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Inefficient and abnormal clearance of apoptotic cells (efferocytosis) contributes to 
systemic autoimmune disease in humans and mice, and inefficient chromosomal 
DNA degradation by DNAse II leads to systemic polyarthritis and a cytokine storm. By 
contrast, efficient clearance allows immune homeostasis, generally leads to a non-in-
flammatory state for both macrophages and dendritic cells (DCs), and contributes to 
maintenance of peripheral tolerance. As many as 3 × 108 cells undergo apoptosis every 
hour in our bodies, and one of the primary “eat me” signals expressed by apoptotic 
cells is phosphatidylserine (PtdSer). Apoptotic cells themselves are major contribu-
tors to the “anti-inflammatory” nature of the engulfment process, some by secreting 
thrombospondin-1 (TSP-1) or adenosine monophosphate and possibly other immune 
modulating “calm-down” signals that interact with macrophages and DCs. Apoptotic 
cells also produce “find me” and “tolerate me” signals to attract and immune modulate 
macrophages and DCs that express specific receptors for some of these signals. 
Neither macrophages nor DCs are uniform, and each cell type may variably express 
membrane proteins that function as receptors for PtdSer or for opsonins like comple-
ment or opsonins that bind to PtdSer, such as protein S and growth arrest-specific 6. 
Macrophages and DCs also express scavenger receptors, CD36, and integrins that 
function via bridging molecules such as TSP-1 or milk fat globule-EGF factor 8 protein 
and that differentially engage in various multi-ligand interactions between apoptotic 
cells and phagocytes. In this review, we describe the anti-inflammatory and pro-ho-
meostatic nature of apoptotic cell interaction with the immune system. We do not 
review some forms of immunogenic cell death. We summarize the known apoptotic cell 
signaling events in macrophages and DCs that are related to toll-like receptors, nuclear 
factor kappa B, inflammasome, the lipid-activated nuclear receptors, Tyro3, Axl, and 
Mertk receptors, as well as induction of signal transducer and activator of transcription 
1 and suppressor of cytokine signaling that lead to immune system silencing and DC 
tolerance. These properties of apoptotic cells are the mechanisms that enable their 
successful use as therapeutic modalities in mice and humans in various autoimmune 
diseases, organ transplantation, graft-versus-host disease, and sepsis.
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iNTRODUCTiON

Inefficient clearance of apoptotic cells contributes to systemic 
autoimmune disease in humans and mice (1–6), and inefficient 
chromosomal DNA degradation by DNAse II leads to systemic 
polyarthritis and a cytokine storm (7, 8). By contrast, efficient 
clearance allows immune homeostasis, generally leads to a 
non-inflammatory state for both macrophages and dendritic 
cells (DCs), and contributes to maintenance of peripheral toler-
ance (9–12).

As many as 3 × 108 cells undergo apoptosis every hour in our 
bodies (13), where they are engulfed by macrophages and imma-
ture DCs and possibly by neighboring cells. What are the signal-
ing patterns that induce these non-inflammatory responses?

Apoptotic cells characteristically expose “eat me” signals to 
macrophages (14, 15), and one of the primary “eat me” signals 
is phosphatidylserine (PtdSer). PtdSer is a phospholipid that 
localizes to the inner leaflet of plasma membranes in viable 
cells; however, when cells undergo apoptosis, it is exposed on 
the outer cell surface in a caspase-dependent manner (16–18). 
Other “eat me” signals exist and make important contributions 
to the process, including calreticulin from the dying cell endo-
plasmic reticulum and externally exposed chromatin and DNA, 
as well as alterations in surface charge and changes in glycosyl 
groups (19–21).

Apoptotic cells also produce “find me” signals to attract mac-
rophages (22). Lysophosphatidylcholine (LPC) (22), fractalkine 
(23), sphingosine-1-phosphate (S1P) (24), and ATP/UTP (25) 
are released from apoptotic cells in a caspase-dependent manner. 
They also contribute to the “anti-inflammatory” nature of the 
engulfment process by secreting “tolerate me” signals via throm-
bospondin-1 (TSP-1) secretion (26) or “calm-down” signals 
via adenosine monophosphate (AMP) (27) and possibly other 
immune modulation signals yet to be discovered.

Another mechanism for immune modulation by apoptotic 
cells involves the caspase-dependent oxidation and deactiva-
tion of deactivation of high mobility group box 1 (HMGB1), 
a strong trigger of danger-associated-molecular-pattern 
(DAMP) that causes inflammatory responses (28). Similarly, 
in the context of viral infection, caspases can modify the 
mitochondria-initiated cell death process and inhibit the 
interferon (IFN) response, switching the result of the dying 
process from pro-inflammatory to immunologically silent  
(29, 30). Since the activation of caspases is not a necessary con-
dition for apoptosis, it could be that caspase activation, which 
drives the apoptotic program toward tolerogenic consequences, 
is another way that apoptotic cells “instruct” the cells clearing 
them regarding the nature of their death (31).

Neither macrophage subpopulations or DCs are “uniform” 
and each cell type may variably express membrane proteins that 
function as receptors for PtdSer (Tim-4, stabilin 2, and BAI1), or 
for opsonins that bind to PtdSer, milk fat globule-EGF factor 8 
protein (MFGE8), ProS, and growth arrest-specific 6 (GAS6) (14). 
Masking the PtdSer on apoptotic cells prevents their engulfment 
by macrophages and induces autoantibodies (4) and inflamma-
tion (32), supporting the idea that PtdSer is not only an important 
“eat me” signal but also a “tolerate me” signal. Macrophages also 

express integrins that function via bridging molecules such 
as TSP-1, MFGE8, and complement (2, 9, 33). These integrins 
can contribute to both phagocytosis and inhibition of a pro-
inflammatory immune response, for example, by scavenger 
receptor (ScR) SCARF1 (34), the immunoglobulin superfamily 
member leukocyte-associated Ig-like receptor 1 (CD305) (35), 
CD11b or CD11c (2, 9, 36), other ScRs, CD36, and possibly addi-
tional receptors that are important in multi-ligand interactions 
between apoptotic cells and phagocytes (2, 19, 26, 37). In addition, 
“cross-talk” exists and, for example, C1q-dependent induction of 
opsonins Gas6 and Protein S has been described (38, 39).

