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Human cytomegalovirus (HCMV) has been closely associated with the human race 
across evolutionary time. HCMV co-infection is nearly universal in human immunode-
ficiency virus-1 (HIV-1)-infected individuals and remains an important cofactor in HIV-1 
disease progression even in the era of effective antiretroviral treatment. HCMV infection 
has been shown to have a broad and potent influence on the human immune system 
and has been linked with the discovery and characterization of adaptive natural killer (NK) 
cells. Distinct NK-cell subsets, predominately expressing the activating receptor NKG2C 
and the marker of terminal differentiation CD57, expand in response to HCMV. These 
NK-cell populations engaged in the long-lasting interaction with HCMV, in addition to 
characteristic but variable expression of surface receptors, exhibit reduced expression of 
signaling proteins and transcription factors expressed by canonical NK cells. Broad epi-
genetic modifications drive the emergence and persistence of HCMV-adapted NK cells 
that have distinct functional characteristics. NKG2C+ NK-cell expansions have been 
observed in HIV-1 infected patients and other acute and chronic viral infections being 
systematically associated with HCMV seropositivity. The latter is potentially an important 
confounding variable in studies focused on the cellular NK-cell receptor repertoire and 
functional capacity. Here, focusing on HIV-1 infection we review the evidence in favor of 
“adaptive” changes likely induced by HCMV co-infection in NK-cell subsets. We highlight 
a number of key questions and how insights into the adaptive behavior of NK cells will 
inform new strategies exploiting their unique properties in the fight against HIV-1.
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inTRODUCTiOn

Natural killer (NK) cells are a diverse group of innate lymphocytes residing at the crossroads of innate 
and adaptive immunity (1). Their remarkable effector agility is achieved via expression of a wide 
array of receptors and integration of signals that are finely attuned to ensure self-tolerance, while per-
mitting effective responses against viral assaults and tumor transformation. In addition to important 
immunoregulatory functions (2, 3), a number of murine studies support that NK cells can acquire 
immunological memory similarly to B and T cells (4–7). While antigen-specific NK responses have 
been documented in mice and more recently in primates (8), clear evidence for NK-cell memory 
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in humans is lacking. The NK-cell compartment in humans 
displays phenotypic and functional heterogeneity encompassing 
populations at various stages of maturation with distinct receptor 
combinations (9–11). In recent years, it has become apparent that 
variegated expression of inhibitory and activating receptors at the 
single cell level leads to a more diverse NK-cell repertoire than 
previously envisaged. Cytometry by time-of-flight has enabled 
us to profile the healthy human NK-cell repertoire, uncovering 
between 6,000 and 30,000 unique NK-cell subsets per individual 
(12). This observed diversity is generated by a combination of 
factors including genetic contributions (13, 14), along with dif-
ferentiation in reprogramming in response to local tissue milieu 
(15) and infections/environmental factors (12). The substantial 
influence of environmental factors is supported by twin studies 
demonstrating that non-heritable factors exert a more profound 
and cumulative influence compared to heritable traits (16, 17). 
One such factor is human cytomegalovirus (HCMV), a wide-
spread β-herpesvirus with a prevalence ranging from 40 to 100% 
depending on age, socioeconomic factors, and geographical 
region (18). In immunocompetent hosts, HCMV infection is usu-
ally subclinical leading to latency, whereas in immunosuppressed 
patients, including human immunodeficiency virus-1 (HIV-1)-
infected and transplant patients, it remains a significant cause 
of morbidity and potentially life threatening complications (18). 
HCMV has a broad impact on immunity (16) and has recently 
been associated with the expansion of adaptive or memory-like 
NK-cell subsets (19, 20).

