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Phagocytosis is a fundamental process of cells to capture and ingest foreign particles. 
Small unicellular organisms such as free-living amoeba use this process to acquire food. 
In pluricellular organisms, phagocytosis is a universal phenomenon that all cells are able 
to perform (including epithelial, endothelial, fibroblasts, etc.), but some specialized cells 
(such as neutrophils and macrophages) perform this very efficiently and were therefore 
named professional phagocytes by Rabinovitch. Cells use phagocytosis to capture and 
clear all particles larger than 0.5 µm, including pathogenic microorganisms and cellular 
debris. Phagocytosis involves a series of steps from recognition of the target particle, 
ingestion of it in a phagosome (phagocytic vacuole), maturation of this phagosome into a 
phagolysosome, to the final destruction of the ingested particle in the robust antimicrobial 
environment of the phagolysosome. For the most part, phagocytosis is an efficient pro-
cess that eliminates invading pathogens and helps maintaining homeostasis. However, 
several pathogens have also evolved different strategies to prevent phagocytosis from 
proceeding in a normal way. These pathogens have a clear advantage to perpetuate the 
infection and continue their replication. Here, we present an overview of the phagocytic 
process with emphasis on the antimicrobial elements professional phagocytes use. We 
also summarize the current knowledge on the microbial strategies different pathogens 
use to prevent phagocytosis either at the level of ingestion, phagosome formation, and 
maturation, and even complete escape from phagosomes.
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iNTRODUCTiON

Phagocytosis, in pluricellular organisms, is a complex process for the ingestion and elimination of 
pathogens. It is also important for elimination of apoptotic cells, and for maintaining tissue homeo-
stasis (1, 2). All cells may, to some extent, perform phagocytosis; however, in mammals, phagocytosis 
is the hallmark of specialized cells including monocytes, macrophages, dendritic cells, osteoclasts, 
eosinophils, and polymorphonuclear neutrophils—these cells are collectively referred to as profes-
sional phagocytes (3). Professional phagocytes eliminate microorganisms and present them to cells 
of the adaptive immune system. Phagocytosis can be divided into several main steps: (i) microbial 
recognition, (ii) phagosome formation, and (iii) phagolysosome maturation.

Phagocytosis initiates with the recognition and ingestion of microbial pathogens larger than 
0.5 µm into a plasma membrane-derived vesicle, known as phagosome. This recognition is achieved 
through several receptors that recognize precise molecular patterns associated with microorganisms. 
These receptors then trigger signaling cascades that induce phagocytosis. Receptors on phagocytes 
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FigURe 2 | Phagosome maturation. The new phagosome quickly develops 
the characteristics of early endosomes, through a series of fusion and fission 
events with sorting and recycling endosomes (5, 6). The early phagosome is 
marked by the presence of the small GTPase Rab5 (13, 14), early endosome 
antigen 1 (EEA1) (15), and the class III PI-3K human vacuolar protein-sorting 
34 (hvPS34) (16). The early phagosome also becomes a little acidic (pH 
6.1–6.5) by the action of V-ATPase accumulating on its membrane (17, 18). 
The late phagosome is marked by the presence of Rab7 (19–21) and 
lysosomal-associated membrane proteins (LAMPs) (22, 23). Proteins that will 
be recycled are separated in sorting (recycling) vesicles, while proteins 
intended for degradation are eliminated in intraluminal vesicles (ILVs), directed 
into the lumen of the phagosome (24). The lumen of the late phagosome gets 
more acidic (pH 5.5–6.0), due to the action of more V-ATPase molecules on 
the membrane. Phagolysosomes are formed when late phagosomes fuse 
with lysosomes. Phagolysosomes are acidic (pH 5–5.5) and contain many 
degradative enzymes, including various cathepsins, proteases, lysozymes, 
and lipases. Other microbicidal component of the phagosome is the NADPH 
oxidase that generates reactive oxygen species (25).

A B C D

FigURe 1 | Initiation of phagocytosis. After receptor engagement (A) (2), the 
plasma membrane covers the microorganism to be ingested (B) (9, 10) and 
closes at the distal end (C) (11, 12), forming a vacuole where the 
microorganism is internalized (D).
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can be divided into non-opsonic or opsonic receptors. Non-
opsonic receptors can directly identify pathogen-associated 
molecular patterns (PAMPs) on the surface of the microorgan-
isms. Opsonic receptors bind to host-produced molecules called 
opsonins. These molecules bind to microorganisms and mark 
them for ingestion. Opsonins include antibodies, complement, 
fibronectin, mannose-binding lectin, and milk fat globulin 
 (lactadherin) (4).

After receptor engagement, the plasma membrane covers the 
microorganism to be ingested and closes at the distal end, form-
ing a vacuole where the microorganism is internalized (Figure 1). 
This vacuole, the early phagosome, then fuses with endocytic 
vesicles and at the same time secretory vesicles are separated from 
it, transforming the early phagosome into a late phagosome. This 
dynamic process consists of sequential fusion and fission events 
between the new phagosome and endosomes, and it is known as 
“the kiss-and-run” model (5). Later, the intermediary phagosome 
turns into a microbicidal vacuole, the phagolysosome, by fusing 
with lysosomes and changing its membrane and interior char-
acteristics through a process named phagolysosome maturation 
(6). The results of this process are remodeling of the membrane, 
progressive acidification of the phagosome, and creation of an 
oxidative and degradative milieu (7, 8) (Figure 2).

The phagocytic process is usually very efficient and con-
cludes with the destruction of the microorganism ingested. 
Nevertheless, several pathogens possess various anti-phagocytic 
strategies, which allow them to survive and escape phagocytes. 
These strategies can be directed to any step of the phagocytic 
process. However, most microorganisms interfere with phago-
some maturation since the phagolysosome is the most destruc-
tive organelle. It is the purpose of this review to highlight the 
multiple anti-microbial effectors of professional phagocytes and 
to describe how various microbial pathogens hinder phagocytosis 
to continue the course of their infection.

iNiTiATiON OF PHAgOCYTOSiS

Microbial Recognition
The first step in phagocytosis is the detection of a microorganism 
by phagocytes. Microbial pathogens are recognized directly by 
receptors that bind PAMPs or indirectly by receptors that bind 
opsonins. Receptors that directly bind PAMPs are known as 
pattern-recognition receptors and among these receptors, we 
find lectin-like recognition molecules, such as CD169 and CD33; 
C-type lectins, such as Dectin-2, Monocyte-INducible C-type 

LEctin (Mincle), or DNGR-1; scavenger receptors (26), such as 
scavenger receptor A, which detects lipopolysaccharide (LPS) on 
some Gram-negative bacteria (27), and on Neisseria meningitidis 
(27); and Dectin-1, which is a receptor for fungal beta-glucan (28, 
29). Mannose receptors bind to mannan (30), and CD14 binds 
to LPS-binding protein (31). Toll-like receptors (TLRs), although 
recognize microorganisms, do not function as phagocytic recep-
tors (32), however, they can cooperate with other non-opsonic 
receptors to stimulate phagocytosis (33).

Opsonins are soluble molecules that bind to microorganisms, 
marking them for phagocytosis. Antibody [immunoglobulin 
(Ig)] molecules and complement components are important 
opsonins that induce efficient phagocytosis (2). The most studied 
opsonic phagocytic receptors are the Fc receptors (FcRs), and the 
complement receptors (CRs), respectively (34). FcγRs bind to 
the constant (Fc) portion of IgG (35–38), while FcαRs bind IgA 
antibodies (39). CRs, such as CR3, bind to iC3b deposited on the 
microorganism after complement activation (40). Crosslinking 
of FcγR on the surface of cells activates efficient phagocytosis 
and other effector functions. These effector functions, such as 
activation of the oxidative burst, cell degranulation, antibody-
dependent cell-mediated cytotoxicity, and activation of genes for 
production of cytokines and chemokines, are aimed toward the 
destruction of pathogens and the induction of an inflammatory 
response that is beneficial during infections (37, 41, 42). CRs, 
such as the integrin αMβ2 (also known as CD11b/CD18, CR3, 
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or Mac-1), bind the complement component iC3b deposited on 
pathogens to promote phagocytosis (34, 43).

Phagosome Formation
After phagocyte receptors engage a microorganism, signaling 
events are triggered to initiate phagocytosis. Important changes 
in membrane remodeling and the actin cytoskeleton take place 
leading to the formation of pseudopods that cover the microor-
ganism. Lipids associate and dissociate from the membrane of 
phagosomes in an orderly fashion (44), and the small GTPases 
Rho, Rac, and cell division cycle 42 (Cdc42), which are important 
regulators of the actin cytoskeleton, get activated and recruited 
to the forming phagosome (9, 10). At the point of contact, a 
depression of the membrane (the phagocytic cup) is formed. 
Then, F-actin polymerization allows formation of pseudopods 
that surround the target microorganism and within few minutes, 
the membrane protrusions fuse at the distal end (11, 12, 45) to 
seal the new phagosome (Figure 1).

PHAgOSOMe MATURATiON

The new phagosome rapidly changes its membrane composi-
tion and its contents, to become a microbicidal vacuole, the 
phagolysosome. This process is known as phagosome matura-
tion. The mechanism for transferring endocytosed material 
from endosomes to lysosomes is complex and not completely 
described. Four hypotheses have been proposed to explain the 
process of phagolysosome formation [reviewed in Ref. (46, 47)]. 
These include a maturation model where the endosome turns into 
a lysosome (48), a vesicular transport model where vesicles carry 
cargo from the endosome to the lysosome (49), a kiss-and-run 
model where endosomes and lysosomes engage in repeated tran-
sient fusions (50) and a direct fusion model where endosomes and 
lysosomes completely fuse giving rise to a hybrid compartment 
from which lysosomes reform (51, 52). Experimental evidence 
suggests that both the kiss-and-run and the complete fusion 
models contribute to the mechanism for delivery of endocytosed 
particles to the lysosome (53). The coordinated activities of endo-
somal sorting complex required for transport, homotypic fusion 
and vacuole protein sorting, and soluble N-ethylmaleimide-
sensitive factor-attachment protein receptor protein complexes 
on the different vesicle membranes are required for efficient 
delivery of endocytosed macromolecules to lysosomes [reviewed 
in Ref. (54, 55)]. Phagosome maturation can be divided into three 
main stages, namely the early phagosome, the late phagosome, 
and the phagolysosome, as described later.

early Phagosome
The new phagosome quickly develops the characteristics of early 
endosomes, through a series of fusion and fission events with 
endosomes (5, 6). The early phagosome is marked by the presence of 
the small GTPase Rab5 (13, 14). This membrane GTPase regulates 
the fusion events between the phagosome and early endosomes by 
recruiting early endosome antigen 1 (EEA1) (15). Rab5 also recruits 
the class III PI-3K human vacuolar protein-sorting 34, which in 
turn, generates phosphatidylinositol 3-phosphate (16). This lipid 
then promotes recruitment of other proteins involved in phagosome 

maturation, including Rab7, a marker of late endosomes (19, 20). 
The early phagosome also becomes a little acidic (pH 6.1–6.5) by 
the action of V-ATPase accumulating on its membrane and also 
by transient fusions with more acidic vesicles (56). This V-ATPase 
translocates protons (H+) into the lumen of the phagosome using 
cytosolic ATP as an energy source (17, 18) (Figure 2).

