivation of T and B  cells and DCs, 
produced anti-dsDNA antibodies, formed immune complexes 
in glomeruli, and eventually developed lupus-like disease (36). 
Moreover, SOCS1 deficiency induced prominent activation of 
STAT1, as well as hyperresponsiveness to IFN-γ, in mice models 
(12). However, IFN-γ deficiency can reverse the lupus phenotype 
of Eμ-SOCS1−/− mice, which again suggests the negative regula-
tion of IFN-γ signaling by SOCS1 (37).

The SOCS1 transgenic mice were constructed by applying the 
lck proximal promoter to drive transgenic expression only in the 
T  cell lineage (38). In these mice, tyrosine phosphorylation of 
STAT1 that is responsive to cytokines, such as IFN-γ, IL-6, and 
IL-7, was significantly suppressed; and the number of thymocytes 
decreased due to the blockade of development in the triple-nega-
tive stage, which consequently led to an increase in the percentage 
of CD4+ T cells (38). Moreover, in these mice, peripheral T cells 
were spontaneously activated, and apoptosis was significantly 
increased (38). These phenomena strongly suggest that SOCS1 
maintains the homeostasis of peripheral T cells by suppressing 
STAT1 activation. The effects of SOCS1 abnormalities on murine 
phenotypes and immune responses are illustrated in Figure 2.

SOCS1 PARTiCiPATeS iN THe 
HeMATOLOGiC ABNORMALiTieS iN SLe

Eμ-SOCS1–/– mice express only a limited level of SOCS1 in their 
peripheral lymphocytes, thus allowing the excessive activation 
of STAT1, development of multiple organ inflammation, spon-
taneous activation of lymphocytes, production of autoantibod-
ies such as anti-dsDNA IgG, and development of prominent 
glomerulonephritis, which are all reminiscent of murine lupus 
models (36). Therefore, appropriate SOCS1 expression is critical 
for the prevention of systemic autoimmune disease such as SLE. 
CD4+ T cells were spontaneously activated in Eμ-SOCS1–/– mice 
and in diseased SOCS1+/− mice, and the T cells of SOCS1+/− mice 
proliferated more significantly in response to IL-2 (36). In T cell-
specific SOCS1-conditional knockout mice, SOCS1-deficient 
CD4+ naïve T  cells mostly differentiated into Th1  cells, and 
Th17 differentiation was strongly suppressed (39); these mice 
eventually developed a lupus-like autoimmune disease (40). 
Previous studies have corroborated that Th1 polarization is 
primarily driven by IL-12 and IFN-γ, while Th2 polarization is 
primarily driven by IL-4 (41). As SOCS1 suppresses both IFN-γ 
and IL-4 signaling, SOCS1 upregulation may be an approach 
for the reciprocal inhibition of Th1 and Th2 cells. When IFN-γ 
is excessively expressed, IL-4 signaling through STAT6 can be 
blocked by SOCS1; however, when IL-4 is highly expressed, 
IFN-γ signaling through STAT1 is blocked by SOCS1 (39). Both 
IL-6 and TGF-β promote the production of IL-17 by naïve CD4+ 
T cells, and this is essential for the development and differentia-
tion of Th17 cells (42, 43). SOCS1−/− T cells are less responsive to 
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FiGURe 2 | The effects of SOCS1 abnormalities on murine phenotypes and immune responses. (A) The effects of different SOCS1 level on the immune system of 
mice model. SOCS1−/− mice died within 3 weeks after birth; and SOCS1−/−IFN-γ−/− prevented the neonatal death of SOCS1−/− mice, thus suggesting that 
uncontrolled IFN-γ signaling has destructive effects. Eμ-SOCS1−/− and SOCS1+/− mice developed lupus-like autoimmunity with age, indicating that SOCS1 
deficiency can initiate an autoimmune response. However, transgenic overexpression of SOCS1 suppresses the immune response and disturbs the homeostasis of 
immune cells. (B) Roles of SOCS1 in systemic lupus erythematosus (SLE). There is a deficiency in the expression of SOCS1 in SLE. SOCS1-deficient DCs express 
high levels of BAFF, which leads to abnormal B-cell growth and proliferation. Moreover, low SOCS1 levels correlate with reduced suppressive capacity and 
enhanced plasticity of Treg cells. These Treg cells maintain high numbers of hyperactivated B cells by promoting the interaction of self-reactive CD4+ T cells with 
B cells. This interaction leads to the production of diverse inflammatory cytokines and autoantibodies, leading to immune complex formation and tissue injury. 
Therefore, upregulated SOCS1 levels might play a protective role through the suppression of the destructive response of inflammatory cytokines. APRIL, a 
proliferation-inducing ligand; BAFF, B-cell activating factor; DC, dendritic cell; IFN, interferon; IL, interleukin; JAK2, Janus kinase 2; SOCS1, suppressor of cytokine 
signaling 1; STAT1, signal transducer and activator of transcription 1; TNF-α, tumor necrosis factor alpha; Treg, T regulatory cells.
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FiGURe 3 | Roles of SOCS1 protein in CD4+ T cell differentiation. T cell 
differentiation from naïve cells into the various functional subtypes, namely 
Th1, Th2, Th17, and Treg cells, primarily depends on the effect of cytokines. 
SOCS1 inhibits the differentiation of Th1, Th2, and Treg but promotes Th17 
differentiation. IL-4 secreted by Th2 induces SOCS1 expression of STAT6; 
and correspondingly, SOCS1 suppresses IFN-γ-STAT1 signaling of Th1. 
IFN-γ secreted by Th1 induces SOCS1 expression of STAT1; SOCS1, in turn, 
suppresses IL-4-STAT6 signaling of Th2. Therefore, SOCS1 positively 
regulates Th17 cell differentiation by inhibiting the antagonistic effects of 
IFN-γ and IL-4. SOCS1 is a target of miRNA-155, and its deletion would 
impair the function of Treg cells. Upregulation of Foxp3 promotes expression 
of miRNA-155, which accelerates the proliferative potential of Treg cells 
through SOCS1 downregulation. The red and green lines denote inhibitory 
and activating signaling, respectively. IFN, interferon; JAK2, Janus kinase 2; 
IL, interleukin; miRNA, microRNA; SOCS1, suppressor of cytokine signaling 
1, STAT, signal transducer and activator of transcription; TGF-β, transforming 
growth factor beta; Th, T helper cells; Treg, T regulatory cells.
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TGF-β, and this possibly explains the inhibition of Th17 differ-
entiation of SOCS1−/− T cells (39). Moreover, early differentiation 
of Th17 cells is inhibited by IFN-γ and IL-4 by depressing the 
production of IL-17 (39). Therefore, SOCS1 deficiency highly 
contributes to the imbalance of different Th cells and subsequent 
autoimmunity (Figure 3).

