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Antimicrobial peptides (AMPs) are a pervasive and evolutionarily ancient component 
of innate host defense which is present in virtually all classes of life. In recent years, 
evidence has accumulated that parallel or de novo mechanisms by which AMPs curb 
infectious pathologies are also effective at restraining cancer cell proliferation and 
dissemination, and have consequently stimulated significant interest in their deploy-
ment as novel biologic and immunotherapeutic agents against human malignancies. 
In this review, we explicate the biochemical underpinnings of their tumor-selectivity, 
and discuss results of recent clinical trials (outside of oncologic indications) which 
substantiate their safety and tolerability profiles. Next, we present evidence for their 
preclinical antitumor activity, systematically organized by the major and minor classes 
of natural AMPs. Finally, we discuss the barriers to their clinical implementation and 
envision directions for further development.
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inTRODUCTiOn

Cancer continues to take a toll on global public health systems, accounting for an estimated 8.7 
million deaths annually (1, 2). In 2015, 17.5 million incident cases were diagnosed worldwide, and 
this is projected to spiral to 22.2 million by 2030 (1–3). Despite tremendous progress in reducing 
mortality rates from cancer and transformative shifts in therapeutic paradigms over the past few 
years, the development of novel therapeutic approaches remains an urgent priority, particularly in 
the setting of advanced, treatment-refractory malignancies.

Owing to the clinical success of cancer immunotherapy, as exemplified by the broad efficacy of 
immune checkpoint inhibitors (e.g., pembrolizumab, ipilimumab, atezolizumab) across multiple 
tumor histologies, there has been renewed interest in the development of immunomodulatory 
strategies in oncology treatment (4). Antimicrobial peptides (AMPs) are structurally diverse, 
critical effector molecules of the innate immunity which rapidly act to inactivate invading 
microorganisms, especially at mucosal surfaces and epithelial barriers. Despite most translational 
studies involving AMPs being oriented toward their development as antibacterial and antifungal 
biopharmaceuticals, pioneering research has led to the identification of numerous AMPs with 
promising anticancer properties (5–14) (Figure 1). These include, but are not limited to various 
α-helical peptides, β-Sheet peptides, linear peptides, hybrid, and synthetic peptides (5, 15–18).
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FiGURe 1 | Bioproduction of antimicrobial peptides (AMPs) and their tumor suppressive effects. In humans, AMPs are present at various tissues, including the 
epithelium of the skin, respiratory system, and gastrointestinal tract, as well as the immune system. These peptides can effectively impinge on a broad spectrum  
of microorganisms including fungi, bacteria, and viruses. However, they also restrain tumor growth and their immunostimulatory properties further co-opt anticancer 
immunity for enhanced tumor eradication.
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BiOPRODUCTiOn, PHYSiCOCHeMiCAL 
PROPeRTieS, AnD FUnCTiOnS OF AMPs

Antimicrobial peptides are small molecular weight oligopeptides, 
that is, they generally comprise 5–40 amino acid residues, with 
few exceptions. Both eukaryotes and prokaryotes are capable 
of producing these peptides. In humans, AMPs are present at 
various tissues, including the epithelium of the skin, respiratory 
system, and gastrointestinal tract, as well as the immune system 
(Figure 1). Depending on the site of synthesis, AMPs are broadly 
classified as non-ribosomal peptides (NRAMPs) if they are 
synthesized in the cytosol of bacteria and fungi, or ribosomal 
peptides (RAMPs) when they are synthesized in the ribosomes of 
both prokaryotes and eukaryotes (19, 20). AMPs are structurally 
heterogeneous and may assume linear (with amphipathic and 
hydrophobic α-helical residues [~30% or more]), β-sheet, cyclic, 
lipo, macrocyclic, or α-helical rod conformations (21, 22). It is 
worth noting that this diversity arises in part from post-transla-
tion modifications including glycosylation, phosphorylation, and 
amidation (23–27). AMPs are mostly cationic with a net charge 
at neutral pH ranging between +2 and +9 due to the presence of 
positively charged residues (typically, lysine [Lys] and arginine 
[Arg]), which endow these peptides with the ability to engage 
with and disrupt microorganismal membranes.