Late Phagosome
As maturation continues, Rab5 is lost, and Rab7 appears on the 
membrane. Rab7 mediates the fusion of the phagosome with late 
endosomes (21). At the same time, proteins that will be recycled 
are separated in sorting (recycling) vesicles, while proteins 
intended for degradation are eliminated in intraluminal vesicles, 
directed into the lumen of the phagosome (24). Furthermore, the 
lumen of the late phagosome gets more acidic (pH 5.5–6.0), due 
to the action of more V-ATPase molecules on the membrane (17) 
(Figure 2). Rab7 also recruits other proteins to the membrane. 
One such protein is Rab-interacting lysosomal protein (RILP), 
which brings the phagosome in contact with microtubules (57, 
58), and lysosomes (57, 58). In addition, lysosomal-associated 
membrane proteins (LAMPs) and luminal proteases (cathepsins 
and hydrolases) are incorporated from fusion with late endosomes 
(7, 59) (Figure 2). LAMPs are a family of heavily glycosylated 
proteins that accumulate on the lysosomal membrane. They all 
contain a conserved intracytoplasmic tyrosine-based lysosome-
targeting motif YXXφ (where φ represents a bulky hydrophobic 
residue) that directs the trafficking of the molecule through an 
endosome/lysosome pathway (60). LAMPs are fundamental in 
regulating membrane fusion events (61) and are required for 
fusion of lysosomes with phagosomes (22, 23).

Phagolysosome
The late phagosomes gradually fuse with lysosomes, to become 
phagolysosomes, the definitive microbicidal organelles (Figure 2) 
(47, 53, 62). Phagolysosomes possess many sophisticated mecha-
nisms directed to eliminate and degrade microorganisms. They 
are acidic (pH 5–5.5) thanks to the large number of V-ATPase 
molecules on their membrane (18) and contain many degradative 
enzymes, including various cathepsins, proteases, lysozymes, and 
lipases (17). Other microbicidal components of the phagosome 
are scavenger molecules, such as lactoferrin that sequesters the 
iron required by some bacteria (63), and the NADPH oxidase that 
generates superoxide O2

−( ) (25), and other reactive oxygen species 
(ROS) (64, 65) (Figure 2). Although the low pH is clearly micro-
bicidal, it is important to note that phagosome acidification is 
highly regulated. The lysosomal pH may cycle between acidic and 
neutral conditions, allowing for the optimal activity of the different 
hydrolases (66). Within the hybrid degradative vesicle (phagolyso-
some) (46), most of these enzymes are active at pH 5–5.5; while in 
primary lysosomes that function as storage vesicles, the lower pH 
of 4.5 induces enzyme aggregation and inactivation (66).

ANTiMiCROBiAL eFFeCTORS

The phagolysosome is the definitive antimicrobial organelle. The 
arsenal at its disposal is large and complex. The major destructive 
strategies will be presented next.
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FigURe 3 | Antimicrobial effectors inside the phagolysosome. The most 
distinctive characteristic of phagolysosomes is their low pH. The V-ATPase 
translocates protons (H+) into the lumen of the phagosome (17, 18). The 
NADPH oxidase is an enzymatic complex formed by two transmembrane 
proteins, such as CYBB and CYBA, and three cytosolic components: NCF-4, 
NCF-1, and NCF-2 (68, 69). Rac is also required for efficient activation of the 
enzyme complex (70, 71). Myeloperoxidase (MPO) can transform H2O2 into 
hypochlorous acid (65). Nitric oxide radicals (NO⋅) are produced by the 
inducible nitric oxide synthase 2 (iNOS) (72), and NO⋅ reacts with O2

− to form 
peroxynitrite (ONOO−) (73, 74). Lactoferrin captures Fe2+ that is essential for 
bacterial growth (75), and the transporter natural resistance-associated 
macrophage protein 1 (NRAMP-1) takes Fe2+ out of the phagosome (76). 
Defensins are antimicrobial peptides that form multimeric ion-permeable 
channels on bacteria (77, 78). Cathepsins are lysosomal proteases (79, 80). 
Lysozyme (81, 82) degrades peptidoglycan, a primary building block of the 
cell wall of bacteria, and the type IIA secreted phospholipase A2 (sPLA2-IIA) 
(83) degrades anionic phospholipids such as phosphatidylglycerol, the main 
phospholipid component of bacterial membranes.
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pH
The most distinctive characteristic of phagolysosomes is their 
low pH. During the maturation process, the membrane of the 
phagosome accumulates more and more active molecules of 
V-ATPase. The molecular complex of this ATPase translocates 
protons (H+) into the lumen of the phagosome using cytosolic 
ATP as an energy source (17, 18) (Figure 3). The acidic content 
of the phagosome creates an adverse environment for most 
microorganisms. The low pH disrupts the normal metabolism of 
many bacteria and fungi and prevents the use of several essential 
microbial nutrients (67). In addition, the low pH is required for 
the activation of many hydrolytic enzymes, which will degrade 
the ingested pathogen. The V-ATPase also favors the generation 
superoxide O2

−( ) (25) by neutralizing the negative charges gener-
ated by the NADPH oxidase and by combining O2

−  with H+ to 
generate other ROS (Figure 3) (as discussed later).

Reactive Oxygen and Nitrogen Species
In addition to an acid environment, the phagolysosome can 
concentrate ROS to destroy microorganisms. Production of ROS 
is achieved by the NADPH oxidase (NOX2) on the membrane 
of phagosomes (68, 69, 84). The relevance of this antimicrobial 

mechanism is evident in patients with chronic granulomatous 
disease, who have mutations that result in malfunction of the 
NADPH oxidase. These patients suffer from severe recurrent 
infections that can cause death in many cases (85, 86). The NADPH 
oxidase is an enzymatic complex formed by two transmembrane 
proteins, CYBB (cytochrome b-245 heavy chain/gp91-phox) 
and CYBA (cytochrome b-245 light chain/p22-phox), that upon 
activation bring together three cytosolic components: NCF-4 
(neutrophil cytosol factor 4/p40-phox), NCF-1 (neutrophil 
cytosol factor 1/p47-phox), and NCF-2 (neutrophil cytosol fac-
tor 2/p67-phox) (69, 87) (Figure 3). In addition, Rac1 and Rac2 
are also required for efficient activation of the enzyme complex 
(70, 71). The oxidase transfers electrons from cytosolic NADPH 
to molecular oxygen to generate O2

− inside the phagosome (25). 
In the acid conditions of the phagosome, O2

− quickly dismutate 
into H2O2, which can then produce hydroxyl radicals (OH−) by 
a Fenton reaction (88) catalyzed by iron released from proteins 
in the phagosome (89). Also, myeloperoxidase can transform 
H2O2 into hypochlorous acid and chloramines (65) (Figure 3). 
In addition, O2

−  can also react with nitric oxide (NO) to form 
peroxynitrite (ONOO−), both of which are highly reactive agents. 
The various forms of ROS are together efficient antimicrobial 
agents because they can damage proteins, lipids, and DNA of 
microorganisms in the phagosome (89).

In addition to ROS, phagocytes, such as macrophages, can 
also generate nitrogen-based radicals or reactive nitrogen spe-
cies (RNS) that contribute to microbial destruction. Nitric oxide 
radicals (NO⋅) are produced by the inducible nitric oxide synthase 
2 (iNOS or NOS2) (72). This enzyme is not present in the resting 
phagocyte and is only produced in response to proinflammatory 
agonists (90). NOS2 catalyzes the conversion of l-arginine and 
oxygen into l-citrulline and NO⋅ (Figure 3). Contrary to O2

− , NO⋅ 
is produced on the cytoplasmic side of phagosomes, but it can 
diffuse across membranes and accumulate inside the phagosome 
(91). As mentioned earlier, once inside the phagosome, NO⋅ can 
react with O2

−  to generate the highly toxic peroxynitrite (ONOO−) 
that can alter proteins and DNA of ingested microorganisms (73, 
74). Also, NO⋅ can directly impair bacterial enzymes and affect 
microbial growth (92).

Nutrient Capture
Not only the low pH and the oxidative conditions are used to 
harm the ingested pathogen but also a series of enzymes and 
peptides are delivered into the phagosome to limit its growth. 
Microbial growth can be limited by reducing the amount of 
essential nutrients inside the phagosome. Nutrients are elimi-
nated from the phagosome by special capture molecules delivered 
into the phagosome or by transporters present on the phagosome 
membrane. Perhaps, lactoferrin is the best characterized capture 
molecule that prevents growth of some bacteria (75). Lactoferrin 
is a non-heme Fe2+-binding glycoprotein present in the specific 
granules of neutrophils (93), and it can be delivered into the 
phagolysosome. In there, lactofferin captures Fe2+ that is essential 
for bacterial growth (75, 94) (Figure 3). Other metals, such as 
Mn2+, are also important for microbial growth. Thus, during 
maturation, phagosomes become gradually depleted of Fe2+ and 
Mn2+ by the action the transporter natural resistance-associated 
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macrophage protein 1 (NRAMP-1; also known as SlC11A1) (76) 
(Figure 3). NRAMP-1 is a membrane protein present on phago-
lysosomes that transports divalent cations, such as Fe2+, Zn2+, 
and Mn2+ out of the phagolysosome. This transporter requires 
H+ ions to function, thus NRAMP-1 is more efficient in the acid 
environment of the phagolysosome (76). Removal of these metal 
ions prevents microbial growth. However, some microorganisms 
present a mechanism to counteract the phagocyte function and 
retain these nutrients (see next section). Microorganisms secrete 
siderophores, specialized molecules that capture Fe2+ and target it 
for pathogen use (95). The phagocyte in turn presents yet another 
strategy to control microbial growth. The phagocyte protein 
lipocalin binds selectively catechol type siderophores expressed 
by some bacteria, such as Escherichia coli and Mycobacterium 
tuberculosis. Consequently, the Fe2+-loaded siderophore is still 
sequestered from the bacteria (96, 97).