Macrophages express specific receptors for some of these 
“find me” signals (CX3CR1 for fractalkine, aS1PR1 for S1P, and 
P2Y2 for ATP and UTP), which may mediate migration to the 
dying cells (15). The “find me” signals are thought to prime mac-
rophages for engulfment, as best exemplified by the enhanced 
expression of MFGE8 (40). On the other hand, some “find 
me” signals, for example, LPC, ATP/UTP, and S1P, may cause 
inflammation (41–43), contradicting the anti-inflammatory 
nature of the apoptotic process. How is the anti-inflammatory 
character of the apoptotic process maintained during cell death 
and engulfment? We will discuss several signaling patterns that 
have been identified.

Other modes of cell death that are immunogenic (44), includ-
ing accidental cell death (necrosis), necroptosis, pyroptosis,  
and NETosis (45), will not be discussed here.

SiGNALiNG iNHiBiTiON OF TOLL-LiKe 
ReCePTORS (TLRs), NUCLeAR FACTOR 
KAPPA B (NF-κB), AND THe 
iNFLAMMASOMe

Toll-Like Receptors
Toll-like receptors are membrane-associated innate immune 
sensors that recognize conserved microbial-associated mole cular 
structures of invading pathogens. A classic example is lipopoly-
saccharide (LPS), which is expressed by Gram-negative bacteria 
that binds to TLR4 and induces pathogen-associated molecular 
patterns (PAMPs). What is mostly relevant to this review is that 
TLRs also detect host-derived, danger-associated molecular 
patterns (DAMPs) and alarmins that can be produced during 
immunogenic programmed cell death or cell necrosis, including 
HMGB1 and endogenous RNA and DNA that are normally hid-
den in TLR-inaccessible compartments but become exposed and 
are released during cell stress, inflammation, infection, or non-
apoptotic death (46–48). TLRs are expressed by macrophages and 
DCs that are specifically important for interaction with apoptotic 
cells, but they are also expressed by natural killer (NK) cells, mast 
cells, and T- and B-lymphocytes, as well as by some non-immune 
cells, such as epithelial and endothelial cells (46–48).

Importantly, apoptotic cells downregulate the response to TLR 
receptors on both macrophages and DCs (9, 49–51). For ligand 
detection and co-receptor interactions, TLRs contain an ectodo-
main with multiple leucine-rich repeat domains involved in a por-
tion of the transmembrane, and an intracellular toll/IL-1 receptor 
(IL-1R) homology domain (TIR) essential for signaling (46–48).
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Toll-like receptors are expressed on the plasma mem-
brane (e.g., TLR1, TLR5, TLR6, and TLR10), in intracellular 
endosomes (e.g., TLR3, TLR7–9, and TLR11), or in both com-
partments (e.g., TLR2 and TLR4) (52), and TLR localization 
critically regulates its signaling where the initial step following 
binding is recruitment of adaptor proteins. The two main known 
pathways are myeloid differentiation primary response gene 
88 (MyD88)- and TIR-domain-containing adapter inducing 
interferon β (TRIF)-dependent. All TLRs except TLR3 use the 
MyD88-dependent pathway to initiate signaling, whereas TLR3 
and TLR4 use the TRIF-dependent pathway to elicit induction of 
both pro-inflammatory cytokines and type I IFNs (52).

After recruitment to TLRs, MyD88 molecules cluster and 
recruit interleukin-1 (IL-1) receptor-associated kinases (IRAKs) 
through homotypic death–death domain interactions (53).  
An alternatively spliced form of MyD88 (MyD88s) lacks a short 
linker sequence between the death- and TIR domains. It binds 
to the TIR domain of TLRs but fails to recruit IRAK1, thereby 
inhibiting signaling (54).

Expression of other regulatory kinases within the IRAK 
family is induced following TLR signaling. Increased expres-
sion of IRAK-M or alternatively spliced variants of IRAK1 
(e.g., IRAK1c) suppresses TLR signaling (55, 56). IRAK-M was 
originally reported to prevent dissociation of IRAK and IRAK4 
from MyD88, and to block engagement of TRAF6, inhibiting 
signaling (56); however, later studies demonstrated the ability of 
IRAK-M to engage a separate MEK kinase 3-dependent signal-
ing pathway for NF-κB activation. This pathway leads to IκB-a 
phosphorylation, but not degradation, and controls a limited set 
of inflammatory cytokines and negative regulators [suppressor 
of cytokine signaling (SOCS) 1, SHIP-1, A20] whose expres-
sion is not controlled by mRNA stability (57). IRAK1c is an 
alternatively spliced form of IRAK that lacks a region encoded 
by exon 11 of the IRAK1 gene, resulting in a kinase-inactive 
form of IRAK (55, 56). IRAK1c can heterodimerize with IRAK, 
thereby fine-tuning the level of IRAK activity. Activator proteins 
engaged in MyD88- and TRIF-dependent signaling pathways 
also become phosphorylated, and these events play a critical role 
in TLR signaling.

Apoptotic cells were shown to downregulate TLR signaling 
events by us and by other groups, with effects on LPS-TLR4, 
zymosan-TLR2, and possibly other events (9, 37, 49, 50, 58, 59).  
Inhibition of TLR signaling after in  vivo apoptotic cell admin-
istration has been clearly demonstrated in mouse models  
(36, 59, 60). Taken together, this strongly supports the impact 
of apoptotic cells on the inhibition of TLR signaling pathways 
in different innate immune cell subsets. On the other hand, in 
some abnormal conditions where pathogenic autoantibodies 
opsonize self-antigens and apoptotic debris, immune complexes 
are formed and bind to TLR 7 and TLR 9 and trigger the produc-
tion of IFN-α, a hallmark of SLE (61, 62).

Nuclear Factor Kappa B
Nuclear factor kappa B is a major transcription factor that has 
been implicated as a critical regulator of gene expression in the 
setting of inflammation. NF-κB is ubiquitously expressed and is 
activated by a wide variety of stimuli, including pro-inflammatory 

cytokines such as tumor necrosis factor-α (TNFα) and IL-1, 
bacterial- or viral-derived PAMPs, and various types of stress 
(63, 64).