In the context of HIV infection, HCMV is a highly prevalent 
(21) and well-recognized opportunistic pathogen responsible 
for significant morbidity and mortality prior to the introduction 
of antiretroviral treatment (ART) (22, 23). However, despite the 
roll-out of effective ART, HCMV remains a significant cofac-
tor in HIV-1 disease progression (24–26), displaying a strong 
association with systemic inflammation (27, 28), cardiovas-
cular disease (29, 30), reduced immune resilience (31), and 
immune senescence (27). A recent report has highlighted the 
role of HCMV replication in intestinal barrier dysfunction in 
asymptomatic HIV-1 infection and contribution to persistent 
immune activation (32). It is thus highly relevant to increase 
our understanding of the complex inter-relationship between 
HCMV and HIV-1 and of the effects that it bears on the effector 
immune response. The recent identification of distinct NK-cell 
subsets with adaptive properties induced by HCMV has raised 
a number of intriguing questions, including the ability of other 
viruses to induce them and their physiological relevance in 
different disease settings. Here, we summarize findings on the 
molecular signature of HCMV-adapted NK  cells and discuss 
how NK-cell phenotypic and functional features described in 
HIV-1 infection could partly reflect the immunological finger-
print of HCMV.

FeATUReS OF CMv-ADAPTeD nK 
CeLLS—eMPHASiS On HCMv

Evidence from both murine and human studies has demon-
strated an important role for NK cells in antiviral defense against 

herpesviruses, in particular HCMV (33), reinforced by elaborate 
viral evasion strategies (34).

Although NK cells have been originally described to repre-
sent short-lived innate lymphocytes, they can exhibit persistent 
memory in response to infections. This is best exemplified by 
mouse CMV (MCMV) infection, where naive NK  cells that 
express Ly49H, recognizing the virally encoded glycoprotein 
m157, were reported to clonally expand and to subsequently 
contract forming a pool of long-lived memory cells (6). MCMV-
primed memory NK cells mount a robust response upon second-
ary challenge with enhanced interferon-γ (IFN-γ) secretion and 
cytotoxicity (6), but display reduced “bystander” functionality to 
heterologous infection suggesting the specialized nature of these 
cells (35).

Congruent with animal models, HCMV infection has been 
shown to induce an adaptive reconfiguration of the NK-cell 
compartment. Seminal work by Lopez-Botet’s group described 
a higher proportion of NK cells expressing the DAP-12 coupled 
NKG2C receptor in healthy individuals seropositive for HCMV 
(36, 37). These observations have been extended to hematopoietic 
stem cell transplantation (38, 39) and solid organ transplantation 
(40). Expansion of these subpopulations of NK  cells and their 
subsequent longevity resembled clonal expansion of adaptive 
immune cells. Expanded NKG2C+ NK cells display a differenti-
ated phenotype characterized by expression of CD57, increased 
expression of the inhibitory CD85j (38, 40), and a preferential 
oligoclonal pattern of inhibitory killer immunoglobulin receptors 
(KIRs) for self HLA-C1 and/or C2 allotypes (41, 42). In addition, 
they lack NKG2A, the inhibitory counterpart of NKG2C sharing 
specificity for HLA-E, and express lower levels of natural cyto-
toxicity receptors (NCR: NKp30 and NKp46) (36), CD161, CD7, 
and Siglec-7 (43–45) and have higher expression of CD2 involved 
in their activation (46, 47). Expression of other receptors such as 
NKG2D is maintained (36). The phenotypic hallmarks of adaptive 
NK cells are summarized in Figure 1. Of note, the magnitude of 
the HCMV imprint on NK-cell subsets varies within seropositive 
individuals (i.e., the NKG2Cbright phenotype is found in 50% of 
HCMV+ individuals) and the adaptive NKG2C+ compartment 
can persist in high frequencies for years (41). Subclinical or tissue 
specific reactivations of HCMV during latency may contribute 
to the maintenance of NK+NKG2C+ pool in addition to NKG2C 
copy number and age-related changes in NK-cell differentiation 
(48, 49). The exact ligand involved in recognition and the cellular 
mechanisms driving the expansion of NKG2C+ NK cells are yet 
to be elucidated. It remains unclear whether this is mediated 
through interaction with its cellular ligand HLA-E alone, HLA 
viral loaded peptide or an unknown ligand of host or viral origin 
(41, 50–52).