Microorganism Destruction
As described earlier, the phagolysosome interior is an inhospitable 
environment for most microorganisms. Enzymes and peptides 
delivered to the phagolysosome have potent antimicrobial effects 
by destroying the different components of the microbial cell.

Antimicrobial peptides are small (<10  kDa), cationic, and 
amphipathic polypeptides, often broadly classified based on 
structure (82, 98). In phagocytes, the main types include defensins 
(disulfide-stabilized peptides) (77, 78) and cathelicidins (α-helical 
or extended peptides) (99). Defensins are subdivided into α and 
β groups and are stored in primary granules of neutrophils. 
These peptides disrupt the integrity of pathogens by attaching to 
negatively charged molecules on their membrane. Defensins form 
multimeric ion-permeable channels that cause membrane per-
meabilization on both Gram-positive and Gram-negative bacteria 
(100) (Figure 3). Cathelicidins are stored in secondary granules of 
neutrophils as inactive precursors. They are then converted into 
active antimicrobial peptides in the lumen of the phagosome by 
elastase (99), a primary granule enzyme (93). Active cathelicidins 
permeabilize the cell wall and inner membrane of Gram-positive 
bacteria (100). In particular, the cathelicidin LL-37 (hCAP) has 
drawn particular attention because of its multiple functions. Not 
only LL-37 works as a broad-spectrum antibiotic but also it has 
potent chemotactic and immunomodulatory properties (101). 
Neutrophil-produced LL-37 can be internalized by macrophages 
(102) and can induce phagocytosis of IgG-opsonized Gram-
negative and Gram-positive bacteria by these phagocytes (103). 
LL-37 also promotes leukotriene B4 and thromboxane A2 gen-
eration by human monocyte-derived macrophages (104), thus 
regulating the inflammation response during infections. Recently, 
it was also found that macrophages could also produce LL-37. 
Mice deficient in the Cramp (cathelicidin-related antimicrobial 
peptide) gene, the murine functional homolog of human LL-37, 
had increased susceptibility to M. tuberculosis; and macrophages 
from these mice were unable to control M. tuberculosis growth in 
an in vitro infection model (105).

Among the many degradative enzymes, the cathepsins are 
perhaps the most extensively characterized group of lysosomal 
proteases. These are cysteine proteases that play a direct role 
in microbial killing by inducing the disruption of bacterial 

membranes (Figure  3). For example, cathepsins L and K were 
found to be involved in phagocytosis and non-oxidative killing of 
Staphylococcus aureus (80), while cathepsin D controlled Listeria 
monocytogenes intracellular growth (79), probably by degrading 
the pore-forming toxin listeriolysin O of L. monocytogenes and 
thus preventing bacterial escape from the phagosome (see next 
section).

The phagolysosome also contains many lysosomal hydrolases, 
which help destroy ingested pathogens (106). An important 
enzyme of this group is lysozyme, an antibacterial protein that 
can be expressed and secreted by several cell types (81, 82). 
Lysozyme degrades peptidoglycan, a primary building block 
of the cell wall of bacteria (Figure  3). By breaking the bonds 
between N-acetylmuramic acid and N-acetyl-d-glucosamine, 
lysozyme disrupts the peptidoglycan integrity (107), and then 
other enzymes can complete the lysis of bacterial cells. One such 
enzyme is the type IIA secreted phospholipase A2 (sPLA2-IIA) 
(Figure 3), which exhibits potent antimicrobial activity against 
Gram-positive and Gram-negative bacteria (83). This remarkable 
property is due to the unique preference of sPLA2-IIA for anionic 
phospholipids such as phosphatidylglycerol, the main phospho-
lipid component of bacterial membranes. The importance of this 
mechanism is highlighted by the fact that transgenic mice overex-
pressing human sPLA2-IIA are resistant to infection by S. aureus, 
E. coli, and Bacillus anthracis, the etiological agent of anthrax 
(83). Thus, antimicrobial peptides and degradative enzymes 
work together in the lumen of the phagolysosome to completely 
degrade most phagocytized microorganisms (Figure 3).

MiCROBiAL CONTROL  
OF PHAgOCYTOSiS

The discussion presented earlier clearly shows that phagocytosis 
is an efficient process (1, 2, 4, 108, 109) that culminates with the 
generation of the phagolysosome and its very harsh environment 
for most microorganisms (6). Therefore, it is not surprising that 
many successful pathogens have evolved multiple strategies to 
prevent and/or inhibit phagocytosis (110, 111). These strategies 
include prevention of phagocytosis, interference of phagosome 
maturation, resistance to phagolysosome contents, and even 
physical escape from the phagosome. Our knowledge comes 
mainly from studies of important extracellular and intracellular 
pathogens, such as S. aureus (112–114), M. tuberculosis (115–117), 
and L. monocytogenes (118, 119). However, many other microbial 
pathogens also have tactics for interfering with phagocytosis. 
The mechanisms for controlling phagocytosis employed by these 
model pathogens, as we understand them today, will be described 
next. In addition, information available on microbial control of 
phagocytosis by some other pathogens will also be presented.

Prevention of Phagocytosis
The best way to escape from the destructive power of phago-
cytosis would be just to prevent ingestion by phagocytes from 
happening. Some pathogens try just to do that by producing 
substances that extracellularly intoxicate phagocytes. S. aureus 
can secrete various membrane damaging toxins that will 
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FigURe 4 | Staphylococcus aureus blocks opsonic phagocytosis. S. aureus 
secrete toxins, leukocidins (120, 125) and α-hemolysin (121), which induce 
membrane permeability by forming pores on the cell membrane. To be fully 
active, leukocidin A binds to the complement receptor Mac-1 (125), while 
α-hemolysin binds to protein ADAM10 (a disintegrin and metalloproteinase 
domain-containing protein 10) (127, 128). Staphylokinase converts host 
plasminogen to the active serine protease plasmin, which in turn degrades 
IgG or iC3b on the bacteria (127, 129). Protein A (SpA) (131) and 
staphylococcal binder of IgG (Sbi) protein specifically bind to the Fc region of 
IgG (132–134), blocking Fc receptor (FcR) engagement and activation. 
Aureolysin functions as a C3 convertase, leaving non-functional C3b′ 
fragments (135). Also, the staphylococcal complement inhibitor (SCIN) 
prevents complement activation on the bacteria (136). Finally, the 
extracellular fibrinogen binding protein (Efb) binds the serum protein 
fibrinogen (Fg), creating a proteinaceous shield that covers surface-bound 
opsonins (137, 138).
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cause cell lysis and death. These toxins include the leukocidins 
(120) (named this way because they can kill leukocytes) and 
α-hemolysin (121) (Figure  4). Although there are different 
leukocidins, they all are dimer proteins (e.g., LukAB, LukED, 
HlgAB, HlgCB, and LukSF-PV) that induce membrane perme-
ability by the formation of octameric β-barrel pores on the cell 
membrane (120, 122, 123). Interestingly, leukocidins do not 
attack any membrane indiscriminately. They must bind first to 
specific membrane receptors, and therefore, only cells with these 
receptors are targeted for intoxication (124, 125). For example, 
LukE binds to the chemokine receptor CCR5 on macrophages, 
marking these cells for lysis by the active leukocidin LukED (124, 
126). Similarly, LukA binds only to the CD11b subunit of the CR 
Mac-1, which is expressed on both macrophages and neutrophils 
(125) (Figure 4). The α-hemolysin is another toxin from S. aureus 
that also forms pores on the membrane of macrophages. It uses 
phagocyte protein ADAM10 (a disintegrin and metalloproteinase 
domain-containing protein 10) as a receptor (127, 128), and then 
it assembles into a β-barrel pore of seven identical monomers 
across the cell membrane (129, 130) (Figure 4).

Phagocytosis is most efficient when microorganisms have 
been opsonized by antibodies or complement. Microorganisms 
have also evolved mechanisms to prevent opsonization. The first 
strategy displayed by S. aureus to block opsonization is simply to 

degrade opsonins. Some staphylococcal proteases seem capable 
of directly attacking opsonins. However, a more efficient instru-
ment for this function is the protein staphylokinase, a bacterial 
plasminogen activator that converts host plasminogen to the 
active serine protease plasmin. Activated plasmin can then 
degrade IgG or C3b on the bacterial surface (139) (Figure  4). 
Another mechanism is to capture the opsonin, so that it does not 
bind to the bacteria. S. aureus Protein A is a well-known protein 
expressed on the bacterial cell wall. Protein A specifically binds 
to the Fc region of IgG, preventing the antibody from engaging 
FcγRs. In consequence, phagocytosis is effectively blocked (131) 
(Figure  4). In addition, Protein A can obstruct complement 
activation by the classical pathway, since the Fc portion of IgG is 
no longer accessible to the complement component C1q. This will 
result in less deposition of C3b on the bacteria (140). In addition 
to Protein A, most S. aureus strains express the Staphylococcal 
binder of IgG (Sbi) protein, which also binds to the Fc portion 
of IgG (132–134) (Figure 4). Inhibition of complement activa-
tion is an important strategy also used by Staphylococcus. The 
secreted metalloprotease aureolysin functions as an effective C3 
convertase. Aureolysin cuts C3 in the α-chain at a different cleav-
age site from the C3 convertase, leaving C3a′ and C3b′ fragments 
(135). Unfortunately, the aureolysin-generated C3b′ fragment is 
rapidly degraded and not deposited on the bacteria (Figure 4). 
In addition, the staphylococcal complement inhibitor, a 10-kDa 
protein, can inhibit complement activation and efficiently prevent 
phagocytosis and killing of staphylococci (136) (Figure 4). As if 
all this were not enough, S. aureus can also hide the C3b deposited 
on its surface. The bacteria secrete the extracellular fibrinogen 
binding protein (Efb), which binds the serum protein fibrinogen 
(137). In this way, the bacterium creates a proteinaceous shield 
that covers the surface bound opsonin and prevents phagocytosis 
(137, 138) (Figure 4). This impressive array of anti-phagocytic 
effectors has been described for individual molecules. However, 
there is not enough information on when and how bacteria decide 
to use each one of them. The external elements that regulate the 
expression of each factor are not known. Novel techniques, such 
as expression profiling, should bring new light into these topics, 
as discussed later.