These peptides can effectively impinge on a broad spectrum 
of microorganisms including fungi, bacteria, and viruses 
(Figure  1). Notably, endogenous AMPs are recognized for 
being highly selective against pathogens, and for the most part 
spares untransformed mammalian cells. Classical mechanisms 
which mediate their antibiotic actions include their penetration 
of the plasma membrane or cell wall, thus resulting in lysis or 

disruption of ionic gradients; binding to and damaging nucleic acids  
(e.g., DNA); and blockade of enzymes essential for maintaining 
the integrity of microorganisms’ cell walls (28–37) (Figure  2). 
Amphipathicity (i.e., the spatial segregation of cationic and 
hydrophobic residues) in particular appears to be a major deter-
minant of function. Other physicochemical considerations that 
may impact structure–activity relationships include the amino 
acid sequence, net charge, hydrophobicity, structural folding  
(i.e., secondary structure, dynamics, and orientation) in mem-
branes, oligomerization, peptide concentration, and membrane 
composition (38).

iMMUnOMODULATORY eFFeCTS  
OF AMPs

Innate immunological responses to infectious agents, including 
the secretion of AMPs, are foremost initiated and orchestrated 
by the precise interaction between pathogen-derived ligands and 
immune receptors. Besides their canonical functions in carrying 
out microbicidal actions, AMPs are increasingly recognized to 
interact with host cells to influence diverse signaling cascades 
which may enhance the resolution of infections. For instance, 
β-defensins, a peptide active against many Gram-negative and 
-positive bacteria and viruses, also serves as a ligand for the CCR6 
chemokine receptor that is expressed on T  lymphocytes and 
dendritic cells, hence serving as a bridge between the innate and 
adaptive arms of host immunity. Other hitherto-unappreciated 
consequences on host immune cells have been described, includ-
ing altering host gene expression; inducing chemokine secretion; 
modulating the activation or death of neutrophils, T lymphocytes, 
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FiGURe 2 | Mechanisms of antimicrobial actions. Classical mechanisms which mediate the antibiotic actions of antimicrobial peptides (AMPs) include their 
penetration of the plasma membrane or cell wall, thus resulting in lysis or disruption of ionic gradients; binding to and damaging nucleic acids (e.g., DNA);  
and blockade of enzymes essential for maintaining the integrity of microorganisms’ cell walls.
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and dendritic cells; regulating cellular differentiation pathways; 
and promoting immune-mediated wound healing (39–41).

The detailed spatiotemporal control of these interactions 
between AMPs and host cells are hitherto less well known. 
Several models have been proposed, including the “alternate 
ligand model,” wherein AMPs transduce intracellular signaling 
cascades by acting as ligands for cell surface receptors, and the 
“membrane disruption model,” in which AMPs focally modify 
a part of the receptor to alter their functions. Furthermore, the 
“trans-activation model” posits that the indirect action of AMPs 
may lead to the production of membrane-bound factors that are 
capable of inducing receptor activation. It has also been shown 
that the scavenging of the endotoxin lipopolysaccharide (LPS) by 
AMPs may impede LPS binding with toll-like receptor 4, thus 
suppressing a proinflammatory process (42).

AMPs AnD CAnCeR TReATMenT

Henceforth in this review, we have defined classes of AMPs as 
“major” or “minor,” respectively, depending on whether their 
anticancer properties have been the subject of intensive study or 
are less well described (Figure 3).