The large phenotypic heterogeneity of adaptive NK  cells 
extending beyond the NKG2C+ subset, is illustrated by the 
detection of NK-cell subsets sharing numerous attributes of 
adaptive NK  cells in individuals independent of NKG2C or in 
the absence of NKG2C (KLRC2-deficient individuals) and in 
transplant recipients of NKG2C null grafts (41, 47, 53). Strikingly, 
these HCMV-driven expansions encompass activating KIRs (53), 
suggesting their potential role in the recognition and response to 
HCMV.
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FiGURe 1 | The phenotypic, functional and molecular attributes of human cytomegalovirus (HCMV)-adapted natural killer (NK) cells. (A) As CD56dim NK cells go 
through the spectrum of differentiation they gradually lose expression of the inhibitory receptor NKG2A, natural cytotoxicity receptors and sequentially acquire more 
specific inhibitory receptors, such as inhibitory killer immunoglobulin receptors (KIRs) and CD85j. KIR acquisition is important in determining the functional fate of the 
NK cells. CD57 expression represents a terminal step in the differentiation process. Fully mature NK cells gain cytolytic ability and are efficient in mediating 
antibody-dependent cellular cytotoxicity (ADCC) (B) NK cells with adaptive features expanded in response to HCMV infection are distinct from conventional NK cells 
on the basis of expression of surface receptors, such as high expression of NKG2C, lower expression of the inhibitory Siglec-7, and down-regulation of the 
transcription factor promyelocytic leukemia zinc finger and key signaling molecules (FcεRI-γ, Syk, and EAT-2). Different combinations of expression patterns result in 
considerable heterogeneity among adaptive NK cells. Epigenetic diversification leads to altered target cell specificities and functional specialization that includes 
enhanced ADCC (increased IFN-γ and TNF-α against opsonized HCMV-infected targets) but reduced responsiveness to cytokine stimulation and reduced 
degranulation against autologous T cells. Red = inhibitory receptors; green = activating receptors.
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Further reports described a subset of human NK cells defi-
cient for the adaptor protein FcεRI-γ, which was strongly associ-
ated with HCMV seropositivity (54). FcεRI-γ− NK cells share a 
lot of the characteristics of adaptive NK cells, respond robustly 
to CD16 stimulation (55) and similar to NKG2C+ cells display 
more vigorous effector responses to HCMV-infected targets, 
but only in the presence of HCMV-specific antibodies (54, 56). 
NK cells lacking FcεRI-γ expand in response to HCMV-infected 
targets accentuated by the presence of anti-HCMV antibody, 
highlighting the role of specific humoral immunity in also 
favoring their preferential expansion (57–59). Interestingly, 
these cells also responded to herpes-simplex virus-1 (HSV-
1)-infected targets in the presence of HSV-1 plasma (54) 
demonstrating cross-protection to other viruses. The enhanced 
effector function of this subset was attributed to selective 
and more potent signaling through the CD3ζ chain, which 
has three immunoreceptor tyrosine-based activation motifs. 
Subsequently, CD2 has been identified as a key co-stimulatory 
receptor synergizing with CD16 to stimulate increased cytokine 
production in adaptive NK cells (47). Global epigenetic profil-
ing has identified commonalities between adaptive NK  cells 

and memory CD8 T cells (58, 60). These adaptive NK cells are 
marked by DNA methylation silencing of the transcription 
factor, promyelocytic leukemia zinc finger (PLZF), as well as 
stochastic down-regulation of several signaling molecules, such 
as Syk, EAT-2, and DAB-2 (58, 60). PLZF is known to interact 
with several target genes, including IL12RB2, IL18RAP, and 
KLRB1 (61), explaining the lack of responsiveness to IL12/
IL18 stimulation (58). However, in comparison to conventional 
NK  cells, adaptive NK  cells display augmented IFN-γ and  
TNF-α production when triggered via antibody-dependent 
cellular cytotoxicity (ADCC); the hypomethylated IFN-γ and 
tumor necrosis factor (TNF) regulatory regions in adaptive 
NK cells provide a mechanism for increased cytokine produc-
tion (58, 60). Interestingly, adaptive NK  cells display reduced 
degranulation toward activated autologous T cells (58), which 
may impact on the regulation of immune responses.