Another way to prevent ingestion by phagocytes from 
happening is to inactivate the cell machinery that creates the 
phagosome around the microorganism. Some pathogens have 
developed strategies to prevent actin polymerization and thus 
avoiding phagocytosis (141). The role of the actin cytoskeleton is 
fundamental for constructing a phagocytic cup and then extend-
ing membrane protrusions around the target particle. The small 
GTPase Rho family (10) controls formation of F-actin fibers 
required for phagocytosis. The GTPases Rho, Rac1, and Cdc42 
act as molecular switches alternating between an active (GTP-
bound) state and an inactive (GDP-bound) state (142, 143). For 
activation, they need to release GDP and replace it with GTP. 
This action is catalyzed by guanine nucleotide exchange factors 
(GEFs). Later, GTP is hydrolyzed to GDP returning the GTPase 
to its inactive state. This last step is enhanced through interactions 
with GTPase-activating proteins (GAPs). During phagocytosis, 
these GTPases are activated and recruited to the forming phago-
some, where they activate nucleation-promoting factors such as 
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Wiskott–Aldrich Syndrome protein (WASp) (144). WASp, in 
turn activates the actin-related protein 2/3 (Arp2/3) complex for 
actin polymerization (145, 146). As the new actin fibers grow, 
the plasma membrane is forced out, extending the membrane 
as pseudopodia around the particle to be ingested. Due to their 
central role in controlling actin dynamics, these small GTPases 
are the chosen target of some bacterial toxins. These toxins can 
alter the activity of the GTPases through covalent modifications 
or regulation of the nucleotide state. For example, the bacterium 
Clostridium difficile, which causes pseudomembranous colitis and 
is responsible for many cases of nosocomial antibiotic-associated 
diarrhea, produces two glycosylating exotoxins. Toxin A and 
toxin B modify Rho by glycosylation and inactivate its func-
tion. Rho inactivation causes disorganization of actin reducing 
phagocyte cell migration and phagocytosis (147). Similarly, the 
bacterium Photorhabdus asymbiotica, an emerging pathogen in 
humans, produces a toxin (PaTox) that tyrosine glycosylates Rho 
causing its inactivation. PaTox actions result in actin disassembly 
and inhibition of phagocytosis (148).

Another group of bacterial toxins regulate the nucleotide state 
and thus the function of the GTPases by functioning as GAPs or 
GEFs. For example, the enteropathogenic bacteria Yersinia spp. 
have type III secretion systems that inject Rho GAP toxins into 
cells. One such toxin (virulence factor) is YopO, which prevents 
Rac activation and in consequence prevents phagocytosis (149). 
Similarly, the Gram-negative bacteria Pseudomonas aeruginosa, 
an opportunistic pathogen that causes life-threatening infections 
in cystic fibrosis patients, burn victims, and immunosuppressed 
individuals, produces the type III virulence factor ExoS that is 
injected into cells. ExoS is a Rho GAP for Rho, Rac, and Cdc42 
that causes the reorganization of the actin cytoskeleton by inhibi-
tion of Rac and Cdc42, and actin stress fiber formation by inhi-
bition of Rho (150). An additional example recently described 
of pathogens disrupting Rho GTPase function comes from the 
opportunistic bacteria Burkholderia cenocepacia that has a pro-
pensity to infect cystic fibrosis patients. B. cenocepacia was shown 
to disrupt Rac and Cdc42 activation through perturbation of GEF 
function. Inactive Rac and Cdc42 led to inhibition of phagocyte 
function (151).

Besides bacteria, several fungal pathogens also display mecha-
nisms for evading phagocytosis. Candida albicans, a commensal 
ascomycete, is part of the normal microbiota associated with 
mucosal tissues. It causes opportunistic infections, known as 
thrush, on superficial mucosas, and systemic infections, named 
candidiasis. C. albicans is normally phagocytized by macrophages, 
but it can decrease being recognized by phagocytes with a thick 
cell wall. The cell wall antigen, β-glucan is hidden among manno-
proteins, thus reducing phagocytosis (152). In addition, C. albicans 
can limit phagocyte chemotaxis during transition from the yeast 
to the hyphal forms (153). Another fungus, Aspergillus fumigatus, 
also can mask antigenic proteins and carbohydrates to avoid 
recognition by phagocytes. RodA hydrophobin is a hydrophobic 
protein expressed on the surface of A. fumigatus conidia. This 
hydrophobin efficiently prevents recognition and phagocytosis 
(154). Similarly, the yeast basidiomycete Cryptococcus neoformans 
can also avoid recognition by macrophages. The basidiospores of 
C. neoformans produce a polysaccharide coat (capsule) that forms 

a thick barrier from phagocytes (155). This capsule can also be 
shed to prevent macrophage detection and phagocytosis (155). 
In addition, C. neoformans secretes antiphagocytic protein 1, a 
protein that binds to CR Mac-1 and inhibits phagocytosis (156).

interference with Phagosome 
Maturation
Once a microorganism is ingested, it will be exposed to the very 
harsh environment of the phagolysosome. Thus, many pathogens 
present strategies directed to avoid the formation of this final 
antimicrobial organelle. Phagosome maturation can be blocked 
at different points and there are examples of pathogens blocking 
acidification, reducing activation of the NADPH oxidase, and 
preventing phagosome to lysosome fusion. Perhaps the most 
studied example of inhibition of phagosome maturation occurs in 
M. tuberculosis. The first report was published more than 40 years 
ago (157), and since then several mycobacterial factors interfer-
ing with the process have been found, such as mannose-capped 
lipoarabinomannan (ManLAM), phosphatidyl-myo-inositol-
mannosides (PIMs) (115, 158, 159), and trehalose-6,6′-dimycolate 
(TDM) (160).

As mentioned earlier, one of the earlier features of phago-
some maturation is the rapid and gradual acidification of the 
phagosome. The number of V-ATPase molecules increases on 
the phagosome membrane as the maturation process takes place. 
The low pH directly affects many pathogens (67), and it is also 
required for the activation of many hydrolytic enzymes. In the 
case of M. tuberculosis, acidification is inhibited by preventing the 
accumulation of V-ATPase on the phagosome membrane (161) 
(Figure 5). Although the complete mechanism is unknown, the 
M. tuberculosis secreted protein tyrosine phosphatase (PtpA) 
plays an important role. PtpA binds to subunit H of the mac-
rophage vacuolar V-ATPase (162), and then it dephosphorylates 
human vacuolar protein sorting 33B (VPS33B) (163), leading 
to subsequent exclusion of the V-ATPase from the phagosome 
(Figure 5).

The Gram-positive bacteria Streptococcus pyogenes blocks 
the V-ATPase activity through expression of surface proteins 
regulated by the virulence factor Mga (a transcription factor) 
(181). Similarly, Rhodococcus equi, Gram-positive bacteria that 
cause severe pneumonia in horses, and the dimorphic fungus 
Histoplasma capsulatum are also able to maintain a non-acidic 
phagosome by excluding the V-ATPase (182, 183) (Figure  6). 
Other pathogens can avoid acidification of phagosomes, includ-
ing Yersenia pestis, the Gram-negative bacteria causing bubonic 
plague (184), and C. albicans (185), by mechanisms not com-
pletely described.

Phagosome maturation is also inhibited by interfering with the 
proper accumulation of molecules responsible for vesicle fusion, 
thus keeping the new phagosome with characteristics of an early 
phagosome. M. tuberculosis blocks phagosome maturation at a 
stage between the expression of Rab5 and Rab7, by preventing the 
delivery of the molecule EEA1 to the membrane (165) (Figure 5). 
This effect is mediated in part by the action of nucleoside diphos-
phate kinase (Ndk), which exhibits GAP activity toward Rab5 
and Rab7. Ndk inactivates both Rab5 and Rab7 thus preventing 
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FigURe 6 | Inhibition of phagosome maturation. (a) Several pathogens, such 
as Mycobacterium tuberculosis (161), Histoplasma capsulatum (182), and 
Rhodococcus equi (183) inhibit acidification by preventing the accumulation 
of V-ATPase on the phagosome membrane. M. tuberculosis also blocks early 
endosome antigen 1 (EEA1) on the membrane (165), while Neisseria 
gonorrhoeae express a porin that induces large amounts of Rab5 (186) and 
also proteases that digest lysosomal-associated membrane proteins (LAMPs) 
(187). Another bacteria, Streptococcus pyogenes, express the virulence 
factor M1, which regulates vesicle trafficking (188). Each of these actions 
effectively will block lysosome fusion to the phagosome. (b) Other pathogens, 
such as Legionella pneumophila (189, 190) and Brucella melitensis (191), 
induce the rapid association of the phagosome with the endoplasmic 
reticulum (ER). (c) The bacteria Coxiella burnetti (192, 193), and the parasite 
Leishmania reside inside a phagolysosome-like vesicle known as 
parasitophorous vacuole (PV) that concentrates Rab5 on the membrane. 
Leishmania promastigotes also insert lipophosphoglycan (LPG) into the 
phagosome membrane (194). These actions, in consequence, prevent 
lysosome fusion (195).

FigURe 5 | Mycobacterium tuberculosis interferes with phagosome 
maturation. M. tuberculosis inhibits acidification by preventing the 
accumulation of V-ATPase on the phagosome membrane (161), in part 
through the action of protein tyrosine phosphatase (PtpA) (162). PtpA also 
dephosphorylates human vacuolar protein sorting 33B (VPS33B) leading to 
the inhibition of phagosome-lysosome fusion (163). The nucleoside 
diphosphate kinase (Ndk) is a GAP for Rab5, and by inactivating this GTPase 
(164), it prevents recruitment of early endosome antigen 1 (EEA1) to the 
membrane (165). The lipoprotein LprG increases the surface-expression of 
mannose-capped lipoarabinomannan (ManLAM) (166) and can directly bind 
to lysosomal-associated membrane proteins (LAMPs) to modulate the traffic 
machinery of the cell (167, 168). Also, ManLAM (169) and the adhesin PstS-1 
(170) bind the mannose receptor, which is involved in the lysosome fusion 
machinery by an unknown mechanism (171). The mycobacterial glycolipid 
TDM binds the receptor Monocyte-INducible C-type LEctin (Mincle) (172), 
activating the SH2-domain-containing inositol polyphosphate 5′ phosphatase 
(SHP-1) to interfere with phagosome maturation (160). The virulence factor 
early secretory antigenic target-6 (ESAT-6) inhibits recruitment of Rab7 to the 
phagosome membrane, preventing autophagy-mediated degradation (173). 
Also, the secretory acid phosphatase (SapM) direct binds to Rab7 (174) and 
prevents autophagosome-lysosome fusion (174). In addition, SapM can 
block the effects of phosphotidylinositol 3-kinase (PI3K) present on 
phagosomes (158). Upon infection, mycobacteria induce upregulation of 
several microRNAs (miRNAs) (175–177) and downregulation of others (178) 
to block autophagy. miR-125a targets UV radiation resistance-associated 
gene (UVRAG) (176) to block autophagy, while miR-17 activates a protein 
kinase Cδ (PKCδ)/signal transducer and activator of transcription 3 (STAT3) 
pathway to regulate autophagy (178). The miR-33 also inhibits fatty acid 
oxidation to support bacterial replication by a mechanism not yet described 
(177). How M. tuberculosis alters cell signaling to control miRNAs is not 
known, but the initial signal might come from TLR2 (176, 179). Finally, the 
scavenger receptor CD36 participates in surfactant lipid uptake by alveolar 
macrophages, and M. tuberculosis exploits this function for growth (180).
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recruitment of their respective effectors EEA1 and RILP and in 
consequence inhibits phagosome maturation and fusion with 
lysosomes (164) (Figure 5). This blockage also involves ManLAM 
(171), and it seems to require binding of ManLAM to the man-
nose receptor (169). Recently, the adhesin PstS-1, a 38-kDa man-
nosylated glycolipoprotein, was also found to bind the mannose 
receptor (170) (Figure 5). The connection between the mannose 
receptor and the lysosome fusion machinery is obscure. Because, 
capping of the ManLAM with mannose receptor was necessary 
during phagocytosis to maintain the blockade (169), it seems 

