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T follicular helper (Tfh) cells are a subset of CD4 T cells that provide critical signals to  
antigen-primed B cells in germinal centers to undergo proliferation, isotype switching, 
and somatic hypermutation to generate long-lived plasma cells and memory B  cells 
during an immune response. The quantity and quality of Tfh cells therefore must be 
tightly controlled to prevent immune dysfunction in the form of autoimmunity and, on 
the other hand, immune deficiency. Both Tfh and B cell perturbations appear during HIV 
infection resulting in impaired antibody responses to vaccines such as seasonal trivalent 
influenza vaccine, also seen in biologic aging. Although many of the HIV-associated 
defects improve with antiretroviral therapy (ART), excess immune activation and anti-
gen-specific B and T cell responses including Tfh function are still impaired in virologically 
controlled HIV-infected persons on ART. Interestingly, HIV infected individuals experience 
increased risk of age-associated pathologies. This review will discuss Tfh and B  cell 
dysfunction in HIV infection and highlight the impact of chronic HIV infection and aging 
on Tfh–B cell interactions.

Keywords: T follicular helper cells and Hiv, T follicular helper cells and immunity, Hiv and aging, T follicular helper 
cells and influenza vaccine, T follicular helper cells in aging and Hiv

inTRODUCTiOn

Chronic infectious diseases, such as HIV infection, and the biological process of aging are known 
to impact humoral immune responses to vaccination and infection (1–5). The issue of aging dur-
ing HIV infection has gained importance due to the success of antiretroviral therapy (ART) that 
can lead to near normal life expectancy and is resulting in increasing the numbers of aging HIV-
infected people (3, 6, 7). Older HIV-uninfected individuals in the general population, especially 
those >80 years develop immune senescence, a term signifying immune defects affecting multiple 
cell types, characterized by quantitative reduction in hematopoietic stem cells, thymic involution 
with reduced naive cells and accumulation of effector and memory cell subsets with narrow TCR 
repertoires with low clonality, and reduced CD4:CD8 T cell ratio (8–11). Memory T cells tend to lose 
expression of CD28 and their antigen-specific responses are impaired (12). In addition, profound 
B cell alterations occur in biologic aging characterized by a reduction of the naive B cell pool and 
qualitative impairment of their function along with reduced vaccine induced immune responses 
(13–22). Concurrently, increased inflammation coined by the term inflamm-aging (21, 23) occurs 
with increased C-reactive protein (CRP), D-dimer, IL-6, and TNFα that correlate with occurance of 
age-associated diseases.

Immunologic changes similar to biologic aging have been described in HIV infection, including 
accelerated immune senescence and inflammation, with increased IL-6, CRP, and D-dimer (24–26) 
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despite virologic suppression with ART and have been attributed 
to persistent immune activation (25, 27–29). Cellular markers of 
immune senescence, including low CD4:CD8 ratio and higher 
frequencies of CD57 + CD28− CD4 and CD8 T cells are promi-
nent especially in those who initiate ART at lower CD4 counts. 
Based upon epigenetic changes, age of HIV inflected people is 
approximately 5 years greater (and more without viral suppres-
sion) than uninfected people (30, 31) of the same chronologic 
age. They manifest  increased risk for non-AIDS morbidity and 
mortality, including neurocognitive decline, cardiovascular dis-
ease, kidney disease, and cancer (32). Because of the associated 
immune deficiency in both biologic aging and HIV infection, and 
the aging of HIV-infected population, it is important to determine 
how the immune systems in HIV-infected and -uninfected differ 
and to delineate the underlying mechanisms which could lead to 
therapeutic interventions. This review will focus on cellular basis 
of vaccine responses in the context of T follicular helper (Tfh) 
cells and their interaction with B cells, how these cells are affected 
by HIV infection and finally discuss recent findings on the impact 
of aging in HIV-infected and -uninfected persons using response 
to influenza vaccine as a readout of immune competence.

Tfh Cells in Lymph node (Ln) and 
Periphery
T follicular helper cells are a specialized subset of CD4 T cells in 
lymphoid organs that express the transcription factor B cell CLL/
lymphoma 6 (Bcl-6), with high surface expression of programed 
death receptor 1 (PD-1) and CXC chemokine receptor 5 (CXCR5) 
[reviewed in Refs. (33–37)]. During an immune response Tfh cells 
provide critical signals to antigen-experienced B cells in germinal 
centers (GCs) to undergo proliferation, isotype switching, and 
somatic hypermutation (SHM) in order to generate long-lived 
plasma cells and memory B  cells through cellular interaction 
and cross-signaling for antibody production [reviewed in Refs. 
(37–39)]. Tfh cell differentiation requires dendritic cell (DC) 
priming of naive antigen-specific CD4 T  cells followed by the 
interaction with B cells resulting in upregulation of costimula-
tory molecules such as inducible costimulator (ICOS) and CD40 
ligand (CD40L) and secretion of cytokines IL-21 and IL-4 that 
play a critical role for the ensuing B cell response [reviewed in 
Refs. (33, 34, 39)].