Taken together, these results suggest the heterogeneity and 
functional specialization of adaptive NK  cells in the immuno-
surveillance of infected cells and functional bias toward ADCC 
(Figure 1). Whereas the expansion of adaptive NK cells may serve 
as a strategy to control HCMV, during its life long interaction 
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with the host, it remains unclear whether other viral infections 
can induce adaptive properties in NK cells. Although potential 
cross-reactivity of adaptive NK cells could confer an advantage 
in the tumor setting such as reduced relapse risk in leukemia 
patients (62, 63), their role in the control of heterologous infec-
tions or post vaccination is less well defined (64, 65).

SKewinG AnD ADAPTATiOn OF nK 
CeLLS TO Hiv-1 inFeCTiOn: THe 
COnFOUnDinG eFFeCT OF HCMv

Accumulating data support an important role for NK cells in 
the control of HIV-1 infection and protection against disease 
acquisition (66–68). These stem from elegant genetic studies 
linking specific KIR/HLA combinations with HIV-1 outcome 
(66, 67), functional studies where protective KIR alleles are 
associated with enhanced NK-cell cytolytic function in  vitro 
(69) and evidence of KIR-facilitated immune pressure on 
HIV-1 to escape NK-cell recognition (70). However, chronic 
HIV-1 infection is known to alter NK-cell composition and 
effector function. This has been documented by a number of 
studies with often conflicting results, which can be attributed 
to a number of factors including the influence of immunogenet-
ics, disease state, and the cross-sectional nature of studies. The 
latter have not always adequately controlled for a number of 
confounding factors such as age, gender, ethnicity, and HCMV 
serostatus among HIV-1-infected and HIV-1-negative controls. 
Given the high prevalence of HCMV co-infection within HIV 
cohorts and the profound skewing and adaptation of NK cells 
to HCMV, this is an important variable to consider when inter-
preting findings.

HIV-1 viremia is associated with a significant and pathologi-
cal redistribution of the NK compartment with the emergence 
of an aberrant CD56−CD16+ NK-cell subset (71, 72). This rare 
population displays phenotypic perturbations, including down-
regulation of the activating NCRs, and features in common 
with mature CD56dim NK  cells (72, 73). It has been proposed 
to represent an activated subset generated from chronic target 
engagement with impaired function. Recent studies have 
demonstrated that a decreased expression of the c-lectin-type 
inhibitory receptor, Siglec-7, on NK  cells occurs early during 
HIV-1 infection and precedes the loss of CD56 (74). Expression 
of Siglec-7 is not affected in long-term non-progressors (LTNP), 
and ART leads to a progressive restoration of NK-cell subsets 
(74). Paralleling the observations in HIV-1 infection, HCMV 
reactivation in patients undergoing umbilical cord blood 
transplantation has been shown to induce the expansion of the 
CD56−/CD16+/Siglec-7− NK-cell subset (38). The expansion of 
hypofunctional CD56− NK cells following HCMV reactivation 
likely occurs when T-cell immunity is impaired and may also 
reflect the modulating effects of HCMV. It remains to be deter-
mined whether the CD56−/CD16+ subset represents a subgroup 
of NK cells with adaptive features that has become anergic fol-
lowing repeated stimulation.

A number of other studies have reported a variable degree 
of perturbations in the NK-cell repertoire consistent with a 

dichotomous effect of viremia, including down-regulation of 
activating NK-cell receptors and up-regulation of expression 
of inhibitory NK receptors (iNKRs) (75–77). Collectively, these 
changes have been described to contribute to defective NK-cell 
function described in HIV-1 infection (76, 77). Although the 
HCMV serostatus is not always considered in these studies, it is 
plausible that these changes are biased by HCMV co-infection 
and possible reactivation with increasing immunosuppression. 
Along these lines, the observed down-regulation of NCRs, 
stable expression of NKG2D, and higher levels of CD85j and 
skewing of inhibitory KIRs (although not consistently reported) 
bear phenotypic resemblance to NK-cell subsets with adaptive 
features described in HCMV infection. NK cells in HIV-1 infec-
tion exhibit a higher ratio of CD57+ to CD57− due to the loss 
of CD57− cells in comparison to healthy controls; however, this 
comparison may be confounded by the HCMV status of these 
individuals, which was not reported (78). A shift toward a more 
mature terminally differentiated NK-cell phenotype is none-
theless supported by a study of HIV-1 infected individuals on 
effective ART, demonstrating that HCMV accelerates age-related 
increases in CD57 expression (79).