MAJOR THeRAPeUTiCALLY ReLevAnT 
CLASSeS OF AMPs

Defensins
The defensins are cationic peptides produced by eukaryotes and 
comprise two superfamilies which have undergone divergent 
evolution in terms of sequence, structure, and function. The 
anticancer properties of human defensins are featured in a 
rapidly growing body of findings, and encouraging preclinical 
results have been obtained with the treatment of cancer cells or 
xenograft models with various natural or synthetic defensins. 
For instance, it has been shown that natural human β-defensin-3 
(hBD-3) is capable of suppressing VEGF-induced cancer cell 
migration capabilities (43–46). In another study, hBD-3 were 
shown to be produced by tumor-infiltrating monocytes and 
inhibited the invasiveness and motility of colon cancer cells in 
a dose-dependent and paracrine fashion (45). Considering that 
these in vitro malignant phenotypic traits correlate with a pri-
mary tumor’s propensity to establish life-threatening metastatic 
outgrowths, the finding that defensins are effective at repressing 
cancer cell motility suggests that they can be developed as poten-
tial antimetastatic agents (Figure 4).
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FiGURe 4 | Effects of antimicrobial peptides on in preclinical models of neoplasia. Several recurrent themes have emerged from unfolding research on their 
anticancer properties, including their antiproliferative and antimetastatic capabilities, invigoration of antitumor immunity, activity against multidrug-resistant  
cancer cells, and selectivity for cancer cells but not normal cells.

FiGURe 3 | Crystal structures of selected antimicrobial peptides (AMPs) with anticancer potential. Protein databank accession codes: human beta-Defensin-3, IKJ6; 
cecropin B derivative CB1a, 2IGR; lactoferricin B, 1Y58; magainin 2, 2MAG; LL-37, 2K6O; Dermaseptin analog NC12-K4S4(1–13)a, 2DCX; Gaegurin 4, 2G9L; 
Temporin-1 Ta, 2MAA.
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Furthermore, natural defensins appear to exert antiprolifera-
tive and proapoptotic effects on cancer cells and to induce cell cycle 
arrest (44, 47–51), which are evidenced by increases in the levels 
of phosphorylated retinoblastoma protein, suppressed activities 
of transcriptional and cell cycle cyclin-dependent kinases and 
their catalytic cyclin partners (52), and enhanced expression of 
caspase 7 and 9 and other markers of apoptosis. Interestingly, 
human beta-defensin-2 (hBD-2) have been shown to also reduce 
the viability of melanoma cells through the downregulation of 
BRAF (52). Besides their natural derivatives, synthetic defensin 
analogs may be designed for greater anticancer efficacy: Du et al. 
demonstrated that recombinant tailored defensin (DF-HSA) 
comprising human β-defensin-2 (DF) and human serum albumin 
(HSA) was more effective than natural β-defensin at curbing the 

proliferation of K-Ras-mutant MIA PaCa-2 cells and suppressing 
the growth of a pancreatic carcinoma xenograft (53).

Two additional facets of human defensins warrant discussion: 
first, it is notable that they appear to have an impressive level of 
specificity for tumor cells, yet do not appear to exert palpable 
cytotoxic or cytostatic effects against normal untransformed cells 
(48, 50, 51, 54). It has been shown that defensins induce apoptosis 
in MCF-7 cells via the intrinsic pathway, enhanced MAPK p38 
phosphorylation, as well as increased expression of cytochrome 
c, Apaf-1, caspase 7 and 9, but did not affect the membrane 
potential and calcium flow (48). Another study indicated that 
Laterosporulin10, a defensin-like anticancer bacteriocin, results 
in apoptotic and necrotic death of MCF-7, HEK293T, HT1080, 
HeLa, and H1299 cells (50).
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This observation is arguably consistent with the fact that 
human AMPs are endogenously derived, and therefore are 
designed to avoid causing overt collateral toxicity to normal 
healthy tissues during an inflammatory response. Second, anti-
microbial defensins may present novel opportunities to address 
unmet clinical issues such as chemotherapeutic resistance. For 
instance, defensins have been shown to potentiate cancer cell-kill 
in combination with cytotoxic chemotherapeutic agents such as 
doxorubicin in multidrug-resistant cancer cells (51, 54).

Another compelling application for defensins is their signifi-
cant potential to augment the effectiveness of cancer immuno-
therapy. Li et al. for instance employed a recombinant plasmid 
which expresses beta-defensin 2 and evaluated its potential as 
both cancer gene therapy and immunotherapy (55). In vitro and 
in vivo results indicated that physiological changes occurred in 
immature dendritic cells in a fashion which is likely to enhance 
adaptive anticancer immunosurveillance (55).