The NF-κB family consists of five DNA-binding members. 
NF-κB1 is synthesized as p105 and is processed into a DNA-binding 
subunit, p50 (65). Likewise, NF-κB2 is produced as p100, which 
serves as a precursor for the active transcription factor p52. p50  
and p52 form various combinations of heterodimers with RelA 
(p65), c-Rel, and RelB. These DNA-binding complexes target dis-
tinct sets of genes for transcriptional activation (66). In addition, 
RelA and c-Rel can also activate gene transcription as homodimers 
(67). By contrast, p50 homodimers, which lack transactivation 
function, can instead suppress NF-κB target gene expression,  
for example, in response to stimulation by LPS (68, 69).

Depending on the extracellular stimuli and the receptors 
engaged, NF-κB activation mechanisms can be broadly clas-
sified into canonical and non-canonical pathways (70). In the 
absence of extracellular stimuli, transcriptional activity of NF-κB 
transcription factors is normally kept in check by sequestra-
tion in the cytoplasm (71). Following activation, the transient 
transcriptional activity of NF-κB is maintained by several 
mechanisms to prevent inflammation-induced tissue damage or 
malignancy associated with chronic NF-κB activation (72). IκBa 
is induced in an NF-κB-dependent manner, which contributes to 
the termination of NF-κB signaling in a negative feedback loop 
(73). In addition, p100, which also serves as an IκB-like protein 
termed “IκBd,” plays a critical role in terminating NF-κB activ-
ity (71). Activation of the canonical NF-κB pathway depends 
on the IKK complex, which contains two catalytic subunits 
(IKKα and IKKβ) and a regulatory subunit NEMO/IKKc (74). 
Catalytically active IKKβ phosphorylates IκBα, signaling its 
ubiquitination and proteasomal degradation (75) in response to 
various stimuli, including TNF receptor 1, IL-1R, and TLRs. By 
contrast, non-canonical NF-κB pathway activation is mediated 
by IKKα, which phosphorylates p100. This is followed by partial 
p100 degradation to generate p52 in response to stimulation via 
certain TNFR family members such as B  cell-activating factor 
receptor (BAFF-R), CD40R, and lymphotoxin-β receptor (76).

The ubiquitin-editing enzyme A20 complex is a negative 
regulator of canonical NF-κB signaling. Mice lacking A20 
develop severe inflammation and cachexia, and die prematurely 
(77). These mice exhibit persistent NF-κB and IKK activation 
and severe systemic inflammation in response to TNFα and 
sublethal doses of LPS (77). Thus, A20 is an important negative 
feedback regulator of NF-κB required for immune homeostasis. 
Liberated NF-κB dimers from IκBα and IκBδ translocate to the 
nucleus and activate transcription of various genes involved in 
innate and adaptive immunity (78). Deletion of A20 in DC leads 
to the development of pathologies in mice similar to those seen 
in humans with inflammatory bowel disease (IBD) and SLE, 
including autoantibodies, splenomegaly, nephritis, colitis, and 
even ankylosing spondylitis (79–81). Similarly, humans who 
have been identified to have mutations in the Tnfaip3 gene that 
encodes A20 show auto-inflammation (82, 83). Most important, 
apoptotic cell uptake by A20-deficient DC fails to inhibit pro-
inflammatory cytokine production in response to LPS (79) and 
A20 expression is upregulated in small intestinal lamina propria 
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CD103+ DC in response to apoptotic IEC (84). Furthermore, 
small intestinal lamina propria CD103+ DC induction of A20 
in response to apoptotic cells (84) shuts down both apoptotic 
cell phagocytosis and inflammation, and thus may limit the 
supply of self-antigen and its presentation in an inflammatory  
context (85).

Lipopolysaccharide-induced cytokine production is mainly 
mediated by activation of NF-κB, MAPKs, and IRF-3, and by 
induction of a type I IFN-mediated, signal transducer and 
activator of transcription 1 (STAT1)-dependent autocrine loop. 
Our group has suggested that the mechanism for apoptotic cell 
inhibition of pro-inflammatory cytokines, as originally showed 
by Fadok et al. and Voll et al. (49, 58), is due to inhibition of 
TLR and NF-κB signaling (37, 59) and inflammasome for IL-1β 
(86) (see below). Inhibition of NF-κB by apoptotic cells has been 
shown by others (87, 88) and by our team (37, 59, 86), and it 
is suggested that nuclear migration of p65 is inhibited at the 
transcriptional or post-transcriptional level (37, 86). In addi-
tion, Mer receptor tyrosine kinase (RTK) (MerTK, see below) 
was also found to activate the phosphatidylinositol 3-kinase/
AKT pathway, which negatively regulates NF-κB (89).

inflammasome
Inhibition of NF-κB could not explain very rapid inhibition of 
IL-1β secretion by apoptotic cells (37); thus, additional mecha-
nisms remained unexplained.

IL-1β is a pro-inflammatory cytokine produced primarily 
by activated monocytes and macrophages that is involved in 
the regulation of immune responses as well as the pathogenesis 
of several acute and chronic inflammatory diseases. Release of 
IL-1β is mediated by a two-step process: first, transcriptional 
induction of pro-IL-1β, and then caspase 1-mediated cleavage 
for the generation and secretion of IL-1β (86). Inflammasomes 
are high-molecular-weight cytosolic complexes that mediate the 
activation of caspase 1 and therefore enable rapid secretion of 
IL-1β and IL-18, which already exist as pro-cytokines. There 
are many inflammasomes, and each is influenced by a unique 
pattern recognition receptor response. Two signals are typically 
involved in inflammasome pathways (90). Signal one involves 
recognition of PAMPs or DAMPs that interact with TLRs, thus 
inducing downstream production of pro-IL-1β. This is followed 
by signal two, which involves recognition of PAMPs or DAMPs 
made by cells such as uric acid or ATP via nucleotide-binding 
domain, leucine-rich-containing family (NLR) pyrin domain-
containing-3 (NLRP3), which leads to caspase-1-dependent 
cleavage of pro-IL-1β to active IL-1β. Both PAMPs and DAMPs 
can be liberated by early insults. The consequence of inflam-
masome activation and IL-1β expression is the upregulation 
of adhesion molecules and chemokines, leading to neutrophil 
sequestration, mononuclear phagocyte recruitment, and T cell 
activation.