Suppressor of cytokine signaling 1 inhibition is important 
in the pathogenesis of SLE through the promotion of Treg 
cells plasticity (44). Dysregulation of Treg cells is highly 
implicated in the pathogenesis of SLE (45). T  cell activation 
and autoantibody expression are accelerated in Treg cell-
depleted lupus-prone mice (46). Transfer of Treg cells from 
normal mice into the murine lupus model can effectively 
suppress the progression of lupus autoimmunity such as 
anti-dsDNA antibody generation and lupus nephritis (LN) 
(47). However, SOCS1-deficient Treg cells usually lose Foxp3 
expression and are converted into Th1-like cells, and this can 
be attributed to the hyperresponsiveness of Treg cells to IL-2 
and IFN-γ, in which both accelerate the proliferation of Treg 
cells and its conversion into effector cells (48). As previously 
described, T  cell-specific SOCS1-conditional knockout mice 
developed lupus-like diseases including spontaneous dermati-
tis, splenomegaly, lymphadenopathy, and serum positivity of 
anti-dsDNA antibodies (40). Treg-specific SOCS1-deficient 

mice also developed lupus-like phenotypes that are less serious 
than those in T cell-specific SOCS1-deficient mice, and many 
adult SOCS1+/− mice exhibited lupus-like manifestations as well 
(36). Splenic Treg cells from diseased SOCS1+/− mice showed 
less suppressive functions upon self-reactive T and B cells (36). 
Therefore, SOCS1 plays a crucial role in the interference of SLE 
development by maintaining the suppressive functions of Treg 
cells and by preventing Treg cells plasticity.