The most convincing evidence of the impact of HCMV co-
infection on the NK-cell repertoire in HIV-1 infection comes 
from reports on NKG2C expression. Guma et  al. originally 
proposed that HCMV co-infection is responsible for the 
expansions of NKG2C+ NK cells encountered in HIV-1 infected 
individuals (80). These findings were further supported by 
additional studies when the HCMV serostatus was taken into 
consideration (81, 82). The dramatic expansion of NKG2C+ 
NK  cells in HIV-1 infected individuals was accompanied 
by a decrease in the expression of NKG2A leading to a low 
NKG2A/C+ NK-cell ratio; these changes were attributed to 
concomitant infection and/or HCMV reactivation rather than 
being a consequence of HIV-1 infection alone (82). A number 
of reports describe NKG2C+ NK-cell expansions in several 
acute and chronic viral infections, being systematically associ-
ated with HCMV co-infection (83–86). Although the relative 
increase in the proportions of NKG2C+ NK  cells between 
HIV-1-infected and HIV-1-uninfected HCMV seropositive 
individuals varies between studies and cohorts (80, 81), the 
data suggest that the impact of HCMV exposure is potentially 
greater in HIV-1 infection. It has been suggested by animal 
models that the differentiation of adaptive NK cells is driven 
by inflammation (87). Thus, it is plausible that adaptive NK-cell 
expansions may be inflated in HIV-1 infected individuals, as a 
result of lack of immune control, ongoing immune activation 
and higher infectious burdens, including HCMV. One could 
speculate that the size of the HCMV imprint represents a 
compensatory mechanism in antiviral defense especially when 
T-cell-mediated control is impaired (88). It remains uncertain 
whether HCMV reactivation occurs alongside acute infection 
or alternatively whether pre-existing HCMV primed NK-cell 
subsets expand in response to secondary viral infection alone. 
HIV-1 causes down-regulation of HLA-A, B while retaining 
HLA-E expression (89, 90), similar to HCMV maintaining/
stabilizing HLA-E expression (91, 92). Thus, a direct effect 
of HIV-1 on NKG2C+ NK-cell expansion is conceivable. The 
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FiGURe 2 | Proposed model of the cumulative effect of human 
cytomegalovirus (HCMV) and ongoing immune activation on natural killer (NK) 
cells. Pre-existing HCMV-adapted NK cells expand during human 
immunodeficiency virus-1 infection to a variable degree depending on the 
tempo of HCMV reactivation, underlying level of immune activation, 
decreased T-cell-mediated control, and host genetics. HCMV co-infection 
accelerates NK-cell maturation and partly underlies the expansion of NK 
subsets with adaptive features in addition to the emergence of an aberrant 
CD56−CD16+ NK-cell subset. Whether these subsets become progressively 
dysregulated or exhausted remains to be determined.
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recently reported down-regulation of HLA-C by most primary 
HIV-1 clones (93) raises questions about the ability of HCMV 
expanded NKG2C+ NK  cells, preferentially expressing self-
HLA-C KIRs, to recognize “missing-self ” on HIV-infected 
targets compared to mature educated NK cells.