that the initial engagement of the mannose receptor directs, in an 
unclear manner, M. tuberculosis to a selective initial phagosomal 
niche, where other molecules can be excluded. Also, Mincle was 
recently identified as a receptor for the mycobacterial glycolipid 
TDM (172). Recruitment of Mincle by TDM coupled to IgG-
opsonized beads during FcγR-mediated phagocytosis interfered 
with phagosome maturation (160). This inhibition involved the 
SH2-domain-containing inositol polyphosphate 5′ phosphatase 
(SHP-1) and the FcγRIIb (160), strongly suggesting an inhibitory 
downstream signaling of Mincle during phagosome formation 
(Figure 5). Without EEA1, delivery of the V-ATPase or enzymes 
such as cathepsin D does not take place (196). Therefore, the 
M. tuberculosis-containing phagosome is kept with a pathogen-
friendly environment (Figure  5). Other microorganisms can 
also arrest phagosome maturation at early stages. For example, 
the Gram-negative bacteria Neisseria gonorrhoeae express a porin 
that induces phagosomes to keep larger amounts of Rab5 and low 
levels of Rab7 (186) (Figure 6). In addition, this bacterium also 
secretes proteases that digest LAMPs (187) (Figure 6). As men-
tioned earlier, LAMPs are fundamental for fusion of lysosomes 
to phagosomes (22), thus its degradation prevents formation of 
a mature phagolysosome (187). Similarly, the Gram-negative 
bacteria Legionella pneumophila intercepts vesicular traffic from 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


9

Uribe-Querol and Rosales Microbial Control of Phagocytosis

Frontiers in Immunology | www.frontiersin.org October 2017 | Volume 8 | Article 1368

endoplasmic reticulum (ER) (189) to create an organelle that 
allows the bacteria to have access to cysteine for survival (190) 
(Figure 6). This bacterium is the cause of Legionnaires’ disease, a 
severe form of pneumonia. When the bacteria are phagocytized, 
the phagosome is rapidly associated with mitochondria and the 
rough ER, thus getting decorated with ribosomes (197). This 
effect seems to be mediated by DotA, a bacterial product that 
is part of the type IV secretion system (T4SS) transporter. T4SS 
exports various bacterial effector proteins, including RalF, a GEF 
for the phagocyte ADP-ribosylation factor (ARF1) (198). Active 
ARF1 promotes vesicle traffic between the ER and the Golgi (199). 
Therefore, the ER-like phagosome does not get acidic and it does 
not fuse with lysosomes. Another example of phagosomes fus-
ing with the ER is found in the Gram-negative bacteria Brucella 
melitensis (Figure 6). This bacterium is the etiological agent of 
brucellosis, a zoonotic infection that can cause muscle pain, fever, 
weight loss, and fatigue in people, but can also induce abortion 
and infertility in animals. In the macrophage cell line J774, 
B. melitensis alters vesicle trafficking (200) to create a modified 
phagosome known as a Brucella-containing vacuole (BCV) that 
fuses with the ER (191) (Figure 6). The mechanism for creating 
a BCV is not completely known, but it involves several virulence 
factors such as VirB, an element of the bacterial type III secretion 
system (191), and cyclic β-1,2-glucan, a cell wall component (201).

Since the phagolysosome is the most harmful organelle for 
microorganisms, many pathogens have mechanisms to prevent 
fusion of lysosomes with the phagosome. The best-known exam-
ple is again M. tuberculosis that avoids lysosome fusion by main-
taining an early phagosome (115) (Figure 5). The mechanism for 
this effect is multifactorial and complex. We only have a partial 
understanding of it with the identification of some key virulent 
factors involved. One such virulent factor is the lipoprotein LprG, 
which binds to lipoglycans, such as lipoarabinomannan (LAM), 
increasing the surface expression of LAM (166). A M. tuberculosis 
null mutant for LprG (Mtb ΔlprG) had lower levels of surface-
exposed LAM and impaired phagosome–lysosome fusion (167). 
How LprG prevents phagosome–lysosome fusion is only partially 
known. It is possible that its effect is indirect via Ndk, which 
inactivates both Rab5 and Rab7 (164), or is direct by binding 
to LAMP-3 and modulating the traffic machinery in the host 
cell (168) (Figure 5). One more virulent factor is PtpA which, 
as mentioned earlier, dephosphorylates VPS33B, a regulator of 
membrane fusion events and leads to inhibition of phagosome–
lysosome fusion (163) (Figure 5). Another way M. tuberculosis 
prevents phagosome–lysosome fusion involves inhibition of 
Rab7 recruitment to prevent autophagy-mediated degradation. 
The maturation of mycobacteria-containing autophagosomes 
into autolysosomes requires recruitment of Rab7, but this is 
blocked by the virulence factor early secretory antigenic target-6 
(ESAT-6) (173) (Figure 5). Again, the molecular events for this 
blockage are not known. However, for another virulence factor 
of M. tuberculosis, the secretory acid phosphatase (SapM) the 
inhibition of autophagosome-lysosome fusion (202) is achieved 
via direct binding to Rab7 (174). Molecularly, Rab7 is blocked by 
SapM through its cytoplasmic domain preventing its involvement 
in autophagosome–lysosome fusion (174) (Figure  5). In addi-
tion, SapM is known to dephosphorylate phosphotidylinositol 

3-phosphate present on phagosomes (158). This phospholipid 
is also required for membrane fusion events, thus SapM also 
prevents lysosome fusion in this manner (Figure 5).

Mycobacterium tuberculosis has also evolved other ways to 
prevent autophagy from happening. One recently described way 
is the activation or inhibition of cell host microRNAs (miRNAs). 
Upon infection, macrophages increased several miRNAs and 
inhibited pathways involved in autophagy. These miRNAs include 
miR-30A (175), miR-33 (177), and miR-125a (176) (Figure 5). 
At the same time, another miRNA, miR-17, is downregulated 
with the same result, blockage of autophagy (178). The signaling  
pathways affected by these miRNAs are only beginning to be 
described. For example, miR-125a targets UV radiation resist-
ance-associated gene (UVRAG) (176) to block autophagy, while 
miR-17 activates a PKCδ/STAT3 pathway to regulate autophagy 
(178). Thus, inhibition of miR-17 leads also to reduce autophagy 
(Figure 5). How M. tuberculosis usurps cell host signaling path-
ways to alter expression of these miRNAs is not known. It seems, 
however, that the initial signal for this comes from TLRs (176) 
(Figure 5).

Similarly, S. pyogenes can also prevent lysosome fusion by 
expressing the virulence factor M1, which regulates vesicle traf-
ficking (188) (Figure  6). M1 can also inhibit activation of the 
nuclear factor κB and in consequence reduce the macrophage 
inflammatory response (188). The Gram-negative bacteria 
Coxiella burnetti, the causative agent of Q fever, resides inside 
a large phagolysosome-like vesicle known as parasitophorous 
vacuole (192). This modified phagosome concentrates Rab5 on 
the membrane and avoids lysosome fusion (193) (Figure 6). The 
fungi A. fumigatus (203) and the parasitic protozoa Leishmania 
(204) seem also able to avoid being killed by macrophages by pre-
venting fusion between phagosomes and lysosomes. In the case 
of A. fumigatus, the molecule dihydroxynaphthalene–melanin on 
the surface of the pathogen has been reported as responsible for 
altering vesicle fusion events (205). For Leishmania, the promas-
tigote is efficiently internalized by receptor-mediated phagocy-
tosis (204). Complement and mannose receptors participate in 
macrophage ingestion (195). Once internalized, promastigotes 
insert lipophosphoglycan (LPG) into the phagosome membrane. 
LPG inhibits depolymetization of F-actin (194), and in conse-
quence prevents lysosome fusion (195) (Figure  6). This allows 
enough time for the promastigote to transform into the other 
life-cycle form, the amastigote, which can then replicate inside 
the phagosome.

Resistance to Phagolysosome Contents
In addition to preventing phagolysosome formation, patho-
gens also possess various mechanisms to resist the microbial 
components found in the phagolysosome lumen. A prominent 
example is S. aureus that can resist the lytic effect of lysozyme on 
the cell wall peptidoglycan. These bacteria express the enzyme 
O-acetyltransferase A (OatA), which causes O-acetylation of the 
peptidoglycan. This modification makes the peptidoglycan resist-
ant to the muramidase activity of lysozyme (206, 207) (Figure 7). 
S. aureus also can block the action of antimicrobial peptides. First, 
the enzyme staphylokinase directly binds α-defensins, blocking 
almost completely their bactericidal effect (208) (Figure  7). 
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FigURe 8 | Resistance of Mycobacterium tuberculosis to phagolysosome 
contents. M. tuberculosis inhibits acidification by preventing the accumulation 
of V-ATPase on the phagosome membrane (161), in part through the action 
of protein tyrosine phosphatase (PtpA) (162). The bacterial lipoprotein, Lprl, 
can inhibit the lytic activity of lysozyme (226). The secretion system Esx-3 
(230, 231) and the MmpS4/S5 transporters (232) are required for 
biosynthesis and secretion of the siderophores mycobactins (Mbac) and 
carboxymycobactins (Cabac), which seize Fe2+ from host proteins, such as 
lactoferrin (233). Then, the transporter system irtAB takes Fe2+ from 
Fe2+-carboxymycobactin into the bacterium (234, 235). The type I NADH 
dehydrogenase (NDH-1) (227) and the Eis protein (228) inhibit the NADPH 
oxidase, preventing formation of ROS. Also, M. tuberculosis prevents the 
generation of NO⋅ and apoptosis by interfering with EBP50, a scaffolding 
protein that controls the recruitment of iNOS at the membrane of 
phagosomes (229). In addition, M. tuberculosis alters the phagosome to 
divert host lipids for its own benefit through mce4, a cholesterol import 
system (236), and through accumulation of lipid bodies via the early secretory 
antigenic target-6 (ESAT-6) (237). The enzymes isocitrate lyases (ICLs) allow 
bacteria survival on even (acetate) and odd (propionate) chain fatty acids in 
lipid bodies (238).