Lactoferricin B
Lactoferrin is an 80 kDa iron-sequestering glycoprotein present 
in exocrine secretions such as milk and in the granules of poly-
morphonuclear leukocytes, and represents another class of AMPs 
which have also been at the focal point of research into their anti-
cancer properties. Lactoferricin B possess antitumor capabilities 
as it is capable of exerting lethal, selective destabilizing effects on 
cancer cell cytoplasmic and mitochondrial membranes (11), and 
has been shown to be effective against colorectal, neuroblastoma, 
and melanoma cancer cells (11, 56). As alluded to earlier in the 
article, AMPs may assume various conformations. A recent study 
demonstrated that bovine lactoferrin (bLf), cyclic LfcinB, and 
linear LfcinB were all capable of activating multiple antineoplas-
tic signaling cascades, including p53 induction, apoptosis, and 
anti-angiogenic pathways as revealed by transcriptomic analyses 
(57). Furthermore, both bLf and LfcinB led to the induction of 
proapoptotic pathways mediated by caspase-8, p53, and p21 in 
colorectal carcinoma cells (57). Like the defensin proteins, lacto-
ferricin appears to have immunomodulatory effects, and have 
been shown to orient lymphocytes toward eradicating cancer 
cells (58).

Cecropins A and B
Cecropins represent a class of small and basic peptides proto-
typically ranging between 31 and 39 amino acid residues with a 
strongly basic N-terminus and hydrophobic C-terminus and were 
initially isolated from the silk moth Hyalophora cecropia. Again 
as with a recurring theme regarding AMPs, cecropins A and B 
have been shown to have selective cytotoxic and cytostatic effects 
on bladder neoplasms but not on human fibroblast cell lines (59), 
while ABP-dHC-Cecropin A and its analog ABP-dHC-Cecropin 
A-K are cytotoxic against leukemic but not non-cancerous cell 
lines (60). Cecropin A has been shown to induce apoptosis in 
the promyelocytic cell line HL-60 through a ROS signaling 
mechanism (61), and in human hepatocellular carcinoma cells 
via expression of Fas, Fas-L, caspase-3, and -8 (12). CecropinXJ 
induces growth inhibition, S-phase arrest and apoptosis in 
hepatocellular carcinoma cells through expression of caspase-3 
and poly(ADP-ribose) polymerase, and downregulation of B cell 

lymphoma 2 (Bcl-2) (62). One particularly enticing finding has 
been the result that in vitro, cecropin A enhances the anticancer 
effects of common chemotherapeutic agents against squamous 
skin cancer cells, which could open up new possibilities for 
rational combination strategies consisting of these two modali-
ties (63).

Magainin ii (MG2)
Magainin II (MGN-II) is an AMP isolated from the skin of the 
African clawed frog Xenopus laevis which has demonstrated 
potent anticancer effects in various hematopoietic and solid 
malignancies. As an ionophoric peptide with a helical struc-
ture, it has been shown to perforate cancer cell membranes to 
act as ion channels, causing cytolysis of cancerous cells (64). 
MGN-II greatly enhances the tumoricidal effects of cytotoxic 
chemotherapeutic agents. For instance, magainin A (MAG A) 
and magainin G (MAG G) have been shown to have synergistic 
effects when used with chemotherapy against non-small cell 
lung cancer cell lines (65). MGN-II also displays tumor-
selectivity; for instance, they have been demonstrated to lyse 
various hematopoietic tumor and solid tumor cells but have 
little or no effect on normal human fibroblasts and peripheral 
blood lymphocytes (8, 10, 12).