Open questions remain regarding not only the mechanism 
but also the clinical implications of such HCMV-NK-cell 
interaction in terms of protection against acquisition and 
HIV-1 disease progression. NKG2C deletions have been linked 
to a higher risk of contracting HIV-1, in addition to acceler-
ated disease progression and elevated pre-treatment viral load 
(94). Although these findings are interesting, this study did not 
report and correct for the influence of HCMV co-infection. 
One could speculate that the expansion of NKG2C+ NK cells in 
HCMV seropositive individuals may confer protection against 
primary HIV-1; this notion is however not supported by some 
older observations that prior infection with HCMV is associ-
ated with low CD4 count, progression to AIDS and increased 
mortality (95). It has been suggested that maturation leads to 
divergence and increased NK-cell receptor diversity was found 
to be associated with an increased risk of HIV-1 acquisition in 
a small cohort of high-risk women (96). Given that viral chal-
lenge may increase receptor diversity, further work is required 
to determine whether this represents reduced plasticity to new 
challenging pathogens or whether it is linked to other immune 
characteristics such as exhaustion. Recently, a subpopulation 
of PD1+ NK cells, mainly composed of fully mature NK cells, 
has been described in HCMV+ individuals (97). It would be 
of interest to assess whether NK  cells expanded in HCMV/
HIV-1 co-infection succumb to continuous stimulation and 
examine the factors that may contribute to the induction of PD1 
in this setting. PD1 signaling could therefore down-regulate 
not only T-cell-mediated responses but also innate responses, 
and this mechanism may be particularly prominent in HIV-1  
infection (98).

Conversely, a link between a mature NK-cell compartment 
(CD57+) and decreased levels of viral load and immune activa-
tion at the time of the primary HIV-1 infection has been reported. 
Those patients with a mature NK profile at inclusion showed a 
better early response to ART in comparison to patients with 
an immature NK profile (99). However, the HCMV serostatus 
of these individuals is not recorded and the status of NK  cells 
at the point of infection is not known. Whether mature CD57+ 
or NKG2C+CD57+ NK  cells represent adaptive NK  cells that 
contribute directly to better virus control during acute HIV-1 
infection and how their role evolves during chronic infection 
remain unclear.

In agreement with the findings in HCMV seropositive indi-
viduals, an NK-cell population that lacks FcεRI-γ expression and 
has superior ADCC activity has been identified in HIV-1 viremic 
individuals and shown to persist following virological suppres-
sion with ART (100, 101). This subset shares some phenotypic 
characteristics with adaptive NK cells induced by HCMV (100). 
Although this subset is associated with HCMV antibody levels in 
the general population, in HIV-1-infected individuals correlates 
with inflammatory markers (100). The long-term effects of expan-
sion of FcεRI-γ-deficient NK cells in HIV-1 infection needs to 

be further elucidated given a possible role in tumor surveillance. 
Nonetheless, the identification of a subset with enhanced ADCC 
activity in HIV-1 infection has potentially important implications 
for the design of vaccine strategies aimed at generating ADCC-
promoting antibody responses.

These collective data demonstrate that a number of the phe-
notypic NK-cell features described in HIV-1 bear the trademarks 
of HCMV infection (Figure 2). With increased definition of the 
assortment of NK-cell subsets with adaptive features driven by 
HCMV infection and the increased appreciation of HCMV in 
driving ongoing immune activation even during effective ART, 
it would be important to reassess the NK-cell repertoire com-
position, their response potential in different phases of infection 
and stimulus-dependent functional properties. A comprehen-
sive analysis of the transcriptional signatures and epigenetic 
modifications of NK cells in HIV-1 infection is lacking and worth 
exploring.

COnCLUDinG ReMARKS AnD FUTURe 
PeRSPeCTiveS

The potent effector function of NK  cells and the rapidity of 
NK-cell response have identified them as key areas for research. 
Recent reports about the diversity of NK-cell repertoire and abil-
ity to assume adaptive features in response to HCMV infection 
and even display memory-like responses to cytokines (102) and 
antigen-specific responses in primates (8) have opened up pros-
pects for the generation of new therapies. HCMV co-infection 
is highly prevalent in HIV-1 infected cohorts and remains an 
important cofactor in disease progression even in the era of ART. 
Both HIV-1 and HCMV as well as immune activation can further 
shape NK-cell responsiveness and differentiation. It is therefore 
important to capture the diversity of the NK-cell repertoire 
and identify potentially novel adaptive signatures of NK-cell 
subsets with preserved activation pathways. Whereas a number 
of questions remain regarding the epigenetic diversification, 
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development, and persistence of NK cells with adaptive proper-
ties, elucidating how clonal NK-cell populations can be directed 
or reshaped will critically inform our ability to harness NK cells 
toward a therapeutic goal.
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