Apoptotic cells were shown by us to inhibit TLRs and the 
NF-κB pathway (37, 59). TLR triggering is important for 
enhanced transcription of pro-IL-1β and pro-IL-18, and is in fact 
needed for the effect, but is not sufficient for rapid IL-1β secre-
tion. We were able to show that apoptotic cells inhibit secretion 
of activated IL-1β at both pre- and post-transcription levels, and 

have distinct inhibition effects on NF-κB and NLRP3 (86). The 
dextran sulfate sodium (DSS) colitis model is generally viewed as 
an epithelial damage model suited to investigate innate immune 
responses. Macrophages primed with LPS and subsequently 
exposed to DSS secrete high levels of IL-1β in an NLRP3-, ASC-, 
and caspase-1-dependent manner. The DSS murine model and 
Nlrp3-deficient mice were used by us to assess the effect apop-
totic cells on colitis. Immunohistochemistry, flow-cytometry, 
and Western blots helped to explore the effect and mechanisms. 
Using a variety of NLRP3 triggering mechanisms, we showed that 
apoptotic cells negatively regulate NF-κB and NLRP3 activation 
at the pre- and post-transcription levels via inhibition of reac-
tive oxygen species (ROS), lysosomal stabilization, and blocking 
potassium efflux. This property of apoptotic cells was associated 
with a dramatic clinical, histological, and immunological ame-
lioration of DSS colitis in Balb/c and B6 mice following a single 
administration of apoptotic cells (86).

Apart from apoptotic cell opsonization, MFGE8 was also 
found to be an endogenous inhibitor of inflammasome-induced 
IL-1β production (91). MFGE8 inhibited necrotic cell-induced 
and ATP-dependent IL-1β production by macrophages through 
mediation of integrin β3 and P2X7 receptor interactions in 
primed cells. itgb3 deficiency in macrophages abrogated the 
inhibitory effect of MFGE8 on ATP-induced IL-1β production. 
Furthermore, in a setting of post-ischemic cerebral injury in 
mice, MFGE8 deficiency was associated with enhanced IL-1β 
production and larger infarct size. The latter was abolished after 
treatment with IL-1β receptor antagonist. MFGE8 supplementa-
tion significantly dampened caspase-1 activation and IL-1β 
production and reduced infarct size in wild-type (WT) mice,  
but did not limit cerebral necrosis in IL-1β-, Itgβ3-, or P2rx7-
deficient animals.

What is the mechanism by which apoptotic cells inhibit 
inflammasome? We could show the involvement of three 
mechanisms in the resolution by apoptotic cells of inflamma-
some-induced inflammation (86). First, other groups (92, 93)  
and our lab (86) have shown that apoptotic cells are able to 
reduce and inhibit the formation of ROS at rates similar to 
those shown for the chemical inhibitor N-acetyl cysteine. It 
is well established that macrophages make use of toxic ROS 
to control microbial pathogens as part of the innate immune 
response, and ROS were identified as major mediators of 
inflammatory signals believed to play a role in the development 
of IBD. Furthermore, generation of ROS was found to induce 
IL-1β via ERK phosphorylation (94). In addition, IL-1β signals 
may induce ROS generation (95). While it has been shown 
that DSS induces formation of ROS (96, 97), we were able to 
see a marked reduction in ROS generation, and consequently 
less IL-1β secretion, when macrophages were pretreated with 
apoptotic cells (86).

The second mechanism involves the lysosome. It was shown 
that lysosomal damage or leakage may serve as an endogen-
ous danger signal and is sensed by the NLRP3 inflammasome  
(96, 98). We have analyzed involvement of the lysosome vac-
uole and were first to discover that lysosomes from peritoneal  
macrophages that were introduced to apoptotic cells were more 
stable to DSS challenge, and were not affected or damaged (86).
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Inflammasomes were also suggested to be activated in res-
ponse to signaling pathways that deplete intracellular potas-
sium, such as the potassium ionophore nigericin pathway (99). 
We noted that when macrophages were pretreated with apop-
totic cells, nigericin-induced IL-1β secretion was significantly 
inhibited. The mechanisms for apoptotic cell inhibition of this 
secretion are not clear.

Taken together, these results demonstrate a mechanism of 
inflammasome inhibition and resolution of inflammation stem-
ming from apoptotic cell clearance and illustrate a mechanism 
for regulation of inflammation that could take place in both 
infectious and noninfectious inflammatory conditions.

Additional related possible mechanisms include a functional 
subgroup of NLRs that negatively regulate inflammation (100), 
including the possible effect of apoptotic cells on NLRP12. 
This suppressor of pro-inflammatory cytokine and chemokine 
production downstream of TLRs targets multiple points in 
the NF-κB pathway. However, it is clear that failure to clear 
apoptotic cells will trigger persistent inflammasome-dependent 
inflammation, as perhaps is seen in failure to clear intracellular 
organelles (101).

LiPiD-ACTivATeD NUCLeAR ReCePTORS

Nuclear receptors are transcription factors that regulate gene 
transcription in response to their ligand and include lipids, 
vitamins, and hormones. They suppress or activate transcrip-
tion, allowing regulation diverse biological functions that 
include cytokine production, lipid metabolism, and more (102). 
Following internalization of apoptotic cells, lipids, carbohy-
drates, protein, and nucleotides are acquired from the apoptotic 
cell. This content was suggested to be a significant metabolic bur-
den on the phagocyte (103) and may also influence its immune 
response.

Several studies have shed light on the metabolic changes 
macrophages undergo to restore normal cellular function and 
homeostasis following apoptotic cell ingestion. Macrophages 
and DCs express several nuclear factors, most with a role in 
clearance of apoptotic cells, including peroxisome proliferator-
activated receptor (PPAR)-α, -β/δ and -γ isotypes, liver x 
receptor (LXR) α and β isotypes, retinoid x receptor (RXR) α 
and β isotypes, retinoic acid receptor, vitamin D receptor, and 
glucocorticoid receptor (104). The putative natural ligands of 
LXR are oxysterols, which have been suggested to arise from 
the lipids derived from apoptotic cell/body membranes. This 
exemplifies the anti-inflammatory effects of the PPAR and LXR 
receptors (104).

Mukundan et  al. (105) and A-Gonzalez et  al. (106) showed 
how lipids in apoptotic cells induce activation of the transcrip-
tion factors PPAR-δ and LXR, respectively. Activation of these 
transcription factors results in macrophage upregulation of cell 
surface receptors and soluble ligands that suppresses inflamma-
tory cytokine production and promotes removal of apoptotic 
cells. In their absence, apoptotic cell clearance is impaired and a 
lupus-like autoimmunity develops.