Derivatives of MGN-II have also been synthesized to 
enhance their cancer-specific cytotoxic properties (18, 64, 66).  
For instance, a magainin II-bombesin conjugate (MG2B) has 
demonstrated enhanced activity at a lower dose against a wide 
range of human cancer cells, without adverse effects on normal 
cells, as well as potent antitumor activity in a murine model of 
breast cancer (66). In yet another example, the fusion peptide 
MG2A, which was synthesized by conjugating MGN-II to 
the NH2-terminal of the cell-penetrating peptide penetratin 
(Antp), exhibited augmented cytotoxicity against a variety 
of human cancer cells and rat glioma cells, while having very 
limited off-target effects on normal cells (18).

MinOR THeRAPeUTiC CLASSeS  
OF AMPs

Structurally, LTX-302 is a 9-mer peptide derived from its parental 
peptide LfcinB, and features an α-helical secondary structure 
optimized to exert greater antitumor activity (67–69). The effects 
of LTX-302 have been examined in  vivo against A20 B  cell 
lymphomas in BALB/c mice (69). Interestingly, antitumor activ-
ity hinged on the mobilization and activation of CD4 and CD8 
T-lymphocytes, but ultimately LTX-302 administration induced 
long-lived cellular immunity directed against lymphoma cells 
and mediated complete regression of tumors in the majority of 
xenograft mice (69).

Tilapia hepcidin (TH) 1–5 represent three hepcidin-like AMPs 
(TH1–5, TH2–2, and TH2–3) extracted from tilapia (Oreochromis 
mossambicus). They were previously shown by Chen et  al. to 
specifically inhibit the growth of human fibrosarcoma HT1080 
cells via cell membrane-perforating mechanisms, and to also 
diminish cell migration capabilities (10). These findings were 
corroborated by Chang et al. who found that TH1–5 decreased 
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TABLe 1 | Antimicrobial peptides for oncologic indications in ongoing clinical trials.

Phase Peptide name identifier number Condition Administration route

I LL37 NCT02225366 Metastatic melanoma Intratumoral
GRN-1201 NCT02696356 Solid tumors Intravenous
LTX-315 NCT01058616 Solid tumors Intravenous
WT-2725 NCT01621542 Hematological malignancy and solid tumors Intravenous

II SGX942 NCT02013050 Head and neck cancer Intravenous
ANG-1005 NCT02048059 Breast and brain metastasis Intravenous

III ITK-1 UMIN000011308 Glioblastoma and prostate cancer Intravenous
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colony formation and induced rapid cell death in various human 
cancer cell lines (70).

Buforin II is a 21-residue α-helical AMP with sequence simi-
larity to the N-terminal region of histone H2A. Buforin IIb is a 
synthetically derived analog of buforin II, modified to contain a 
proline residue in between two α-helices (71). Buforin IIb was 
found in a study to have activity against breast cancer cells MX-1 
and MCF-7, and to suppress tumor growth in a mouse xenograft 
through anti-vasculogenic and anti-angiogenic mechanisms (13). 
It is postulated that the glycosylation of breast cancer cells plays 
a significant role in enabling interaction with this AMP, thereby 
allowing it to exert anticancer effects (13).

LL-37 is a derivative of human cathelicidin-derived α-helical 
AMPs. Its precursor hCAP18 is found in body fluids and func-
tions as a peptide antibiotic and signaling molecule (72). In a prior 
study, human colon cancer cells (HCT116 and LoVo) treated 
with FK-16, a 16-residue fragment of LL-37 underwent caspase-
independent apoptosis and autophagy as a result of activation of 
the p53-Bcl-2/Bax cascade (16).

Chrysophsin-1 is an α-helical AMP found in the gill cells 
of red sea bream, which is distinct due to its hemolytic prop-
erties, in addition its antibiotic functions (73). In 2011, Hsu 
et  al. tested the effects of chrysophsin-1 on a wide panel of 
cancer cell lines (74), and showed that low-dose chrysophsin-1 
selectively culls tumor cells via a membrane-depolarizing lytic 
mechanism (74).

Dermaseptins B1–B6 are six related peptides of 24–33 residues 
in length which are constitutively expressed in the skin secretions 
of the South American frog Phyllomedusa bicolor. Zoggel and col-
leagues demonstrated that the B2 peptide had antiproliferative 
and anti-colony-forming effects on a wide range of human cancer 
cells as well as xenograft model of prostate adenocarcinoma (15).