Because of the difficulties in studying lymphoid tissue in 
humans, the field has increasingly relied on a circulating subset of 
memory CD4 T cells that partially resemble LN Tfh cells and have 
been designated as peripheral Tfh (pTfh) (40–47). The pTfh cells 
display a memory phenotype and are characterized by expression 
of CXCR5, the B cell follicle homing molecule, and by secretion of 
IL-21 during interactions with B cells (42, 48). Unlike LN Tfh cells,  
pTfh cells express only moderate levels of PD-1 and Bcl-6 but 
are similar in their ability to upregulate costimulatory molecules 
such as ICOS and CD40L upon antigen stimulation (42, 49–52). 
More recently, based on the surface expression of CXCR3, CCR6 
and CXCR4 Tfh cells have been further characterized as Th1 
(CXCR3 + CCR4 − CCR6−), Th2 (CXCR3 − CCR4 + CCR6−), 
and Th17 (CXCR3 − CCR4 − CCR6+) memory CD4 T helper 
subtypes (42, 53, 54), indicative of reveals the heterogeneous 

nature of pTfh cells with respect to phenotypic, functional and 
transcription factor profiles (42, 54). It is now widely considered 
that a balance of pTfh subsets is important for maintaining 
healthy immune function.

Tfh, B cells, and Hiv infection
T follicular helper cells are highly permissive to HIV becoming 
readily infected by follicular DC that transport infectious virions 
into lymphoid organs. Tfh cells are now considered as major 
reservoirs of transcriptionally silent integrated HIV genomes 
(55–58). In non-human primates, chronic infection with simian 
immunodeficiency virus (SIV) is associated with an expansion of 
Tfh cells within GC (59, 60), along with increase in numbers of 
B cells in LN, spleen, and gut tissues of rhesus macaques (60–63). 
Early initiation of ART can rapidly control the virus replication 
but not the early lymphoid activation, thereby increasing the risk 
of infection of Tfh and magnitude of viral reservoir (64). Contrary 
to the expansion of GC Tfh cells seen in chronic HIV/SIV infec-
tion (59, 60), we and others have reported a significant loss of 
circulating pTfh cells in chronic viremic HIV-infected subjects 
compared to HIV-uninfected persons (65, 66); 12 months of ART 
incorporating Raltegravir resulted in increased frequencies of 
pTfh cells (66). However, pTfh cells from HIV+ virologically sup-
pressed patients on ART exhibit functional impairment in their 
ability to provide adequate B  cell help in a number of systems 
(41, 67–69).

In chronic HIV infection, B cells exhibit immune dysfunction 
and altered B cell subset distribution, with a shift in resting mem-
ory (RM) B cells to an activated state with expression of activation 
markers such as CD71, CD80, and CD86 (70, 71). There is also 
an increase in inflammatory B cell subsets referred to as double 
negative (DN: CD27 −  IgD −  B  cells) and tissue-like memory 
B  cells (15, 72–75). ART-mediated viral suppression restores 
many of the B cell defects, especially when initiated during the 
acute phase of infection (76). However, reduced frequencies of 
RM B cells, elevated DN B cells, as well as chronic immune activa-
tion persist (31, 71, 77–79).

vaccine-induced Antibody Responses 
During Hiv infection
In healthy states, antibody responses to T-dependent antigens are 
generated in GCs within lymphoid tissue when antigen-primed 
B and T cells engage in interactions to promote B cell differen-
tiation, SHM, and class switch recombination to develop into 
memory B cells and plasma cells (80–83). Studies in humans and 
animal models indicate that HIV infection affects the GC reac-
tion, increases immune activation/exhaustion of lymphocytes, 
and results qualitative deficiency of Tfh and B cell function (57, 
59–61, 69). These defects altogether lead to increased susceptibil-
ity to vaccine-preventable diseases (84, 85). Studies focusing on 
pTfh cells have been informative for understanding the pheno-
typic complexity within the Tfh subset and for determining the 
relationship between Tfh and B cells in immunological outcomes 
[reviewed in Ref. (86)].