Suppressor of cytokine signaling 1 regulates the maturation 
and activation of DCs. In Eμ-SOCS1–/– mice, DCs expressed 
higher levels of costimulatory molecules, such as CD80 and 
CD86 (36). Moreover, SOCS1-deficient DCs secreted more 
proinflammatory cytokines, such as IFN-γ, IL-6, IL-12, and 
TNF-α, and higher levels of major histocompatibility complex 
(MHC) class II molecules upon stimulation with lipopolysac-
charide and CpG-containing DNA (49, 50). DCs are impli-
cated in the development of systemic autoimmunity in aged 
SOCS1−/− mice (19). Transfer of SOCS1−/− DCs to wild-type 
mice induced the generation of autoantibodies due to the 
overexpression of BAFF in the donor DCs (19). It is known that 
failure of autoimmune tolerance accelerates the development 
of SLE (51). Self-tolerance can be disrupted by excessive IL-12 
production of SOCS1−/− DCs (50). Therefore, SOCS1 inhibi-
tion participates in the pathogenesis of SLE by favoring the 
activation of DCs.

Systemic lupus erythematosus is characterized by serum 
positivity of anti-dsDNA autoantibodies, which are produced 
by B cell-derived plasma cells (52). Anti-dsDNA autoantibod-
ies are instrumental in LN through recognition of multiple 
self-antigens and initiation of renal fibrosis (53–55). BAFF, 
which is a DC- and monocyte-derived cytokine of TNF family, 
is crucial in regulating B cell maturation, survival, and func-
tion (56). The expression level of BAFF/BLyS (B-lymphocyte 
stimulator) is increased in MRL/lpr mice during the onset and 
progression of lupus-like diseases (57). BAFF/BLyS-transgenic 
mice also had elevated serum titers of Ig and developed 
lupus-like autoimmunity (58, 59). Interestingly, high levels 
of BAFF/BLyS were detected in DCs but not in macrophages 
of SOCS1−/− transgenic mice, wherein transgenic SOCS1 was 
expressed in T and B cells but not in DCs (19). Furthermore, 
DCs induce Ig class switching through BLyS and a prolifer-
ation-inducing ligand (APRIL) (60). When BAFF/BLyS and 
APRIL are blocked by soluble B  cell maturation antigen-Fc, 
as well as transmembrane activator and CAML interactor-Fc, 
the generation of IgG1 by B cells is partially restricted in the 
presence of SOCS1−/− DCs (60). Lipopolysaccharide induced 
more anti-dsDNA antibodies in the sera of C57BL/6 mice after 
they received DCs from SOCS1−/− transgenic mice (19). Thus, 
SOCS1 inhibition facilitates the activation of DCs, increases 
autoantibody generation and Ig class switching, and promotes 
the occurrence and development of SLE.

SOCS1 polymorphisms may also contribute to the develop-
ment of SLE. It was found that the SLE patients have a lower 
frequency of SOCS1-1478del compared with those SLE patients 
without thrombocytopenia (61), suggesting that genetic back-
ground influences specific hematologic abnormalities in patients 
with SLE through regulating SOCS1 gene expression.

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


7

Wang et al. SOCS1 in SLE

Frontiers in Immunology | www.frontiersin.org October 2017 | Volume 8 | Article 1292

SOCS1 iNHiBiTiON iS PivOTAL iN THe 
PATHOGeNeSiS OF LN

Lupus nephritis is one of the most common complications in 
patients with SLE (3). It is primarily induced by renal deposition 
of pathogenic autoantibodies including anti-dsDNA IgG. It also 
involves the infiltration of immune cells, such as macrophages 
and lymphocytes, as well as the production of proinflammatory 
and profibrotic cytokines, namely IL-6, IL-12, IFN-γ, TNF-α,  
TGF-β, and monocyte chemoattractant protein-1, which accel-
erate renal injuries (21). In progressive LN, fibrosis is one of 
the main pathologies, and it contributes to the development of 
end-stage renal disease, which is evidenced by glomerular scle-
rosis (3). Wang et al. have demonstrated that SOCS1 expression 
is decreased in the glomeruli of LN patients and in MRL/lpr 
mice with anti-dsDNA IgG deposition as compared with their 
control groups (53). In MRL/lpr mice, STAT1 is overexpressed 
in glomerular mesangial, endothelial, and tubular epithelial 
cells, whereas SOCS1 is downregulated accordingly (62). In rat 
model of rapid focal segmental glomerulosclerosis, the expres-
sion levels of α-smooth muscle actin, collagen IV, and TGF-β1 
were increased in the kidneys and were accompanied by reduced 
SOCS1 expression and activated JAK2/STAT1 signals (63).