Concerning the mechanism of action, like other members of 
the same nuclear receptor family, PPAR-δ and LXR heterodimerize 

with the RXR to regulate transcription of target genes. Depending 
on the presence of corepressors or coactivators, these dimeric 
transcription factors can either suppress or initiate transcription 
(107).

Mukundan et  al. (105) showed that the lipids contained in 
apoptotic cells activate PPARs. They observed that PPAR-δ, but 
not PPAR-ϒ, was induced in macrophages after exposure to 
apoptotic cells. Furthermore, macrophages obtained from mice 
deficient in PPAR-δ showed reduced engulfment of apoptotic 
cells and impaired clearance of apoptotic cells in vitro and in vivo. 
To prove that these changes were due to defects in macrophages, 
they created mice that were PPAR-δ-deficient exclusively in 
macrophages and observed similar defects in clearance of apop-
totic cells, but not of necrotic cells.

A-Gonzalez et al. (106) observed that knockout of the genes 
encoding both the α and β chains of LXR led to defective 
phagocytosis of apoptotic cells. They then identified candidate 
genes responsible for this defect by microarray. In contrast to 
the reduced expression of opsonins observed with PPAR-δ 
deficiency, loss of LXR led to a marked reduction in the expres-
sion of the macrophage receptor Mer (see below), which binds 
either the GAS6 or Pro S opsonins. Both of these opsonins 
attach to PtdSer on apoptotic cells, resulting in apoptotic cell 
engulfment. Experimental support for regulation of Mer by LXR 
was obtained by detection of LXR binding to the promoter of 
Mertk (which encodes Mer) by gain of function experiments and 
by demonstration of increased phagocytosis of apoptotic cells 
after macrophage stimulation with the synthetic LXR agonist 
GW3965. The findings suggest that, after the ingestion of apop-
totic cells, oxysterols (oxidized derivatives of cholesterol) activate 
transcription of Mer by LXR and like PPAR-δ. This transcription 
factor enhances the clearance of dying cells (104).

Macrophage activation via adenosine receptors is followed by 
the upregulation of TSP-1 and Nr4a gene expression, especially 
of Nur77, NOR-1, and Nurr1. TSP-1 is the major activator of 
TGFβ (108) and Nr4a family members inhibit the expression 
of pro-inflammatory cytokines such as TNFα, IL-8, and IL-6 in 
macrophages (109) by recruiting a repressor complex to their 
promoter (110). Yamaguchi et  al. (27) found that AMP was 
present at 30- to-100-fold higher concentrations than ATP in 
the culture supernatants of apoptotic thymocytes and a T  cell 
line. When cells undergo apoptosis, ATP is quickly hydrolyzed 
to AMP, while its generating system is inactivated by caspases 
(111). The caspase-cleaved Pannexin channel also contributes to 
cellular loss of ATP by allowing ATP to exit cells through the 
plasma membrane. Chekeni et  al. (112) showed that caspases 
cleave Pannexin 1 in the early stages of apoptosis, resulting in the 
release of ATP, which can serve as a “find me” signal to attract 
macrophages. Depending on the types of cells and apoptotic 
stimuli, intracellular ATP levels remain high (113–115) or rapidly 
decrease (116, 117).

iNHiBiTiON OF iNFLAMMATiON BY Tyro3, 
Axl, AND Mertk (TAM) ReCePTORS

Early indications that these RTKs may have an important 
immune function came from observations made in studies by 
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Camenisch et al. (118), who used Mertk−/− mice. These mice had 
an approximately threefold enhancement of serum TNFα when 
administered 100 mg/kg of LPS in vivo. In 2001, Lu and Lemke 
(119) further characterized RTK’s role in the immune system by 
using mice that were triple knockout for TAM receptors Tyro3−/− 
Axl−/− Mertk−/− (TAM RTK). These TAM RTK animals did not 
present with serious developmental anomalies and appeared 
normal (119). They had apparently normal immune systems 
with no differences in the size of the secondary lymphoid organs,  
and their role in inflammation was only clarified later.

The TAM receptors were originally discovered by Lai and Lemke 
(120). TAM receptors are key inhibitors of the immune system 
(121). Diverse immune cells in humans and mice express TAM 
components and are severely perturbed if their TAM-dependent 
cellular pathways are ablated (122). TAM signaling provides an 
indispensable inhibitory feedback mechanism responsible for 
safeguarding the shutdown of inflammation and promotion of 
tissue-repair processes. Blocking TAM signaling causes severe 
defects in apoptotic cell clearance, widespread inflammation, 
overactivation of the immune system, and development of sys-
temic autoimmunity (123, 124).

TAM receptors are activated via two known mediators,  
ProS and GAS6 (125). Both bind to apoptotic cells and there after 
mediate ligation to TAM receptors. Both are Gla domain-con-
taining proteins, i.e., proteins containing gamma-carboxylated 
glutamic acid residues. The gamma-carboxylation of glutamate 
residues vastly increases their ability to bind Ca2+. GAS6 and ProS 
contain Gla domains consisting of ~50 amino acids stretched 
near their N termini. Gamma-carboxylation and PtdSer binding 
are essential for the maximal bioactivity of both full-length TAM 
ligands (126–129). For example, ProS has a cofactor activity; 
its ability to activate the TAM RTKs is dependent on gamma-
carboxylation of the GLA domain and binding to PtdSer (130).

The current thought is that TAM RTKs are significantly 
upregulated as part of a pro-inflammatory response, for exam-
ple, TLR engagement. However, in the case of apoptotic cell 
clearance there may be direct signaling following receptor 
binding. For example, and as mentioned earlier, A-Gonzalez 
et al. (106) observed that knockout of the genes encoding both 
the alpha and beta chains of LXR led to a marked reduction in 
the expression of Mer. Experimental support for regulation of 
Mer by LXR was obtained by detection of LXR binding to the 
promoter of Mertk, which encodes Mer, by gain of function 
experiments and demonstration of increased phagocytosis of 
apoptotic cells after macrophage stimulation with the synthetic 
LXR agonist. The findings suggest that, after the ingestion of 
apoptotic cells, oxysterols (oxidized derivatives of cholesterol) 
activate transcription of Mer by LXR and like PPAR-δ.

iNHiBiTiON OF iFNs BY SOCS 1/3 
UPReGULATiON

Type ii iFN
The phenotype that defines activated macrophages and DCs is 
characterized by increased microbicidal or autoimmune activ-
ity, high antigen-presenting activity associated with increased 

MHC class II expression, and increased production of IL-12 
(131). These characteristics are promoted by an IFNγ-mediated 
Janus kinase signal transducer and activator of transcription 
(JAK-STAT) signaling. Stimulation of the IFNγ receptor triggers  
JAK-mediated tyrosine phosphorylation and subsequent dimeri-
zation of STAT1, which binds as a homodimer to elements known 
as gamma-activated sequences in the promoters of the genes 
encoding NOS2, the MHC class II transactivator, and IL-12, 
among others (132).