Influenza vaccine studies have provided a valuable model sys-
tem to analyze the immune system in vaccine induced antibody 
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TABLe 1 | Signature immunological changes in pTfh and B cells in vaccine 
responders (VRs) following influenza vaccine at TO (baseline), T1 (7 days), and T2 
(4 weeks).

Changes in pTfh cell compartment in vaccine responders
Antigen induced IL-21 gene expression at TO
Expansion of pTfh at T1, T2
Ag-stimulated intracellular IL-21 production in pTfh at T2
“Help” to autologous B cells for H1N1-specific IgG production and B cell 
differentiation in pTfh plus B cell cocultures at T2

B cell changes in vaccine responders
Increase in frequencies of plasmablasts at T1
Increase in spontaneous H1N1-specific ASC at T1
Increase in memory B cells and switch memory at T2
Upregulation of IL-21R on total B and memory B cells at T2
Increase in TACI expression on total B and memory B cells at T2
Downregulation of BAFT-R expression on total B and memory B cells at T2

PBMC culture sups/plasma findings in vaccine responders
Production of IL-21 and CXCL13 in H1N1-stimulated culture sups with increases 
in plasma IL-21
Increase in plasma BAFF and APRIL levels

pTfh, peripheral T follicular helper; PBMCs, peripheral blood mononuclear cells; Ab, 
antibody; BAPF-R, B cell activating factor receptor; APRIL, a proliferation inducing 
ligand; CXCL13, C-X-C motif chemokine ligand 13; ASCs, antibody secreting cells.
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responses (87). We initiated such studies in virally suppressed 
HIV+ adults on ART during the 2009/H1N1 pandemic influenza 
outbreak (43, 88, 89). Following monovalent H1N1 vaccination, 
vaccinees were classified as vaccine responders (VRs) if postvac-
cination hemagglutination inhibition (HAI) serum H1N1 Ab 
titer was 1:40 or more and exhibited a 4-fold increase, from 
baseline titer, and those who did not meet these criteria were 
classified as vaccine non-responders (VNRs). In study partici-
pants, administration of the vaccine resulted in VR status only 
in 50% HIV+, compared to all age matched healthy controls. In 
the HIV + VR and VNR, prevaccination CD4 and CD8 T cell 
counts, B cell frequencies, and plasma HIV RNA were similar, 
but phenotypic and qualitative immunological differences were 
identified. In VR, there was upregulation of IL-21R in B  cells 
that correlated with plasmablasts and memory B cell responses 
post-vaccination (89), together with an expansion of pTfh cells 
with secretion of IL-21 and CXCL-13 in H1N1-stimulated PBMC 
culture supernatants. In coculture experiments, pTfh supported 
HIN1-stimulated IgG production by autologous B  cells (43). 
More recent findings point to the ability to perform qualitative 
assessment of pTfh/CD4 T cells and B cells prior to immunization 
in previously vaccinated HIV+ children and young adults (90, 91). 
Examples of such assessments include (i) ex vivo stimulation with 
H1N1 resulting in induction of CXCR5 mRNA and protein in 
CD4 T cells and (ii) induction of IL21 gene in pTfh cells. These  
antigen-specific prevaccination measures strongly associated with 
H1N1-specific B  cell responses by ELISPOT at postvaccination 
(91). Interestingly, CD4 T  cells from VNR exhibit increased 
expression of IL2 and STAT5 genes, which are known to antago-
nize pTfh function (92). Our main findings of pTfh and B cells in 
relation to vaccine responses are summarized in Table 1. Other 
vaccine studies have shown associations between pTfh expansion 
and phenotype with vaccine response. Expansion of HIV-specific 

PD-1 + ICOS + pTfh correlated with vaccine-specific serum IgG 
after booster immunization in three different human HIV vac-
cine trials (93). Expression of ICOS, PD-1, CD38, and IL-21 in 
pTfh subsets have been useful for evaluating the influenza vaccine 
response in HIV-infected and -uninfected adults in other studies 
as well (50, 87, 93–95). Studies with Ebola vaccine (rVSV-ZEB 
OV) demonstrated that CXCR5 + PD-1 + pTfh correlated with 
expansion of plasmablasts (96). Taken together, these studies 
support the concept that both quality and quantity of pTfh cells 
are important determinants for the outcome of vaccine response 
in HIV infection.