Previous studies have shown that anti-dsDNA IgG binds to 
cell surface molecules, directly penetrates into kidney cells, and 
facilitates cell proliferation in the kidney (64). In addition, anti-
dsDNA IgG participates in renal fibrosis through the induction 
of a myofibroblast-like phenotype of mesangial cells, as well as 
the production of proinflammatory cytokines and fibrotic factors 
in renal cells (65). Moreover, anti-dsDNA IgG can effectively 
catalyze DNA or peptides, depending on the structure of self-
antigens (52). An interesting phenomenon is that anti-dsDNA 
IgG exhibits nephritogenicity through the blockade of SOCS1 
signals. Anti-dsDNA IgG specifically binds to SOCS1-KIR and 
directly catalyzes KIR (53). Therefore, anti-dsDNA IgG competes 
with JAK2 activation loop for KIR, which leads to the blockade 
of signals from SOCS1 to the JAK2/STAT1 pathway. Downstream 
proinflammatory cytokines and profibrotic factors are upregu-
lated in LN (53). In addition, ALW, which is a DNA-mimicking 
peptide with a sequence of ALWPPNLHAWVP, can restore 
SOCS1 expression by blocking the binding of anti-dsDNA IgG 
to antigens, thus further suppressing the JAK2/STAT1 pathway 
and attenuating LN (53, 54). These findings suggest that SOCS1 
is involved in the nephritogenicity of anti-dsDNA IgG and that 
SOCS1 upregulation can ameliorate LN.

MicroRNAs (miRs) have been implicated in the pathogenesis of 
renal fibrosis (66). In patients with LN, miR-150 is overexpressed 
in resident cells of kidneys (67). SOCS1 is one of the potential 
targets of miR-150 (68). In proximal tubular and mesangial cells 
in vitro, miR-150 inhibited SOCS1 expression and increased the 
production of profibrotic proteins such as fibronectin, collagens 
I and III, and TGF-β1 (68). In podocytes, TGF-β stimulates miR-
150 expression, accompanied by decreased SOCS1 and increased 
COL1 and COL3 expression (68). These findings are consistent 
with the facts that SOCS1 acts as an attenuator of renal immune 
responses, tubular epithelial–myofibroblast transdifferentia-
tion, and tubulointerstitial fibrosis (69). Moreover, macrophage 

infiltration is a prominent feature of glomerulonephritis (70). 
SOCS1 regulates M1-macrophage activation, which mainly 
mediates inflammation and tissue damage by inhibiting IFN-γ-
induced JAK2/STAT1 signaling in LN (71, 72). M1 macrophages 
of SOCS1-knockdown mice produced increased levels of proin-
flammatory cytokines, such as IL-6, IL-12, and MHC class II mol-
ecules, thus suggesting that SOCS1 limits the proinflammatory 
characteristics of M1 macrophages and regulates inflammatory 
balance (73).

Diabetic nephropathy is characterized by inflammation of 
the glomeruli and tubulointerstitial regions, accumulation of 
extracellular matrix (ECM), and subsequent focal and global 
glomerular sclerosis (74). Kidney infiltration of M1 macrophages 
in diabetic mellitus patients exacerbates renal cell damage (75). 
Numerous studies have demonstrated that dysregulated JAK/
STAT signaling contributes to the onset and progression of 
diabetic chronic vascular complications, such as nephropathy 
(76). Interestingly, these features are similar to LN in a certain 
degree. Intraperitoneal administration of SOCS1 peptidomi-
metic (53DTHFRTFRSHSDYRRI68), which is a peptide that mim-
ics the activity of the SOCS1 KIR region, in mice with diabetic 
nephropathy suppressed the activation of STAT1 signals, reduced 
serum creatinine and albuminuria levels, and ameliorated 
mesangial expansion, tubular injury, and renal fibrosis (77). 
Moreover, these SOCS1 peptidomimetic-treated mice exhibited 
significantly decreased T  lymphocytes and M1 macrophages 
infiltration and reduced expression levels of monocyte- or T cell-
derived chemokines such as C chemokine ligand (CCL) 2, CCL5, 
and TNF-α (77). Furthermore, SOCS1 peptidomimetic inhibits 
the expression of target genes induced under inflammation and 
reduces the migration and proliferation of mesangial and tubu-
loepithelial cells (77). Therefore, the correction of SOCS1 expres-
sion may be a promising method to suppress the development 
of inflammatory nephropathy such as LN. The role of SOCS1 
signaling in the pathogenesis of LN is shown in Figure 4.