We were the first to show that clearance of apoptotic cells 
inhibits type II IFN (human γ-IFN) signaling by upregulation 
of SOCS (59). We showed that interaction of macrophages with 
apoptotic cells had no activation effect for MAPKs p38, JNK, or 
ERK1/2 (59). By contrast, apoptotic cells suppressed the LPS-
induced IFN-mediated autocrine loop by attenuating STAT1 
activation and suppressing IFN activation of STAT1-dependent 
genes such as CXCL10 (133, 134). It has been suggested that 
apoptotic cell induction of SOCS1 and SOCS3 expression con-
tributes to suppression of IFN-induced gene expression (135), 
and thus suppresses JAK-STAT signaling and IFN-mediated 
responses downstream of TLR4.

Interferon-γ is a key activator of macrophages and is mainly 
produced by NK cells, Th1 cells at later stages of the immune 
response, and chimeric antigen receptor T cells. STAT1 mediates 
most of the IFN-γ activating effects on macrophages. We ana-
lyzed the effect of apoptotic cells on the IFN-γ signaling pathway 
in macrophages both in vitro and in vivo. We found that IFN-γ 
induced STAT1 activation at both the tyrosine phosphorylation 
and DNA-binding levels, and was significantly inhibited in 
macrophages that had interacted with apoptotic cells in  vitro 
and in  vivo in a chemically induced peritonitis murine model 
of inflammation. Inhibition of STAT activation was somewhat 
selective for STAT1 relative to STAT3, which is activated by 
IL-10 and is strongly anti-inflammatory. This selective inhibi-
tion pattern of cytokines and STATs would have the net effect of 
suppressing inflammatory macrophage activation while leaving 
deactivation pathways intact.

Suppressor of cytokine signaling ubiquitin ligases are res-
ponsible for downregulation of the immune response through the 
turnover of molecules that function in critical, positive, regula-
tory signaling cascades such as the TLR, NF-κB, and JAK-STAT 
pathways (136). Substrates of SOCS1 and SOCS3 include MAL, 
TRAFs, and JAKs.

Type i iFN
Rothlin and Lemke showed later that the TAM RTK-dependent 
upregulation of SOCS required the type I IFN receptor and 
STAT1 (89). Consistent with a central role for TAM RTK in the 
negative regulation of inflammation, the upregulation of SOCS by 
type I IFNs was contingent on TAM RTK. SOCS1 induction by 
IFN-α was significantly reduced in TAM RTK TKO DCs (89). Axl 
mRNA was induced by type I IFNs produced downstream of TLR 
activation (89, 137, 138), indicating that the braking mechanism 
is not available at the onset of the immune response but only 
following its initiation.

The mechanism of TAM RTK action in type I IFNs involves 
upregulation of the SOCS proteins SOCS1 and SOCS3 (89). 
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Consistent with a central role for TAM RTK in the negative 
regulation of inflammation, the upregulation of SOCS by type I 
IFNs was contingent on TAM RTK. SOCS1 induction by IFN-α 
was significantly reduced in TAM RTK TKO DCs (89). It was 
suggested that TAM RTKs can complex with type I IFN receptors 
and modify STAT function (89), potentially by altered phos-
phorylation. An additional mechanism of TAM RTK-mediated 
inhibition of inflammation includes upregulation of the tran-
scription factor twist, which in turn leads to downregulation of 
TNFα (138).

Lipopolysaccharide-induced cytokine production is mainly 
mediated by activation of NF-κB, MAPKs, and IRF-3, and by 
induction of a type I IFN-mediated STAT1-dependent autocrine 
loop (139).

Taken together, these observations illustrate tight negative 
regulation of type I (89) and II (59) IFN pro-inflammatory 
signaling.

APOPTOTiC CeLLS AND MAiNTeNANCe 
OF PeRiPHeRAL TOLeRANCe

Recognition of an autoantigen by the T cell receptor (TCR) is 
the capability that distinguishes autoreactive T cells from other 
T  cell subsets. The TCR repertoire is generated in immature 
T  cells in a relatively random manner, and some TCRs rec-
ognize self-antigens. The majority of T cell clones with high-
affinity TCRs that recognize self are deleted as a consequence 
of self-antigen presentation by thymic epithelial cells (140). 
Thymic selection is imperfect; therefore, autoreactive T cells are 
present in the peripheral T cell repertoire of healthy individuals 
(141). T cells that escape negative selection in the thymus must  
be held in check by additional peripheral tolerance mecha-
nisms, and the ability to tightly control and avoid the activa-
tion of peripheral self-reactive T  cells is crucial for avoiding  
autoimmunity.

Dendritic cells are the most potent antigen-presenting cells, 
and as such they are key regulators of the immune system (142). 
They share with macrophages many of the roles described earlier 
in the engulfment and clearance of apoptotic cells (85). Two main 
issues differentiating DCs from macrophages, in the context of 
this review, are the existence of more than two subpopulations 
of DCs with different roles and anatomical locations (85, 143), 
and their main role initiating the adaptive immune response 
classically described after migrating to a lymphoid organ (144). 
For example, CD8α+ murine DCs and their suggested human 
analog, the CD141+ DCs (145) are specialized in the uptake 
of apoptotic cells and the cross-presentation of their antigens 
to T cells (146). In this review, we will concentrate on myeloid 
DCs, although there are reports on the effects of plasmacytoid 
DCs after engulfment of apoptotic cells (147), and they can have 
anti-inflammatory effects via mechanisms similar to those used 
by myeloid DCs (148).