Gaegurins are a family of six AMPs isolated from Rana rugosa 
and are broadly divided into two subfamilies based on their length 
and sequence. The family II peptide GGN6, as well as its deriva-
tive PTP7, has been shown in a previous experiment by Kim et al. 
to have potent anticancer effects against multiple human cancer 
cell lines, including A549, PC-3, and MCF-7 (17). Intriguingly, 
as has also been demonstrated in aforementioned AMPs, GGN6 
derivatives potently induced cell cycle arrest and apoptosis in 
multidrug-resistant cancer cells, suggesting its potential to be 
deployed in the treatment of refractory malignancies (17).

Polybia-MPI is a cationic peptide extracted from the social 
wasp Polybia paulista. Polybia-MPI is characterized by potent 
bactericidal (against both Gram-positive and Gram-negative 
bacteria), fungicidal, and tumoricidal biochemical properties, 

while being relatively non-toxic to human red blood cells and 
normal fibroblasts (75, 76). Polybia-MPI and its derivatives have 
been shown to induce pore formation leading to the death of 
prostate cancer, bladder cancer, and drug-resistant myelogenous 
leukemic cells (75, 76).

Temporin-1CEa is an amphipathic AMP secreted by the 
skin of the Chinese brown frog Rana chensinensis. Studies have 
demonstrated that the treatment of a range of human cancer 
cell lines with temporin-1CEa rapidly induces tumor cell death 
by disrupting their cell membrane and mitochondria (77, 78). 
Melanoma cells seem particularly susceptible, perhaps because 
of their overexpression of phosphatidylserine, which has high 
affinity for temporin-1CEa (78).

D-K6L9 is a peptide is bound by phosphatidylserine which 
is capable of inducing tumor necrosis. Its administration to 
B16-F10 murine melanoma tumors inhibited its growth, whereas 
therapeutic cessation led to tumor relapse (79). Combinations 
comprising D-K6L9 with glycyrrhizin (an inhibitor of HMGB1 
protein), BP1 peptide, and interleukin (IL)-12 exhibit antitumor 
efficacy. When glycyrrhizin or BP1 is combined with D-K6L9, 
the growth of tumors was suppressed during the period of their 
administration. Long-lasting tumor growth suppression effect 
was achieved by combining D-K6L9 plus IL-12. Two months after 
therapeutic cessation, a remarkable 60% of animals remained 
alive. Significantly prolonged survival was observed in both mice 
bearing B16-F10 tumors as well as in mice bearing C26 colon 
carcinoma tumors (79).

AMPs in CLiniCAL TRiALS

Some cationic AMPs may exert their microbicidal effects chiefly 
through the potent induction of host immunoreactivity, rather 
than through direct modes of action. It is for this reason that their 
potential for use as adjuncts to current anticancer modalities has 
galvanized significant interest over the past few years, boosted 
by tantalizing efficacy results from recent clinical trials of cancer 
immunotherapies.

The safety profile of AMPs deserves mention, if only briefly. 
Whereas in the context of oncologic indications, these biologics 
remain experimental (Table 1), it should be noted that several 
AMPs have transitioned to phase II clinical trial evaluation or 
have even obtained U.S. Food and Drug Administration approval 
for use in the treatment of various infectious diseases (80, 81), 
such as pexiganan acetate (MSI-78) (82), hLF1–11 (83), omiga-
nan (MBI-226) (81), CZEN-002, and novexatin (NP-213) (84) 
(Table 2).
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FiGURe 5 | Physicochemical considerations that may impact structure–
activity. A number of biochemical factors need to be considered when 
predicting the anticancer activity of natural or synthetic antimicrobial 
peptides, including but not limited to the amino acid sequence, net charge, 
hydrophobicity, structural folding (i.e., secondary structure, dynamics, and 
orientation) in membranes, oligomerization, peptide concentration, and 
membrane composition.

TABLe 2 | Antimicrobial peptides for infectious diseases indications in ongoing clinical trials.