SOCS1 SiGNALS ARe iNvOLveD iN 
OTHeR eND-ORGAN iNJURieS iN SLe

Suppressor of cytokine signaling 1 is also involved in the func-
tion and injuries of other organs such as skin, central nervous 
system, liver, and lungs (78–80) (Figure 5). Cutaneous manifes-
tations appear in most patients with lupus erythematosus, and 
IFN-γ is essential for the autoimmune responses in the skin of 
these SLE patients, as keratinocytes are highly susceptible to 
IFN-γ (81). Upon stimulation by IFN-γ, keratinocytes produce 
diverse chemokines, such as CCL2 and chemokine C–X–C 
motif ligand 10 (CXCL10), which promote the immigration of 
T cells, monocytes, and DCs into the inflamed skin, and CXCL8, 
which drives the chemoattractant activity of neutrophils (79, 81). 
However, SOCS1 suppresses the effect of IFN-γ on keratinocytes 
by inhibiting the JAK2/STAT1 pathway (79, 82). Keratinocytes 
overexpressing SOCS1 are less responsive to IFN-γ, as mirrored 
by the decreased activation of STAT1 and lowered production 
of CCL2, CXCL10, intercellular adhesion molecule-1, and MHC 
class II molecules (83). Evidently, SOCS1 protects keratinocytes 
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FiGURe 5 | Overview of the organ damage in systemic lupus erythematosus 
related with SOCS1 insufficiency. SOCS1 insufficiency contributes to the 
hematopoietic abnormalities such as spontaneous lymphocyte activation, 
production of autoantibodies, lupus nephritis, NPSLE, and liver or pulmonary 
fibrosis, and it also promotes autoimmune responses in skin via IFN-γ 
signaling. IFN, interferon; NPSLE, neuropsychiatric systemic lupus 
erythematosus; SOCS1, suppressor of cytokine signaling 1.

FiGURe 4 | Roles of SOCS1 in the pathogenesis of LN. SOCS1 deficiency results in excessive production of proinflammatory and profibrotic molecules, which 
further induces increased activation and proliferation of macrophages (M1) and depletion and apoptosis of podocytes. In addition, molecules, such as TGF-β, cause 
mesenchymal transition of renal cells and overexpression of ECM proteins in the kidney, which contribute to renal fibrosis. ECM, extracellular matrix; SOCS1, 
suppressor of cytokine signaling 1.
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of SLE patients from autoimmunity induced by uncontrolled 
IFN-γ signaling.

Neuropsychiatric SLE (NPSLE) is a serious complication of 
SLE (84). Although the mechanism of NPSLE remains unclear, 
cytokines and chemokines, such as IFN-β and IFN-γ, are con-
sidered to be involved in the pathogenesis of NPSLE through the 
JAK/STAT signaling pathway (85–88). IFN-β-treated astrocyte 
in  vitro was able to generate a large amount of chemokines, 

such as CCL2, CCL5, and CXCL10, and these chemokines can 
be negatively regulated by SOCS1 (89). The production of these 
chemokines apparently increased when SOCS1 is depleted by 
siRNA (78). Furthermore, the increase in chemokine expression 
correlates with enhanced migration of macrophages and CD4+ 
T cells in vitro, indicating that SOCS1 might limit inflammatory 
cell migration within the central nervous system (89). Moreover, 
SOCS1 also inhibits IFN-γ-induced expression of MHC class II 
and CD40 in macrophages and microglia by blocking STAT1 
activation (90, 91). Thus, SOCS1 inhibition contributes to the 
autoimmunity in the progression of NPSLE by affecting the 
production of inflammatory cytokines and chemokines, activa-
tion of microglia, macrophages and astrocytes, and infiltration 
of immune cells.