Tfh Cells and B Cells in Hiv and Aging
Our group has been interested in the question of immune 
function of aging HIV+ individuals who are well controlled 
on ART, the extent to which it resembles biologic aging of 
HIV− individuals, and implications of aging with HIV infection. 
Earlier pilot studies in virologically suppressed postmenopausal 
women as representative of an aging population established the 
persistence of inflammation and gut microbial translocation and 
detrimental role of underlying immune activation on influenza 
vaccine responses that were associated with quantitative and 
qualitative deficiencies of pTfh cells (45, 97, 98). Our studies 
showed lower H1N1 influenza antibody titers in HIV-infected 
women compared to HIV-uninfected women at prevaccination. 
Following vaccination, magnitude of antibody responses and 
frequency of study participants achieving seroprotective titers 
were lower in HIV+ than in HIV− women. Frequencies of pTfh 
cells at postvaccination correlated with memory B cell function 
and H1N1 antibody titers. Antibody responses postvaccination 
were inversely correlated with inflammatory cytokine TNFα in 
plasma and with markers of cellular immune activation (CD38 
and HLA-DR) on CD4 T cells, including pTfh subset, indicating 
an adverse influence of baseline immune activation and inflam-
mation on vaccine induced antibody response in older age.

To examine the role of age and HIV infection further, we 
are engaged in a large ongoing study (99, 100) in virologically 
suppressed HIV+ and HIV− adults grouped by age as young 
(<40  years), middle aged (40–59  years), and old (≥60  years). 
Following seasonal trivalent influenza vaccine (TIV), magnitude 
of Ab titers against each vaccine strain were found to be lower in 
old age compared to others, regardless of HIV status. Baseline 
titers in seroprotective range were higher in HIV+ but the fre-
quency of VR was lower in HIV+ than HIV−. Interestingly the 
young HIV+ showed maximum variance from HIV− and more 
rapid decay in titer after peak at 28  days postvaccination. In 
statistical analysis somewhat surprisingly effect of age rather than 
HIV dominated the impaired immune response observed in old 
persons (age > 60 years), whereas HIV clearly had a strong effect 
on immunity at younger ages (99, 100).

We examined phenotypic characteristics of T and B cells in 
this group of participants prior to vaccination. T  cell pheno-
typic analysis revealed a core signature of aging comprised of 
decreasing naive T cells and a loss of CD38 expression on CD4 
and CD8 T cells. Frequencies of activated CD4 T cells (and not 
CD8 T cells) identified by coexpression of HLA-DR and CD38, 
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FiGURe 1 | The effects of aging and HIV infection on T follicular helper 
(Tfh):B cell responses to influenza vaccination. Persistent inflammation and 
immune activation of CD4 T cells and B cells negatively influence the 
outcome of influenza vaccine response in antiretroviral therapy (ART)-treated 
HIV-infected virologically suppressed individuals through impairing the Tfh 
and B cell functions. HIV induced premature Immunosenescence further 
advanced immune dysfunction which is more evident in the young HIV+ 
individuals.
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as well as expression of PD-1, ICOS, and Ki-67 were higher in 
HIV+ participants compared to HIV− participants. Increases 
in activation markers previously associated with aging such 
as ICOS (87) were already evident in young HIV+ compared 
to young HIV−, indicative of HIV causing a state of premature 
immune senescence. Predictive modeling to determine the key 
T cell variables most closely associated with vaccine response 
revealed pTfh as an important biomarker. In HIV−, baseline 
pTfh frequency was positively associated with vaccine response, 
while in HIV+ expression of multiple activation markers on 
pTfh (including PD-1) was negatively associated with vaccine 
response (99).

Prevaccination status of B cells also revealed perturbations as 
evidenced by alteration in markers of activation, exhaustion and 
immune regulation and were more prevalent in young HIV+ than 
in young HIV− (100). HIV infection in younger adults exhibited 
similarities with biological aging resulting in alterations in 
B cell phenotypic and functional characteristics similar to those 
observed in older HIV− individuals but underlying mechanisms 
appear to be distinct from that associated with biological aging 
(100). For example, the interaction between T and B  cells 
through the PD-1:PD-L1 signaling pathway is involved only in 
HIV induced impairment of B cell function (101). These results 
provide the basis for immune correlates of premature aging in 
HIV+, even with prolonged ART-induced virological suppression 
(Figure 1). Additional mechanistic studies to understand the cel-
lular basis of immunological impairments in pTfh and B cells in 
aging and HIV infection are currently ongoing in our laboratory.