Phase Peptide name identifier numbers Condition Administration route

II NP213 (Novexatin) NCT02933879 Fungal nail infection Topical
PAC-113 NCT00659971 Oral candidiasis in HIV patients Topical
MBI-226 NCT00211523 Acne vulgaris and acne Topical
Dalbavancin NCT02685033 Acute hematogenous osteomyelitis Intravenous
Brilacidin NCT02052388 Skin and bacterial infection Topical
CLS001 (Omiganan) NCT02596074 Acne vulgaris Topical

III Pexiganan (MSI-78) NCT01594762 Diabetic foot infection Topical
Surotomycin NCT01597505 Clostridium difficile associated diarrhea Oral
CLS001 (Omiganan) NCT02576847 Papulopustular rosacea Topical
P2TA NCT01417780 Necrotizing soft tissue infection Intravenous
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The first AMP developed commercially was pexiganan 
acetate (MSI-78) (82). A number of AMPs are being developed 
for systemic applications. For instance, hLF1-11, a cationic 
fragment comprised N-terminal amino acids 1–11 of human 
lactoferricin, is intravenously administered for the treatment 
of severe bacterial and fungal infections in immunosuppressed 
stem cell transplant recipients (83). Another AMP that is at 
an advanced stage of clinical trialing is omiganan (MBI-226),  
a derivative of indolicidin which was purified from bovine neu-
trophils, being tested as a topical gel for the prophylaxis of con-
tamination of central venous catheters (81). Additional examples 
abound: Fopical pexiganan might be an effective alternative to 
oral antibiotic therapy compared to ofloxacin for treatment of 
mildly infected foot ulcer in diabetic patients (85). Novexatin 
(NP-213), a cyclic and highly cationic peptide based on human 

α- and β-defensins, has shown promise in treating recalcitrant 
fungal infections in toenails while CZEN-002, a dimeric peptide 
sequentially derived from α-melanocyte-stimulating hormone, 
is targeting vaginal candidiasis (84).

Antimicrobial peptides are only beginning to encroach into 
the oncological sphere, and therefore efficacy data are relatively 
limited (Table 1). However, the safety data in infectious diseases 
trials, albeit indirectly, substantiate the notion that AMPs could 
also be well tolerated in cancer patients. An example of an 
ongoing oncology trial is NCT02225366, wherein the optimal 
biological dose and therapeutic activity of LL37 against meta-
static melanoma is being evaluated in a phase I setting. LL37 is 
being administered intratumorally in patients with documented 
metastatic melanoma and at least three cutaneous lesions meas-
uring with stage IIIB, IIIC, or IV or nodal lesions.

COnCLUSiOn AnD FUTURe DiReCTiOnS

Therapeutic resistance and metastatic dissemination are some of 
the most clinically challenging aspects of cancer. There is now an 
abundance of evidence that AMPs hold substantial potential for 
filling these therapeutic voids in clinical oncology. In this review, 
we have discussed evidence for their antiproliferative, proapop-
totic, and antimetastatic effects on cancer cells. Crucially, AMPs 
have also shown activity against multidrug-resistant cancer 
cell lines, and therefore could prove valuable for the treatment 
of advanced, refractory cancers. Hence, we envision that in the 
future, combination strategies involving this novel therapeutic 
class with conventional cancer treatments (targeted therapies, 
immunotherapies, and chemotherapy) may improve treatment 
outcomes.

Nevertheless, significant challenges lie ahead in the path 
toward their clinical development and deployment. Toxicity 
continues to feature as a prominent concern, especially with 
regardsto the administration of non-human natural or syn-
thetic AMPs. However, lessons can be learnt from the field of 
infectious diseases, where several AMPs have transitioned to 
clinical trials or have even gained a foothold in clinical care. 
One area in which the therapeutic index of these peptides 
can be improved is through the development of innovative 
formulations and drug delivery systems. Structure–activity 
relationship, lead identification, and optimization studies are 
also crucial to improving the anticancer efficacy of AMPs 
(Figure  5). Yet, these will also require greater understanding 
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