Aside from kidneys, skin, and central nervous system, the 
liver can also be affected in SLE (92). About 25–50% of SLE 
patients may present with abnormal liver function (93). Many 
studies demonstrated the ability of antiribosomal P antibodies 
to upregulate the expression of proinflammatory cytokines 
produced by peripheral monocytes in SLE, which can lead to 
the development of autoimmune hepatitis (94). In patients with 
hepatitis triggered by SLE, Treg cells are decreased in number 
and display impairment of suppressive function, along with 
elevated IFN-γ production in vivo (95). Diseased SOCS1+/− mice 
exhibited more severe liver fibrosis than wild-type littermates. 
Liver fibrosis is strongly correlated with SOCS1 gene silencing 
through DNA methylation, and this firmly supports that the 
inhibition of SOCS1 leads to the progression of autoimmune 
hepatitis in SLE (96).

Furthermore, a variety of cytokines and chemokines are 
involved in the pathophysiology of pulmonary fibrosis in SLE 
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TABLe 1 | The roles of SOCS1 deficiency in systemic lupus erythematosus (SLE).

Affected Phenotype Target effect Reference

Hematological system Hematopoietic abnormalities Th cells Spontaneous activation and proliferation; Th1↑/Th17 ↓ (36, 39)
Treg cells Cells plasticity ↑ (36, 44, 48)
Dendritic cells Activation; BAFF ↑ (19, 36, 49, 50)
Autoantibody IgG ↑; Ig class switching ↑ (19, 60)

Kidney Lupus nephritis Anti-dsDNA IgG Binds and catalyzes SOCS1-KIR (53)
miRNA-150 SOCS1 expression ↓; renal fibrosis (67)
Macrophages Renal inflammation (70–72)

Skin Cutaneous inflammation Keratinocytes Interferon-γ signaling ↑ (78, 81)

Brain Neuropsychiatric SLE Astrocytes Activation ↑, inflammatory cytokines and chemokines ↑ (88–90)
Microglia
Macrophages
T cells

Liver Lupus hepatitis (95)

Lung Pulmonary fibrosis Macrophages Activation ↑, profibrotic cytokines ↑, collagen synthesis ↑ (98, 99)
Lymphocyte

BAFF, B-cell activating factor; KIR, kinase inhibitory region; SOCS1, suppressor of cytokine signaling 1; Th, T helper cells; Treg, T regulatory cells.

TABLe 2 | Therapeutic potential for targeting SOCS1 pathway.

Pattern Approach Function Mechanism implications Reference

Upregulation of 
SOCS1

Adenoviral gene transfer SOCS1 delivery Upregulating SOCS1 Bleomycin-induced pulmonary fibrosis in SOCS1+/− mice (99)

Tyrosine kinase inhibitory 
peptide

SOCS1 mimetic Competitive binding to the 
activation loop of JAK2

Experimental autoimmune encephalomyelitis and multiple 
sclerosis

(100, 101)

PS-5 SOCS1-KIR analog Competitive binding to the 
activation loop of JAK2

Psoriasis (79)

Edratide SOCS1 inductor: a drug based on the CDR1 
sequence of anti-DNA IgG

Systemic lupus erythematosus (13, 25)

CDR1, complementarity-determining region 1; JAK2, Janus kinase 2; KIR: kinase inhibitory region; SOCS1, suppressor of cytokine signaling 1.
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(97, 98). It was reported that lower levels of SOCS1 mRNA and 
higher amounts of type I collagen were produced by fibroblasts 
from lungs of patients with pulmonary fibrosis as compared 
with those from healthy lungs (99). Moreover, SOCS1 defi-
ciency in murine fibroblasts resulted in increased collagen 
production, whereas overexpression of SOCS1 suppressed 
collagen expression in  vitro (99). Therefore, SOCS1 might 
suppress pulmonary fibrosis by inhibiting profibrotic cytokines 
and collagen synthesis of lung fibroblasts. The expression level 
of SOCS1 in bleomycin-injured lungs was significantly lower 
in SOCS1+/− mice than in wild-type mice (100). SOCS1+/− mice 
treated with bleomycin had significantly increased numbers of 
macrophages, lymphocytes, and eosinophils and elevated levels 
of IFN-γ, TNF-α, IL-4, IL-5, and monocyte chemoattractant 
protein-1 as compared with those of SOCS1+/+ mice in bron-
choalveolar lavage fluid (100). Exogenous SOCS1 delivered 
through adenoviral gene transfer ameliorated bleomycin-
induced pulmonary inflammation and fibrosis in SOCS1+/− 
mice (100). These results highly suggest that SOCS1 inhibition 
is also involved in the progression of pulmonary fibrosis and 
that SOCS1 would be a novel target in treating lung fibrosis. The 
roles of SOCS1 in the different forms of lupus erythematosus 
are summarized in Table 1.