FigURe 7 | Resistance of Staphylococcus aureus to phagolysosome 
contents. The bacteria S. aureus modifies the composition of its cell wall to 
resist the action of lysozyme (206, 207) and alters the composition of its 
membrane, with l-lysine and lipoteichoic acids, to reduce the negative 
charge of the membrane (209, 210); thus resisting antimicrobial peptides, 
such as the cathelicidin LL-37. Also, it secretes staphylokinase and 
aureolysin to block α-defensins and LL-37, respectively (208, 211). In 
addition, S. aureus has the golden pigment staphyloxanthin (Sx), which 
works as an antioxidant (212), two super oxide dismutases (Sod) (213), and a 
catalase (214, 215) that together protect against reactive oxygen species. In 
addition, flavohemoglobin functions as an NO⋅ scavenger (216, 217). The 
bacterial urease catalyzes the hydrolysis of urea to form ammonia, resulting in 
pH neutralization (218). Finally, S. aureus produces siderophores (SA) (219, 
220) that trap enough Fe2+ to allow bacterial survival.
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Second, bacteria alter the composition of its membrane. 
Phosphatidylglycerol is modified with l-lysine, causing a reduc-
tion in the negative charge of the membrane (209). In addition, 
the cell wall is also modified by incorporation of teichoic acids 
and lipoteichoic acids (210), making it more positively charged. 
These modifications reduce interaction of α-defensins with the 
bacterial surface. Third, the metalloprotease aureolysin can 
degrade LL-37, an antimicrobial peptide with potent activity 
against staphylococci (211) (Figure 7).

Also, several pathogens express urease, an enzyme that cata-
lyzes the hydrolysis of urea to form ammonia, resulting in the pH 
neutralization of the phagosome (Figure 7). Important examples 
of microorganisms using this strategy to survive in the phago-
some are S. aureus (218), Helicobacter pylori, bacteria known for 
causing gastric and duodenal ulcers (221), C. neoformans (222), 
and Coccidioides posadasii (223).

The oxidative environment of the phagolysosome is also 
very damaging to most microorganisms. Yet, some pathogens 
have evolved ways to fight back the effects of ROS and RNS. 
For example, S. aureus has the golden pigment staphyloxanthin, 
which works as an antioxidant and prevents damage from per-
oxide (212) (Figure  7). Also, the protein SOK (surface factor 
promoting resistance to oxidative killing), that is expressed on 
the bacteria surface, was recently described as a virulence fac-
tor that blocks the effects of ROS (224). In addition, S. aureus 

express the enzymes super oxide dismutases, sodA and sodM, 
which convert O2

−  into H2O2 (213), and the enzyme catalase 
(KatA), which breaks down H2O2 into oxygen and water (214, 
215) (Figure 7). A phagocytized bacterium has also to prevent the 
effects of iNOS-derived RNS. S. aureus can detect NO⋅ by the two 
component system SsrAB (225), which regulates the expression 
of the gene hmp coding for a flavohemoglobin that functions as 
an NO⋅ scavenger (216, 217) (Figure 7).

Similarly, M. tuberculosis can resist in various ways the 
microbicidal components within the phagolysosome. A novel 
glycosylated and surface-localized lipoprotein, Lprl can inhibit 
the lytic activity of lysozyme (226) (Figure 8). Also, at least two 
proteins have been found to prevent the formation of ROS by 
inhibiting the NADPH oxidase. The type I NADH dehydrogenase 
(NDH-1) blocks ROS production to inhibit tumor necrosis fac-
tor alpha (TNF-α)-mediated host cell apoptosis (227) (Figure 8), 
while the enhanced intracellular survival (eis) gene product 
(Eis) abrogates production of both ROS and proinflammatory 
cytokines leading to arrest in apoptosis. These effects seem to 
depend on the N-acetyltransferase domain of the Eis protein 
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(228) (Figure  8). In both cases, apoptosis is inhibited, but the 
mechanisms are different. In the case of NDH-1, apoptosis is 
dependent on caspase-3 and caspase-8 (227), while for Eis, 
apoptosis seems to be caspase independent (228). M. tuberculosis 
can also block RNS by interfering with EBP50, a scaffolding 
protein that controls the recruitment of iNOS at the membrane 
of phagosomes in macrophages. Interestingly, overexpression of 
EBP50 by a recombinant lentivirus had no effect on the iNOS 
recruitment to M.  tuberculosis-containing phagosomes, but 
significantly increased the generation of NO⋅ and the level of 
apoptosis in macrophages (229). The EBP50-induced apoptosis 
was NO⋅-dependent and mediated by Bax and caspase-3 (229) 
(Figure 8). The mechanism for iNOS inhibition is not completely 
elucidated, but it seems to involve both having less iNOS on the 
membrane and blocking its enzymatic activity. The way M. tuber-
culosis prevents EBP50 functions remains a mystery.

Other pathogens are also known to display similar mecha-
nisms against ROS and RNS. Streptococcus agalactiae (Group 
B Streptococcus) is an important cause of pneumonia and 
meningitis in neonatal humans (239). S. agalactiae expresses a 
superoxide dismutase (SodA), an orange carotenoid pigment, 
and glutathione. The latter two compounds functions as ROS 
scavengers (240, 241). H. pylori can also express a superoxide 
dismutase (SodB) (242), a catalase (KatA) (243), and the arginase 
RocF, which transforms the iNOS substrate arginine into urea 
(244, 245). Similarly, the yeast C. albicans expresses a copper 
and zinc containing superoxide dismutase (Sod1) (246), and a 
catalase (Cta1p) (247, 248), while H. capsulatum also secretes 
two catalases, CatB and CatP (249). The fungus C. neoformans 
produces a superoxide dismutase (250) and covers itself in a thick 
polysaccharide and melanin capsule that absorbs ROS (251). 
Also, the dimorphic fungus Blastomyces dermatitidis seems to 
be able to inhibit the enzyme iNOS to prevent the production 
of RNS (252). In all these pathogens, the expression of these 
enzymes and virulent factors effectively reduces the levels of ROS 
and RNS within the phagosome. Yet, very little is known about 
the mechanisms that induce expression of these virulent factors 
in each pathogen and the molecular details by which they inhibit 
NADPH oxidase and iNOS enzymes.

Resistance to Nutrient Capture
The phagolysosome is a place where microbial nutrients are elimi-
nated to arrest pathogen growth. As mentioned earlier, divalent 
cations, such as Fe2+, Zn2+, and Mn2+, are actively transported out 
of the phagolysosome (76). In response to this, several micro-
organisms have evolved mechanisms to retain these important 
nutrients. One strategy to acquire Fe2+ relies on the production 
of siderophores, which are low-molecular weight Fe2+-binding 
molecules of extremely high affinity, that remove Fe2+ from host 
proteins, such as hemoglobin, and transferrin (233). S. aureus 
produces two citrate-based siderophores, staphyloferrin A (SA) 
and staphyloferrin B (SB) (219, 220) (Figure  7). Together, SA 
and SB can trap enough Fe2+ to allow bacterial survival. These 
siderophores are very efficient because they avoid detection by 
the phagocyte siderophore-binding protein lipocalin (96, 97). In 
addition, S. aureus is also able to acquire Mn2+ through the action 
of Mn2+ transporters encoded by the bacterial gene loci mntABC 

and mntH (253). In M. tuberculosis, two groups of siderophores, 
mycobactins and carboxymycobactins, exist to overcome Fe2+ 
deficiency. The type VII secretion system Esx-3 contributes to 
siderophore production and release from these bacteria (230, 
231) (Figure 8). Recently, another siderophore export system was 
identified in M. tuberculosis. The MmpS4 and MmpS5 transport-
ers are required for biosynthesis and secretion of siderophores 
(Figure 8). Because a M. tuberculosis mutant lacking the mmpS4 
and mmpS5 genes did not grow under low Fe2+ conditions and 
experienced Fe2+ starvation even under high-Fe2+ conditions, it 
seems that these transporters are the primary source of sidero-
phores in mycobacteria (232). The importance of siderophore 
synthesis for Fe2+ acquisition is clear, but Fe2+ must find a way back 
into the bacteria. In M. tuberculosis an ABC transporter system, 
irtAB (product of the genes irtA and irtB), has been described 
for efficient utilization of Fe2+ from Fe2+ carboxymycobactin 
(Figure 8). Inactivation of the irtAB system decreases the ability 
of M. tuberculosis to survive Fe2+-deficient conditions (234, 235). 
Similarly, other microorganisms such as A. fumigatus (254) and 
H. capsulatum (255) can produce siderophores for Fe2+ capture.

Intracellular bacteria have also evolved various means to take 
nutrients from the host cell. Lipids are important building blocks 
for bacterial membrane formation and an energy source (256). 
Upon infection, M. tuberculosis alters the phagosome to divert 
host lipids for its own benefit. A virulent factor was identified 
within the gene cluster, mce4, because it was specifically required 
for bacterial survival during prolonged infection. It was found 
that mce4 encodes a cholesterol import system that enables these 
bacteria to derive both carbon and energy from this lipid in 
host membranes (236) (Figure 8). Also, mycobacteria-infected 
macrophages acquire a “foamy” phenotype characterized by the 
accumulation of lipid bodies, which serve as source of nutrients. 
This foamy phenotype is caused by bacterial manipulation of 
host cellular metabolism to divert the glycolytic pathway toward 
ketone body synthesis (237). This deregulation results in feed-
back activation of the anti-lipolytic G protein-coupled receptor 
GPR109A, causing changes in lipid homeostasis and accumula-
tion of lipid bodies in the cell. ESAT-6, a secreted M. tuberculosis 
virulence factor, mediates the enforcement of this feedback loop 
via an unknown mechanism (237) (Figure 8). Another strategy 
used by M. tuberculosis to exploit host lipids involves the bacte-
rial enzymes isocitrate lyases (ICLs). These ICLs are catalytically 
bifunctional isocitrate and methylisocitrate lyases that allow 
bacteria survival on even (acetate) and odd (propionate) chain 
fatty acids (238) (Figure 8). Moreover, the miR-33 induced by M. 
tuberculosis also inhibited fatty acid oxidation to support bacte-
rial growth by a mechanism not yet described (177) (Figure 5). In 
addition, M. tuberculosis has yet another strategy to acquire lipids 
even from outside the cell in the lung environment. Alveolar 
macrophages are not only responsible for phagocytosis of these 
bacteria but also for catabolizing lung surfactant, a lipid–protein 
complex that lines the alveolar spaces. Recently, it was found 
that the scavenger receptor CD36 is redistributed to the mac-
rophage cell membrane following exposure to surfactant lipids 
and participated in surfactant lipid uptake by these cells (180) 
(Figure  5). These macrophages also supported better bacterial 
growth in a CD36-dependent manner (180). Thus, it seems that 
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CD36 mediates surfactant lipid uptake by human macrophages 
and that M. tuberculosis exploits this function for growth.