T cell activation requires a first signal provided by TCR ligation 
and a second signal provided by engagement of costimulatory 
molecules with their respective ligands on antigen-presenting 
cells. A third signal related to IL2/IL2R interactions should also 
sometimes be considered. The coordinated triggering of these 

two independent signaling systems ensures full T cell activation, 
including proliferation and acquisition of effector function. 
TCR occupancy in the absence of costimulatory signals leads to 
a sustained loss of antigen responsiveness called clonal anergy 
or T cell apoptosis, and therefore DCs interacting with apop-
totic cells contribute to the maintenance of peripheral tolerance  
(9, 12, 149). We were able to show downregulation of costimula-
tory molecules, including CD40 and CD86 as well as MHC-DR, 
following apoptotic cell ingestion by DCs. Interestingly, DCs 
did not lose the ability to migrate to the lymph nodes fol-
lowing this effect, and upregulated CCR7, which is normally 
upregulated upon activation and allows tolerogenic DCs to 
migrate to naïve areas of the lymphatic system to encounter 
potential autoimmune T cells that may react to apoptotic cell  
antigens (9, 12).

Lung DCs are an excellent example of the dual role of DCs 
that can induce tolerance or activate naïve T cells, making these 
DCs well-suited to their role as lung sentinels. Lung DCs are 
supposed to serve as a functional signaling/sensing unit to 
maintain lung homeostasis and orchestrate host responses to 
benign and harmful foreign substances [reviewed in Ref. (150)]. 
In vitro observations demonstrating this role were further 
investigated using in  vivo murine studies. CD11c+ CD11b+ 
CD8α+ DCs were found in the pancreatic lymph nodes, car-
rying fluorescently labeled dead cells that had been injected 
directly into the pancreas (151). Furthermore, apoptotic cells 
were phagocytosed by CD8α+ DCs within the spleen and apop-
totic cell antigen was cross-presented to antigen-specific CD8 
T  cells, leading to their deletion as a mechanism of immune 
tolerance (10, 11).

Later, a role for specialized CD169+ macrophages in han-
dling dead tumor cells and cross-presentation was also suggested 
(152), and identification of special subsets in different localiza-
tions within organs like lung, brain, and gut led to the suggestion 
that the nature of a phagocyte that recognizes, samples, and/or 
internalizes apoptotic cells is likely dependent on the tissue and 
its physiological state at any given time (84, 85). Further details 
are found elsewhere (85, 153).

With respect to apoptosis of antigen-presenting cells, we 
were able to show that apoptotic monocytes secrete TSP-1, 
which, by itself, induces a tolerogenic phenotype in DCs (26). 
While it has long been known that apoptotic cells change their 
phenotype during the death process (154), this has not been 
given much attention in the literature. Our group has shown that 
there are two subpopulations of human monocyte-derived DCs 
with different immune phenotypes and functions. Apoptotic 
cells are not necessarily homogeneous; thus, upon entering the 
process of apoptotic cell death, these two cell types differentially 
regulate their expression of cell surface antigens in a way that 
will dramatically influence interaction with T cells (149). Thus, 
even while dying, these DCs are explicitly signaling the cells 
they interact with and conveying information, their “immune 
will.” We identified three general patterns of expression: Pattern 
1, surface marker expression increases for both subpopulations 
as cell death progresses; Pattern 2, surface marker expression 
increases in one subpopulation; and Pattern 3, surface marker 
expression shows a mixed pattern as cell death progresses 
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FiGURe 1 | Multiple mechanisms of immune modulation following interaction with apoptotic cells in macrophages and dendritic cells (DCs). Multiple mechanisms 
are used by apoptotic cells to create an immune homeostatic anti-inflammatory state in macrophages and DCs. In apoptotic cells themselves, in parallel with  
PtdSer exposure, caspase activation plays a critical role by deactivating potential danger-associated molecular patterns (DAMPs) and by releasing “find me” signals 
such as adenosine monophosphate (AMP), lysophosphatidylcholine (LPC), fractalkine, and sphingosine-1-phosphate (S1P). Apoptotic cells possess a direct 
immunosuppressive effect by the release of “calming” agents TGF-β, IL-10, adenosine diphosphate (ADP), thrombospondin-1 (TSP-1), and more. Direct binding  
to PtdSer receptors (PtsR) and indirect binding to TAM receptors, as well as signaling via opsonins/bridging molecules that use additional integrinsor scavenger 
receptors (ScRs) or complement receptors, act to reprogram the phagocyte, to inhibit toll-like receptors (TLRs), nuclear factor κB (NF-κB), signal transducer and 
activator of transcription 1 (STAT1), and interferon (IFN) signaling, and to activate liver X receptor (LXR), peroxisome proliferator-activated receptor delta (PPAR-δ), 
suppressors of cytokine signaling (SOCS) 1/3, and hepatic growth factor (HGF), and to downregulate costimulation and induce induction of indoleamine 2,3 
dioxygenase-1 (IDO), that promote tolerogenic phenotype and the induction of T-regulatory (Treg) cell differentiation. The sum of these events leads to 
downregulation of the inflammatory characteristics of macrophages and DCs, repair, and peripheral tolerance. Pro-inflammatory pattern are marked  
in red and anti-inflammatory patterns in blue.
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with behavior dependent on the stimuli used. Importantly, 
one subpopulation dramatically increased CD86 expression 
in correlation to advanced apoptosis, suggesting that even dur-
ing the death process DCs can signal to T  cells for immune  
responses.

In another example, it has been shown that the susceptibility 
of different DC subpopulations to apoptosis has significance for 
the immune response to viral infections (155). These processes 
highlight the importance of apoptosis of the antigen-presenting 
cells themselves as an immune regulatory event that is a less 
recognized way for apoptosis to affect the immune system.

One of the main effects of DCs after the uptake of apoptotic 
cells is secretion of TGF-β, IL-10, and retinoic acid, which pro-
mote the development of T-regulatory (Treg) cells (85, 156–159).

These could be induced via the abovementioned mechanism, 
but also by the induction of indoleamine 2,3 dioxygenase-1 
(IDO-1), whose activity can be induced by TGF-β (160) and 
whose expression is induced by apoptotic cells. Both in  vitro  
(161, 162) and in  vivo administration of apoptotic cells to 
mice induce the expression of IDO in splenic marginal zone 
macrophages (163). IDO-1 promotes immune tolerance by the 
induction of Treg cell differentiation (163–168).