THeRAPeUTiC POTeNTiAL FOR 
TARGeTiNG THe SOCS1 PATHwAY

Considering the abnormalities of SOCS1 expression in dam-
aged tissues, as well as its role in the regulation of downstream 
cytokines, SOCS1 may be a novel therapeutic target in the treat-
ment of patients with SLE. Administration of SOCS1 mimetics 
might affect the abnormal immune responses regulated by 
SOCS1. Tyrosine kinase inhibitory peptide (Tkip), which is a 
12-amino acid peptide (WLVFFVIFYFFR), can specifically bind 
to the JAK2 activation loop (1001LPQDKEYYKVKEP) and inhibit 
the activation of JAK2/STAT1 signaling (101). In vivo studies 
have demonstrated that subcutaneous administration of Tkip can 
block IFN-γ and TNF-α pathways and prevent the development 
of experimental autoimmune encephalomyelitis and multiple 
sclerosis (102). Moreover, the SOCS1-KIR mimetic peptide PS-5 
(53DTHFRTFRSHSDYRRI) ameliorates IFN-γ-induced inflam-
mation in human keratinocytes by suppressing JAK2 kinase 
activity, as reflected by the inhibition of STAT1α phosphoryla-
tion and reduced expression of IFNGR1, CCL2, CXCL10, and 
intercellular adhesion molecule-1 (79). These strategies suggest 
that administration of SOCS1 mimetics is capable of ameliorat-
ing SLE.
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hCDR1 (Edratide), a peptide (GYYWSWIRQPPGKGEEWIG) 
based on the CDR1 sequence of anti-DNA monoclonal antibody, 
could ameliorate the progression of SLE (13). In SLE patients 
treated with Edratide subcutaneously, the expression of pathogenic 
cytokines, such as IL-1β, TNF-α, IFN-γ, and BLyS, were significantly 
downregulated, but the expression of anti-inflammatory cytokine 
TGF-β was increased (13). After the administration of hCDR1, 
NZB × NZW F1 mice showed increased SOCS1, decreased levels of 
pSTAT1, BAFF, anti-dsDNA autoantibodies, and MHC class II mol-
ecules on DCs, and better controlled IFN-γ signaling (25). Clinically, 
glomerular immune complex deposit was diminished and proteinu-
ria levels were reduced in these lupus-affected mice upon injection of 
hCDR1 (25). It is, therefore, possible that part of the beneficial effects 
of hCDR1 is due to the induction of SOCS1 in hCDR1-treated mice 
and controlled IFN-γ signaling (25). The therapeutic strategies for 
targeting SOCS1 pathway are also summarized in Table 2.

Thus far, we have yet to fully understand the function of SOCS1 
in  vivo, because intracellular signaling pathways are complexly 
regulated by various factors. With the development of new tech-
nologies, the roles of SOCS1 in SLE will be explicitly elucidated, 
and SOCS1 signals can provide more therapeutic strategies for 
the treatment of SLE in the future.

CONCLUSiON

The SOCS1 pathway is a key regulator of inflammatory cytokines, 
which are pivotal in the progression of SLE. The insufficient 

expression of SOCS1 in SLE is related with various pathologi-
cal processes including hematologic abnormalities, generation 
of autoantibodies, and other end-organ damages such as LN. 
Although the explicit role of SOCS1 remains to be elucidated, 
SOCS1 insufficiency definitely contributes to the pathogenesis 
of SLE. The enhancement of SOCS1 signals, such as SOCS1 
delivery or SOCS1 mimetics, can ameliorate the manifestations 
of SLE. Further investigation should focus on the design of 
SOCS1-mimicking molecules that may rectify SOCS1 insuf-
ficiency in SLE.
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