Physical escape from the Phagosome
In addition to resisting all the microbial effectors within a phago-
lysosome, several pathogens such as C. neoformans, L. monocy-
togenes, or M. tuberculosis can also completely escape from it. By 
getting out of the phagosome, these microorganisms can in the 
cytoplasm travel to other cell sites and finally leave the host cell.

As mentioned earlier, the fungus C. neoformans is well 
equipped to replicate inside the phagosome. In addition, it can 
subsequently escape the cell by a non-lytic tactic known as 
vomocytosis (257, 258). Vomocytosis allows for the pathogen 
escape leaving the phagocytic cell alive (259). Although the 
molecular details of vomocytosis are not completely described, 
the process involves an exocytic fusion of the phagosome with 
the plasma membrane, thus releasing the fungus (259) (Figure 9). 
Vomocytosis also involves microtubules, but apparently not actin 
polymerization. Nevertheless, the formation of dynamic actin 
cages (“actin flashes”) around the phagosome is observed in 
many cases. These actin structures actually prevent vomocytosis. 
Yet, fungus strains with high rates of vomocytosis induce more 
actin flashes, suggesting that these flashes are a reaction from 
the cell to contain the phagosome. Still, at the end, the fungal 
phagosome is fused with the cell membrane and the pathogen 
is liberated (259). Also, the secreted phospholipase B1 (PLB1) 
is required for vomocytosis (260). It is thought that PLB1 helps 
permeabilizing the fungal phagosome to neutralize its lumen and 

to allow nutrients to come in (111, 261). Although vomocytosis 
is a unique escape function known only for cryptococci, a similar 
process has recently been described for C. albicans (262) and 
Candida krusei (263).

Another intracellular pathogen capable of escaping from the 
phagosome and then from the infected cell is L. monocytogenes 
(268). This bacterium uses its virulent factor listeriolysin O (LLO) 
to escape the phagosome (264) (Figure 9). LLO is a pore-forming 
toxin that permeabilizes the phagosome membrane. It is a potent 
toxin capable of also degrading the cell membrane, thus its expres-
sion and activity are strictly regulated. LLO expression is limited 
to the intraphagosomal phase of the bacteria, where it is induced 
by the low pH and high Ca2+ conditions of the phagosome (264). 
Also, LLO activation requires cooperation of host factor such as 
GILT (γ-inducible lysosomal thiol reductase) (271). In addition, 
several phospholipases are activated to completely degrade the 
phagosomal membrane and allow the bacterial escape (265). 
Once in the cytosol, the bacterium is propelled by the formation 
of actin tails that push it across the cell. This process is known as 
“actin rocketing” and it is initiated by the Listeria surface protein 
ActA (266, 267) (Figure 9). The actin fibers pushing the bacteria 
are called “comet tails” and propel the bacteria with enough 
force, allowing it to transfer between cells (268). In the same 
way, the Gram-negative bacteria Shigella flexneri can disrupt the 
phagosome membrane and escape into the cytosol (272), where 
it induces “comet tails” similar to Listeria. The bacterial protein 
IscA induces activation of N-WASp to initiate actin polymeriza-
tion by the complex Arp2/3 (273). The actin “comet tails” then 
propel the bacteria across the cytosol and into neighboring 
cells. Bacteria from the genus Rickettsia are obligate intracellular 
pathogens that can also escape phagosomes. Rickettsia uses a 
secreted phospholipase A2 to disturb the phagosome membrane 
(274). Once in the cytosol, Rickettsia produce actin tails that allow 
them direct cell to cell transfer. The bacterial protein RickA is able 
to activate the Arp2/3 complex to initiate actin polymerization 
(275). Another microorganism that seems capable of phagosome 
escaping from neutrophils but not macrophages is S. aureus 
(269). These bacteria produce phenol soluble modulins (PSMs), 
which are peptides with lytic activity toward many mammalian 
cells (270). In particular, the α-PSM was found to induce a strong 
destruction of neutrophils after phagocytosis, allowing the escape 
of the phagocytized bacteria (276) (Figure 9).

Other bacteria, such as M. tuberculosis (277) and Mycobacterium 
marinum (278), can also escape phagosomes. After escaping the 
phagosome into the cytosol, M. marinum is able to move around 
by actin-mediated propulsion (279). The M. marinum actin tail 
formation involves activation of WASp proteins (280) and requires 
a functional region of difference 1 (RD1) loci (281). This RD1 
locus encodes for a secretion system called the ESAT-6 system-1 
(ESX-1) or type VII secretion system, which can induce pore 
formation on host-cell membranes (282). Thus, it was thought 
that all mycobacteria could escape from phagosomes using the 
pore-forming activity of ESX-1. However, this has to be formally 
proven experimentally. M. tuberculosis could be found in increas-
ing numbers in the cytosol of dendritic cells and macrophages 
when infection was allowed to proceed beyond 2 days in culture 
(283), and the presence of cytosolic bacteria was also shown to 
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occur in vivo (284). Therefore, there is no doubt about the capac-
ity of mycobacteria to escape into the cytosol but the significance 
of this phenomenon is still a matter of debate. A simple idea is 
that bacteria need to leave the phagosome to replicate and then 
leave the cell. However, bacilli escape the phagosome at later 
times of infection and this is followed by cell lysis and release of 
bacilli (278). In consequence, escaping from the vacuole is not a 
requirement for either survival or growth of M. tuberculosis (285). 
Instead, it was proposed that the escape from the vacuole repre-
sents a transient state that could be critical to the rapid expansion 
of the bacterial population (285). If this is the case, then escaping 
from the phagosome is just an important step in the pathology 
that accompanies progression of tuberculosis infection to active 
disease. How, mycobacteria kill the cell to allow its release is not 
clear. Yet, recently, it was reported that the M. tuberculosis protein 
Rv3903c (channel protein with necrosis-inducing toxin, CpnT) is 
required for survival and cytotoxicity of M. tuberculosis in mac-
rophages (286). CpnT consists of an N-terminal channel domain 
that is used for uptake of nutrients across the outer membrane 
and a secreted toxic C-terminal domain. This secreted portion 
is also named tuberculosis-necrotizing toxin (287). It can, in the 
cytosol of mycobacteria-infected macrophages, hydrolyze the 
essential coenzyme NAD(+) and induce cell necrosis. However, 
the mechanism for this cell lysis remains to be elucidated. Clearly, 
CpnT has a dual function in M. tuberculosis. It is used for uptake 
of nutrients within the phagosome and for induction of host cell 
lysis in the cytosol. The regulation of CpnT functions becomes 
then a topic of important research for controlling M. tuberculosis 
infections. Another M. tuberculosis virulence factor has also been 
found to participate in phagosome escape. The unique cell wall 
lipid phthiocerol dimycocerosates greatly augmented the bacteria 
escape from its intracellular vacuole (288), by a process not well 
understood. The mechanism for phagosome lysis is clearly com-
plex as indicated by the fact that host molecules are also recruited 
by the bacteria to aid in its escape. Activation of host cytosolic 
phospholipase A2 rapidly led to phagosome lysis for bacteria 
moving into the cytoplasm of the host cell (116).

NOveL THeRAPeUTiC OPPORTUNiTieS

The study of the many mechanisms used by microbial pathogens 
to control phagocytosis provides opportunity for detecting novel 
potential targets of clinical intervention. Promising therapeutic 
approaches will be designed based on our new understanding 
of the tactics pathogens use to interfere with phagocytosis. For 
example, studies with miRNA in mycobacteria infections identi-
fied TLR2 as a potential target to prevent the blockage of phago-
some maturation (179) (Figure  5). Recently, it was also found 
by gene expression profiling of human macrophages treated with 
glucocorticoids and/or IFN-γ that glucocorticoids, in contrast to 
IFN-γ, failed to trigger expression and phagolysosome recruit-
ment of V-ATPase (289). This explained the increased risk for 
mycobacterial infections associated with the use of glucocorti-
coids. Moreover, this group also found that giving imatinib, a 
tyrosine kinase inhibitor, to glucocorticoid-treated macrophages 
induced lysosome acidification and antimicrobial activity without 
reversing the anti-inflammatory effects of glucocorticoids (289). 

Thus, an improved therapy would be to administer glucocorti-
coids together with drugs that induce phagosome acidification. 
In another recent report, a phagosome maturation assay using 
confocal microscopy in THP-1-derived macrophages infected 
with an attenuated M. tuberculosis strain was used to test the 
effects of Saxifragifolin D, a traditional Chinese medicine (290). 
Saxifragifolin D (a pentacyclic triterpenoid compound first 
isolated from the rockjasmine Androsace umbellata) reduced the 
inhibition of phagosome maturation. Using assays of this type, 
new potential drugs can be tested for future therapies.

Another potential therapeutic approach would be to modulate 
macrophage function to improve their antimicrobial potential 
against bacterial infections. The feasibility of such an approach 
has been suggested in a recent report of macrophage phagocytosis 
of L. monocytogenes (291). In this study, the engagement of recep-
tor T  cell immunoglobulin mucin-3 (Tim-3) on macrophages 
inhibited phagocytosis of L. monocytogenes by blocking nuclear 
erythroid 2-related factor 2 (Nrf2) signaling. In contrast, inhibi-
tion of Tim-3 augmented phagocytosis (291). Thus, modulating 
the Tim-3 pathway to alter macrophage function is a promising 
tool for treating infectious diseases, such as Listeria infections.