Other studies have shown that DC phagocytosis of apop-
totic cells initiates naïve CD4 T  cell differentiation into Treg  
cells (169–174).

In conclusion, apoptotic cells induce a tolerogenic DC 
phenotype and may directly (anergy- or activation-induced cell 
death) or indirectly (Tregs) inactivate potential autoreactive 
T cells. In this way they represent a potent peripheral tolerance 
mechanism.

APOPTOTiC CeLLS AS THeRAPeUTiC 
AGeNTS

The in vitro and in vivo properties of apoptotic cells suggest their 
potential use in a broad range of inflammatory and immune-
mediated conditions such as autoimmunity, graft rejection, 
post-ischemic injury, cytokine storm, and more.

Autoimmune and autoinflammatory conditions, including 
type 1 diabetes in non-obese diabetic mice, experimental 
auto immune encephalomyelitis, arthritis, colitis, pulmonary 
fibro sis, fulminant hepatitis, contact hypersensitivity, acute- 
and chronic-graft rejection, hematopoietic cell engraftment, 
acute graft-versus-host disease (GvHD), and reduction of 
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infarct size after acute myocardial infarction have all been 
treated quite successfully by apoptotic cell infusion (175). 
While these works have been performed in animal models, our 
group has shown a remarkable reduction in the occurrence 
of grade II–IV GvHD following heterologous hematopoietic 
stem cell transplantation in humans with apoptotic cell  
treatment (176).

In the IBD study mentioned earlier (86), a single infusion of 
apoptotic cells significantly ameliorated both the clinical score 
and histological appearance of DSS-induced colitis. We showed 
that apoptotic cell infusion is beneficial in murine models of 
IBD and inhibits both inflammasome- and NF-κB-dependent 
inflammation.

In another example of the use of apoptotic cells for the treat-
ment of inflammatory conditions in post-ischemic cerebral 
injury in mice, MFGE8 deficiency was associated with enhanced 
IL-1β production and larger infarct size. The latter was abolished 
after treatment with IL-1β receptor antagonist. MFGE8 sup-
plementation significantly dampened caspase-1 activation and 
IL-1β production and reduced infarct size in WT mice, but did 
not limit cerebral necrosis in IL-1β-, Itgβ3-, or P2rx7-deficient 
animals (91).

Lipopolysaccharide is a main causative agent of Gram-
negative bacterial septic shock. Ren et  al. (177) examined the 
possible protective effect of apoptotic cell infusion. They found 
that when apoptotic cells were administered 24 h after LPS chal-
lenge, B6 mice benefited, with a reduction in circulating pro-
inflammatory cytokines, suppression of polymorphonuclear 
neutrophil infiltration in target organs, decreased serum LPS 
levels, and decreased mortality. Interestingly, LPS can quickly 
bind to apoptotic cells and these LPS-coated apoptotic cells 
can be recognized and cleared by macrophages accompanied 
with suppression of TNFα and enhancement of IL-10 expres-
sion. LPS-treated mice began to die at 8–12 h and all mice died 
within 3  days in the control group. By contrast, mice in the 
group injected intravenously (IV) with apoptotic cells (1 × 107/
mouse) immediately after challenge with LPS exhibited fewer 
signs of sickness. Only 20% of treated mice died at day 7; that is, 
treatment with apoptotic cells resulted in 80% survival (n = 12, 
p < 0.001). Late deaths in the treatment group were not observed 
during the 3 weeks after LPS injection, indicating that apoptotic 
cell treatment conferred a complete and lasting protection 
against lethal endotoxemia.

To further examine whether the administration of apop-
totic cells has a beneficial effect in another animal model, the 
authors induced sepsis in mice by cecal ligation and puncture 
(CLP) (177). Without any treatment, 52% of the mice (12 of 
25) died within 5  days. Mice with apoptotic cell treatment 
1 h after CLP exhibited fewer signs of sickness and less than 
20% of treated mice (4 of 22) died in the first 3  days. The 
authors also investigated whether delayed administration of 
apoptotic cells would prevent mice from endotoxic lethality. 
Treatment with apoptotic cells was initiated 1, 3, 6, and 24 h, 
respectively, after the onset of endotoxemia. Delayed treat-
ments at all time points significantly protected mice from 

lethal shock (n = 6/group, p < 0.05). No late deaths occurred 
during the subsequent 3-week period of observation. These 
results indicated that delayed administration of apoptotic 
cells in mice provided protection from LPS-induced lethal  
shock.

Other works showed that timing is important, and if apop-
totic cells were given 5 days before sepsis induction, worsened 
survival was observed (178). Sepsis and septic conditions were 
also examined in  vivo in Mertk−/− mice, by Camenisch et  al. 
(118), who used Mertk−/− mice. In vivo, the LD50 of LPS for 
Mertk−/− mice was half of that for WT mice. Mertk−/− mice had 
an approximately threefold enhancement of serum TNFα when 
administered 100 mg/kg of LPS, and about 90% of mice died of 
endotoxic shock (118).

Taken together, these studies suggest that the best timing 
for apoptotic cell treatment during sepsis is after its onset. The 
treatment response mechanism is most probably a systemic 
increase in the ability to return to a homeostatic state and a 
reduction of the intensity of the initial unwanted immune 
response characterized by cytokine storm. Other possible 
mechanisms by which apoptotic cells could provide protection 
in sepsis include binding to toxins, promoting APC survival, 
and recovering APCs from their septic “reprogramming”  
(179, 180).

SUMMARY

Multiple mechanisms are used by apoptotic cells to create an 
immune homeostatic anti-inflammatory state in macrophages 
and DCs. As illustrated in Figure 1, these include direct bind-
ing to PtdSer and indirect binding to TAM receptors, as well as 
signaling via opsonins/bridging molecules that use additional 
integrins and ScRs to inhibit TLRs as well as NF-κb, STAT1, 
and IFN signaling, and to activate LXR, SOCS 1/3, PPAR-δ, 
and hepatic growth factor (HGF). The sum of these events 
leads to downregulation of the inflammatory characteristics of 
macrophages and DCs, repair, and peripheral tolerance. Despite 
establishment of a pattern recognition effect in the clearance of 
apoptotic cells, some controversies in the field exist, including 
the role of complement, the importance of different receptors for 
PtdSer, the “cross-talk” between different opsonins and recep-
tors, and the specific conditions where “immunogenic” clearance 
is occurring.
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