Other factors that could influence the influenza vaccine response 
in aging also need consideration. Data from literature suggest that 
vaccine-induced immune responses are considerably influenced 
by demographic variables such as age, sex, ethnicity, and race 
(102–105). Many studies indicate that aged females consistently 
have higher antibody responses and increased vaccine efficacy 
to influenza vaccines than males [reviewed in Refs. (106, 107)].  

Sex differences in HAI antibody titers to either the standard-dose 
or high-dose influenza vaccine are apparent, in which antibody 
responses are higher in older females than in males (108, 109). 
A role played by male hormone testosterone in lowering the 
immune response has been proposed (109, 110). There is grow-
ing interest in how latent cytomegalovirus (CMV) infections 
impact the outcome of vaccination [reviewed in Ref. (111)]. In 
young adults, CMV infection is associated with elevated anti-
body responses to influenza vaccines. In aged individuals, CMV 
seropositivity is associated with chronic inflammation and lower 
antibody responses to influenza vaccines (112, 113). However, 
lack of association between CMV status and influenza response in 
elderly population has also been reported (114). Thus the overall 
impact of CMV infection on influenza vaccine responsiveness 
remains controversial. A direct link between CMV seropositivity 
with increased risk of influenza illness in vaccinated older adults 
has not been reported in either HIV-infected or healthy individu-
als. Moreover, the influence of gender and CMV infection status 
on the cellular basis of immune impairment involving pTfh and 
B cell compartments are not been studied in aging and HIV infec-
tion. In aged mice, CD4+ and CD8+ T cells express several inhibi-
tory receptor molecules, including PD-1, LAG-3, CTLA-4, and 
KLRG1 (115, 116) that could interfere with the immune response 
to vaccination. Prolonged expression of inhibitory molecules is a 
well-known feature of T cell exhaustion in chronic viral infections 
and exhausted T cells have also been identified in different viral 
infections, such as HIV and hepatitis A and B virus in humans 
[reviewed in Refs. (117–120)]. However, further studies are war-
ranted to elucidate the significance of T cell exhaustion in HIV 
infection in the context of aging and its influence on vaccine 
induced immune response through regulation of pTfh and B cell 
function.

COnCLUSiOnS AnD FUTURe 
PeRSPeCTiveS

Development of a protective antibody response to vaccine or 
infection is important for the control or eradication of many 
pathogenic infections. Efficient Tfh–B  cell interactions are 
required for regulating B cell differentiation toward the develop-
ment of high affinity antibodies. Immune mechanisms underlying 
the regulation of Tfh–B cell interactions at the inductive sites of 
the immune response are an active area of immunology research. 
Several studies have highlighted the qualitative and quantitative 
impairment of Tfh compartment and their subsequent impact 
on humoral arm of immune response in treated HIV infection 
(43, 45, 67, 87, 94, 98). Since HIV-infected people are aging, 
research on the cumulative impact of premature and physiologi-
cal immune senescence on immune function in HIV infection is 
of great importance. Our work underscores the adverse effect of 
inflammation, a cardinal feature associated with biologic aging 
and chronic HIV infection, on immune response to vaccination 
and functional impairment of Tfh and B cells as a consequence of 
persistent immune activation.

Recent advances in the field of immune checkpoint inhibitor-
based immunotherapeutic approaches in cancer immunology 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


5

Pallikkuth et al. Tfh Cells in Aging and HIV Infection

Frontiers in Immunology | www.frontiersin.org October 2017 | Volume 8 | Article 1380

have highlighted the importance of cell to cell interactions on 
immune function. Many aspects of checkpoint molecule-based 
regulation of humoral immune response on Tfh and B cell inter-
actions at the GC are not known. Trials employing checkpoint 
inhibitors in HIV infection will need to ensure that improved 
Tfh–B  cell interactions not associated with autoimmunity. 
Immune checkpoints are negative regulators of T  cell activa-
tion, T cell proliferation and effector functions and inhibiting 
immune checkpoints could influence and disrupt the resting 
status of latently infected cells and reverse latency with increase 
in HIV replication within GC (121). Future studies are needed to 
explore combination approaches targeting immune checkpoint 
molecules and costimulatory signaling pathways during an 
immune response to understand the coregulation of immunity 
by these molecules in the GC reaction. The ultimate goal should 
be to establish strategies to improve the immune function at 
inductive sites. Interventions aimed at reducing chronic inflam-
mation and immune activation along with immunomodulatory 

approaches may improve response to vaccines in aging HIV+ 
individuals.
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