Phagocytosis of opsonized particles is, in general, more 
efficient and more efficacious in eliminating microorganisms. 
The idea to generate opsonizing antibodies for controlling 
infections is another promising area of opportunity for novel 
therapeutics. The value of this approach has been suggested in 
studies where opsonizing antibodies improve elimination of 
bacteria. In a study with five apparently healthy Indian donors 
having high titers of serum antibodies against M. tuberculosis cell 
membrane antigens, it was found that phagocytosis and killing 
of bacilli by the donor macrophages was significantly enhanced 
following their opsonization with antibody-rich, heat-inactivated 
autologous sera (292). Another study showed that antibodies 
directed at the R domain of S. aureus secreted coagulase could 
trigger phagocytosis and killing of staphylococci (293). This 
coagulase activates host prothrombin and generates fibrin fibers 
that cover the bacteria and prevent phagocytosis. These antibod-
ies directed the fibrin-covered bacteria to phagocytes and also 
protected mice against lethal bloodstream infections caused by 
methicillin-resistant S. aureus isolates (293). Yet, another study, 
showed that a monoclonal antibody (mAb) directed at the Protein 
A could protect neonatal mice against S. aureus sepsis and create 
protective immunity against subsequent staphylococcal infection 
(294). A humanized version of this mAb was developed, and it is 
proposed as a potential new therapy for S. aureus-induced sepsis 
and meningitis in very-low-birth-weight infants (294). These 
reports encourage the development of novel vaccines that favor 
the formation of opsonizing antibodies against bacterial antigens 
to activate phagocyte innate immunity.

FUTURe DiReCTiONS

Phagocytosis is a fundamental biological process (109) that in 
multicellular organisms is required for proper homeostasis and 
for fighting infections (1, 2). Therefore, it is not surprising that 
many microbial pathogens have mechanisms to counteract 
phagocytosis. As we have discussed here, for some model 
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pathogens, namely S. aureus (295), M. tuberculosis (117), and 
L. monocytogenes (119), particular virulence factors that affect 
phagocytosis have been identified and to some extent the way 
they work is described. For many other microbial pathogens, 
their tactics for interfering with phagocytosis are only beginning 
to be defined. Despite the tremendous amount of published 
studies on microbial phagocytosis or knowledge on microbial 
control of this biological process is still incipient and fragmented. 
We know that some pathogens block phagocytosis at one step 
or another, but no information is available on how this blockage 
is accomplished. Some molecules have been identified but their 
mechanisms of action are not yet described. Future research will 
serve to fill these gaps and will provide clues on how to improve 
antimicrobial therapeutics.

An important element for future research is the implementa-
tion of novel techniques. Great advances have been achieved 
by application of proteomics analysis to phagosomes formed 
under different infection conditions (296). Earlier studies on M. 
tuberculosis phagosomes with high-resolution two-dimensional 
gel electrophoresis and mass spectrometry revealed unique 
bacterial proteins associated with the intracellular stage of the 
bacteria (297). The effect of a particular protein of the phagocytic 
machinery identified by proteomics can then also be tested by 
RNA-mediated interference (298). By comparing the protein pro-
file of phagosomes formed with virulent and avirulent variants of 
a pathogen, relevant molecules for pathogenesis can be identified. 
For example, comparing phagosomes containing highly virulent 
L. pneumophila to phagosomes with avirulent L. hackeliae 
revealed a lack of Rho GDP-dissociation inhibitor (RhoGDI) in 
L. pneumophila replicative phagosomes (299). Similarly, compar-
ing macrophage phagosomes formed after triggering different 
receptors, it was found that phagosome outcome was regulated 
by the individual receptors triggered for phagocytosis (300). This 
is in agreement with recent findings that indicate particular FcRs 
promote particular cell responses on neutrophil phagocytes (42). 
Thus, phagocytosis is clearly modified according to the receptor 
involved. We have a good understanding on how opsonic phago-
cytic receptors signal, but very little is known about the signaling 
pathways activated by other phagocytic receptors. This is an area 
of research that needs much further exploration in the future.

Other techniques that have been instrumental for our present 
understanding of phagocytosis are fluorescence microscopy 
coupled to particular probes to measure phagosome pH (301), 
to describe phospholipid dynamics during phagosome formation 
(302), and to quantify antibody-dependent phagocytosis (303). 
Together with these, the use of confocal microscopy coupled to 
fluorescence resonance energy transfer-based assays has been 
helpful to investigate the mechanisms of L. monocytogenes for 
phagosome escaping (304). Equally important, the use of novel 
microbial readouts of bacterial fitness have been developed 
to probe the host cell environments that promote or control 
bacterial growth (305). In particular, M. tuberculosis strains that 
express GFP under certain environmental signals relevant to the 
infection status of the macrophage, permitted identify infected 
phagocytes and demonstrated that bacteria in immune-activated 
phagocytes presented higher drug tolerance than bacteria in 
resting phagocytes (306). These assays will be very useful in 

future studies on phagocytosis of other microbial pathogens. To 
implement these assays, the proper fluorescent probes will need 
to be developed.

During phagocytosis, both the phagocyte and the microor-
ganism adapt to fight and overcome each other. These changes, 
important to the final outcome of an infection, can be studied 
by modern techniques such as transcriptional analysis via RNA 
sequencing (RNA-seq). Changes in pathogen phenotype under 
various conditions are revealed when the total transcriptome is 
analyzed. For example, it is known that cigarette smoke predis-
poses exposed individuals to respiratory infections by enhancing 
the virulence of pathogenic bacteria. A recent study on the effect 
of cigarette smoke on S. aureus gene expression using RNA-seq 
revealed that these bacteria increased twofold the expression of 
protein A with the consequent reduction in phagocytosis (307). 
A similar comparative transcriptome study with RNA-seq of 
Brucella melitensis grown in normal-medium culture and in 
acid-medium (pH 4.4) culture revealed that 113 genes were 
differentially expressed. Among these genes, a two-component 
response regulator gene in the transcriptional regulation pathway 
was identified as important for acid resistance and virulence of 
Brucella (308). Also, an analysis of RNA-seq data from in  vivo 
and in  vitro cultures of Cryptococcus gattii identified highly 
expressed genes and pathways of amino acid metabolism that 
would enable these bacteria to survive and proliferate in  vivo 
(309). Hence, particular genes expressed under particular 
conditions can be identified as potential therapeutic targets for 
controlling infections. Likewise, changes in cell phenotype can 
be analyzed by RNA-seq. For example, increased susceptibility 
to bacterial pneumonia is found after influenza infections. A 
recent RNA-seq analysis of alveolar macrophages revealed that 
the virus infection caused a reduction in the phagocytic recep-
tor MARCO. This effect could be reversed after IFNγ treatment 
of monocyte-derived macrophages and THP-1 macrophages. 
Moreover, treatment with sulforaphane or SC79, activators of 
Nrf2 and Akt, respectively, caused increased MARCO expression 
and MARCO-dependent phagocytosis (310). Therefore, a prom-
ising strategy for controlling postinfluenza bacterial pneumonia 
would be to increase MARCO expression by targeting Nrf2 and 
Akt signaling in alveolar macrophages. Another example of RNA-
seq analysis of macrophages in two different conditions, namely 
infection with virulent or avirulent strains of M. tuberculosis, 
revealed extensive remodeling of alternative splicing in mac-
rophage transcriptome (311). This led to considerable increase 
in truncated/non-translatable variants of several genes with a 
decline in the corresponding protein levels. The product of one 
such gene, RAB8B that is required for phagosome maturation, 
was reduced due to elevated levels of truncated RAB8B variants 
in cells with virulent mycobacteria (311). Alternative splicing is a 
new mechanism that M. tuberculosis uses to control macrophages. 
The molecular details of this mechanism are not known and will 
certainly become an area of interesting research in the near future.

We have described phagocytosis as a general model based 
mainly on macrophages. However, there are important differences 
among diverse types of phagocytes and even between phenotypes 
of the same phagocyte. As indicated earlier, environmental cues 
can alter the functioning of a phagocyte, and no much is known 
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about the mechanisms involved in these cell changes. Hence, 
this is an area of great interest, as shown by some recent studies. 
Metabolic conditions can alter macrophage function (312), and 
in the case of diabetes mellitus it was found that phagocytosis 
was reduced (313). This disease is also associated with increased 
tuberculosis risk and severity. Recently, it was also reported that 
alveolar murine macrophages from diabetic mice have a reduced 
expression of MARCO (314). The lack of this receptor could be 
the reason for inefficient phagocytosis in diabetic cells. Future 
research should determine whether other phagocytic receptors are 
also altered in diabetic macrophages. Nothing is known about the 
metabolic mechanisms that control phagocyte receptor expression.

The role of other phagocytes besides macrophages in control-
ling some intracellular bacterial infections is just beginning to be 
appreciated. For example, neutrophils also participate in control-
ling M. tuberculosis by autophagy (315) and are mobilized from 
the bone marrow to perform phagocytosis and secrete antimi-
crobial factors against L. monocytogenes (119). In addition, other 
cells such as dendritic cells can also perform phagocytosis by 
mechanisms that are different from those of macrophages (316). 
The particular role of these various phagocytic cells in different 
infection settings will also become an area of fruitful research in 
the future.

Macrophages not only perform phagocytosis of microbial 
pathogens but also ingest dead and dying host cells. The process 
of engulfing apoptotic cells is called efferocytosis, and it has an 
important role in the resolution of inflammation (317). Although 
efferocytosis of M. tuberculosis-infected cells leads to pathogen 
destruction, efferocytosis of Leishmania-infected neutrophils 
may promote infection (318). Understanding how macrophages, 
neutrophils, and dendritic cells process pathogens within a dying 
cell is another area for future research. Discoveries in this field 
should lead to novel therapeutics that simultaneously suppress 
inflammation and promote pathogen clearance.

CONCLUSiON

Elimination of pathogens by macrophages and neutrophils is an 
essential function of our innate defenses. These phagocytic leuko-
cytes clear microorganisms from tissues via phagocytosis. Once 
inside the phagocyte, the microorganism is destroyed by a series 
of degrading mechanisms inside the phagosome. Despite this, 
many pathogens have evolved means to prevent phagocytosis or to 
resist its effects inside the phagocytic cells. Thus, these pathogens 
remain a considerable health threat. We have presented the main 
mechanisms phagocytes have for eliminating microbes and then 
we discussed the strategies used by some pathogens to interfere 
with each step of the phagocytic process. Our list of pathogens is 
not complete, since there are many microorganisms capable of 
resisting phagocytosis in ways, we do not completely recognize. 
Technical advances have allowed us to make significant advances 
toward understanding the molecular details of the interaction 
between some pathogens and phagocytes, but important ques-
tions remain. Future research in this area will certainly bring us 
interesting surprises that will help us conceive novel therapeutic 
approaches that could render pathogens more susceptible to 
phagocyte attack.
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